/* * Copyright (c) 2020-2021, Liav A. * Copyright (c) 2020-2021, Andreas Kling * Copyright (c) 2022, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #if ARCH(X86_64) # include # include #endif #include #include #include #include #include #include namespace Kernel::ACPI { static Parser* s_acpi_parser; Parser* Parser::the() { return s_acpi_parser; } void Parser::must_initialize(PhysicalAddress rsdp, PhysicalAddress fadt, u8 irq_number) { VERIFY(!s_acpi_parser); s_acpi_parser = new (nothrow) Parser(rsdp, fadt, irq_number); VERIFY(s_acpi_parser); } UNMAP_AFTER_INIT NonnullLockRefPtr ACPISysFSComponent::create(StringView name, PhysicalAddress paddr, size_t table_size) { // FIXME: Handle allocation failure gracefully auto table_name = KString::must_create(name); return adopt_lock_ref(*new (nothrow) ACPISysFSComponent(move(table_name), paddr, table_size)); } ErrorOr ACPISysFSComponent::read_bytes(off_t offset, size_t count, UserOrKernelBuffer& buffer, OpenFileDescription*) const { auto blob = TRY(try_to_generate_buffer()); if ((size_t)offset >= blob->size()) return 0; ssize_t nread = min(static_cast(blob->size() - offset), static_cast(count)); TRY(buffer.write(blob->data() + offset, nread)); return nread; } ErrorOr> ACPISysFSComponent::try_to_generate_buffer() const { auto acpi_blob = TRY(Memory::map_typed((m_paddr), m_length)); return KBuffer::try_create_with_bytes("ACPISysFSComponent: Blob"sv, Span { acpi_blob.ptr(), m_length }); } UNMAP_AFTER_INIT ACPISysFSComponent::ACPISysFSComponent(NonnullOwnPtr table_name, PhysicalAddress paddr, size_t table_size) : SysFSComponent() , m_paddr(paddr) , m_length(table_size) , m_table_name(move(table_name)) { } UNMAP_AFTER_INIT void ACPISysFSDirectory::find_tables_and_register_them_as_components() { size_t ssdt_count = 0; MUST(m_child_components.with([&](auto& list) -> ErrorOr { ACPI::Parser::the()->enumerate_static_tables([&](StringView signature, PhysicalAddress p_table, size_t length) { if (signature == "SSDT") { auto component_name = KString::formatted("{:4s}{}", signature.characters_without_null_termination(), ssdt_count).release_value_but_fixme_should_propagate_errors(); list.append(ACPISysFSComponent::create(component_name->view(), p_table, length)); ssdt_count++; return; } list.append(ACPISysFSComponent::create(signature, p_table, length)); }); return {}; })); MUST(m_child_components.with([&](auto& list) -> ErrorOr { auto rsdp = Memory::map_typed(ACPI::Parser::the()->rsdp()).release_value_but_fixme_should_propagate_errors(); list.append(ACPISysFSComponent::create("RSDP"sv, ACPI::Parser::the()->rsdp(), rsdp->base.revision == 0 ? sizeof(Structures::RSDPDescriptor) : rsdp->length)); auto main_system_description_table = Memory::map_typed(ACPI::Parser::the()->main_system_description_table()).release_value_but_fixme_should_propagate_errors(); if (ACPI::Parser::the()->is_xsdt_supported()) { list.append(ACPISysFSComponent::create("XSDT"sv, ACPI::Parser::the()->main_system_description_table(), main_system_description_table->length)); } else { list.append(ACPISysFSComponent::create("RSDT"sv, ACPI::Parser::the()->main_system_description_table(), main_system_description_table->length)); } return {}; })); } UNMAP_AFTER_INIT NonnullLockRefPtr ACPISysFSDirectory::must_create(SysFSFirmwareDirectory& firmware_directory) { auto acpi_directory = MUST(adopt_nonnull_lock_ref_or_enomem(new (nothrow) ACPISysFSDirectory(firmware_directory))); acpi_directory->find_tables_and_register_them_as_components(); return acpi_directory; } UNMAP_AFTER_INIT ACPISysFSDirectory::ACPISysFSDirectory(SysFSFirmwareDirectory& firmware_directory) : SysFSDirectory(firmware_directory) { } void Parser::enumerate_static_tables(Function callback) { for (auto& p_table : m_sdt_pointers) { auto table = Memory::map_typed(p_table).release_value_but_fixme_should_propagate_errors(); callback({ table->sig, 4 }, p_table, table->length); } } static bool validate_table(Structures::SDTHeader const&, size_t length); UNMAP_AFTER_INIT void Parser::locate_static_data() { locate_main_system_description_table(); initialize_main_system_description_table(); process_fadt_data(); process_dsdt(); } UNMAP_AFTER_INIT Optional Parser::find_table(StringView signature) { dbgln_if(ACPI_DEBUG, "ACPI: Calling Find Table method!"); for (auto p_sdt : m_sdt_pointers) { auto sdt_or_error = Memory::map_typed(p_sdt); if (sdt_or_error.is_error()) { dbgln_if(ACPI_DEBUG, "ACPI: Failed mapping Table @ {}", p_sdt); continue; } dbgln_if(ACPI_DEBUG, "ACPI: Examining Table @ {}", p_sdt); if (!strncmp(sdt_or_error.value()->sig, signature.characters_without_null_termination(), 4)) { dbgln_if(ACPI_DEBUG, "ACPI: Found Table @ {}", p_sdt); return p_sdt; } } return {}; } bool Parser::handle_irq(RegisterState const&) { TODO(); } UNMAP_AFTER_INIT void Parser::enable_aml_parsing() { // FIXME: When enabled, do other things to "parse AML". m_can_process_bytecode = true; } UNMAP_AFTER_INIT void Parser::process_fadt_data() { dmesgln("ACPI: Initializing Fixed ACPI data"); VERIFY(!m_fadt.is_null()); dbgln_if(ACPI_DEBUG, "ACPI: FADT @ {}", m_fadt); auto sdt = Memory::map_typed(m_fadt).release_value_but_fixme_should_propagate_errors(); dmesgln("ACPI: Fixed ACPI data, Revision {}, length: {} bytes", (size_t)sdt->h.revision, (size_t)sdt->h.length); m_x86_specific_flags.cmos_rtc_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::CMOS_RTC_Not_Present); // FIXME: QEMU doesn't report that we have an i8042 controller in these flags, even if it should (when FADT revision is 3), // Later on, we need to make sure that we enumerate the ACPI namespace (AML encoded), instead of just using this value. m_x86_specific_flags.keyboard_8042 = (sdt->h.revision <= 3) || (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::PS2_8042); m_x86_specific_flags.legacy_devices = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::Legacy_Devices); m_x86_specific_flags.msi_not_supported = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::MSI_Not_Supported); m_x86_specific_flags.vga_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::VGA_Not_Present); m_hardware_flags.cpu_software_sleep = (sdt->flags & (u32)FADTFlags::FeatureFlags::CPU_SW_SLP); m_hardware_flags.docking_capability = (sdt->flags & (u32)FADTFlags::FeatureFlags::DCK_CAP); m_hardware_flags.fix_rtc = (sdt->flags & (u32)FADTFlags::FeatureFlags::FIX_RTC); m_hardware_flags.force_apic_cluster_model = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_CLUSTER_MODEL); m_hardware_flags.force_apic_physical_destination_mode = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_PHYSICAL_DESTINATION_MODE); m_hardware_flags.hardware_reduced_acpi = (sdt->flags & (u32)FADTFlags::FeatureFlags::HW_REDUCED_ACPI); m_hardware_flags.headless = (sdt->flags & (u32)FADTFlags::FeatureFlags::HEADLESS); m_hardware_flags.low_power_s0_idle_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::LOW_POWER_S0_IDLE_CAPABLE); m_hardware_flags.multiprocessor_c2 = (sdt->flags & (u32)FADTFlags::FeatureFlags::P_LVL2_UP); m_hardware_flags.pci_express_wake = (sdt->flags & (u32)FADTFlags::FeatureFlags::PCI_EXP_WAK); m_hardware_flags.power_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::PWR_BUTTON); m_hardware_flags.processor_c1 = (sdt->flags & (u32)FADTFlags::FeatureFlags::PROC_C1); m_hardware_flags.remote_power_on_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::REMOTE_POWER_ON_CAPABLE); m_hardware_flags.reset_register_supported = (sdt->flags & (u32)FADTFlags::FeatureFlags::RESET_REG_SUPPORTED); m_hardware_flags.rtc_s4 = (sdt->flags & (u32)FADTFlags::FeatureFlags::RTC_s4); m_hardware_flags.s4_rtc_status_valid = (sdt->flags & (u32)FADTFlags::FeatureFlags::S4_RTC_STS_VALID); m_hardware_flags.sealed_case = (sdt->flags & (u32)FADTFlags::FeatureFlags::SEALED_CASE); m_hardware_flags.sleep_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::SLP_BUTTON); m_hardware_flags.timer_value_extension = (sdt->flags & (u32)FADTFlags::FeatureFlags::TMR_VAL_EXT); m_hardware_flags.use_platform_clock = (sdt->flags & (u32)FADTFlags::FeatureFlags::USE_PLATFORM_CLOCK); m_hardware_flags.wbinvd = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD); m_hardware_flags.wbinvd_flush = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD_FLUSH); } UNMAP_AFTER_INIT void Parser::process_dsdt() { auto sdt = Memory::map_typed(m_fadt).release_value_but_fixme_should_propagate_errors(); // Add DSDT-pointer to expose the full table in /sys/firmware/acpi/ m_sdt_pointers.append(PhysicalAddress(sdt->dsdt_ptr)); auto dsdt_or_error = Memory::map_typed(PhysicalAddress(sdt->dsdt_ptr)); if (dsdt_or_error.is_error()) { dmesgln("ACPI: DSDT is unmappable"); return; } dmesgln("ACPI: Using DSDT @ {} with {} bytes", PhysicalAddress(sdt->dsdt_ptr), dsdt_or_error.value()->h.length); } bool Parser::can_reboot() { auto fadt_or_error = Memory::map_typed(m_fadt); if (fadt_or_error.is_error()) return false; if (fadt_or_error.value()->h.revision < 2) return false; return m_hardware_flags.reset_register_supported; } void Parser::access_generic_address(Structures::GenericAddressStructure const& structure, u32 value) { switch ((GenericAddressStructure::AddressSpace)structure.address_space) { case GenericAddressStructure::AddressSpace::SystemIO: { #if ARCH(X86_64) IOAddress address(structure.address); dbgln("ACPI: Sending value {:x} to {}", value, address); switch (structure.access_size) { case (u8)GenericAddressStructure::AccessSize::QWord: { dbgln("Trying to send QWord to IO port"); VERIFY_NOT_REACHED(); break; } case (u8)GenericAddressStructure::AccessSize::Undefined: { dbgln("ACPI Warning: Unknown access size {}", structure.access_size); VERIFY(structure.bit_width != (u8)GenericAddressStructure::BitWidth::QWord); VERIFY(structure.bit_width != (u8)GenericAddressStructure::BitWidth::Undefined); dbgln("ACPI: Bit Width - {} bits", structure.bit_width); address.out(value, structure.bit_width); break; } default: address.out(value, (8 << (structure.access_size - 1))); break; } #endif return; } case GenericAddressStructure::AddressSpace::SystemMemory: { dbgln("ACPI: Sending value {:x} to {}", value, PhysicalAddress(structure.address)); switch ((GenericAddressStructure::AccessSize)structure.access_size) { case GenericAddressStructure::AccessSize::Byte: *Memory::map_typed(PhysicalAddress(structure.address)).release_value_but_fixme_should_propagate_errors() = value; break; case GenericAddressStructure::AccessSize::Word: *Memory::map_typed(PhysicalAddress(structure.address)).release_value_but_fixme_should_propagate_errors() = value; break; case GenericAddressStructure::AccessSize::DWord: *Memory::map_typed(PhysicalAddress(structure.address)).release_value_but_fixme_should_propagate_errors() = value; break; case GenericAddressStructure::AccessSize::QWord: { *Memory::map_typed(PhysicalAddress(structure.address)).release_value_but_fixme_should_propagate_errors() = value; break; } default: VERIFY_NOT_REACHED(); } return; } case GenericAddressStructure::AddressSpace::PCIConfigurationSpace: { // According to https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#address-space-format, // PCI addresses must be confined to devices on Segment group 0, bus 0. auto pci_address = PCI::Address(0, 0, ((structure.address >> 24) & 0xFF), ((structure.address >> 16) & 0xFF)); dbgln("ACPI: Sending value {:x} to {}", value, pci_address); u32 offset_in_pci_address = structure.address & 0xFFFF; if (structure.access_size == (u8)GenericAddressStructure::AccessSize::QWord) { dbgln("Trying to send QWord to PCI configuration space"); VERIFY_NOT_REACHED(); } VERIFY(structure.access_size != (u8)GenericAddressStructure::AccessSize::Undefined); auto& pci_device_identifier = PCI::get_device_identifier(pci_address); PCI::raw_access(pci_device_identifier, offset_in_pci_address, (1 << (structure.access_size - 1)), value); return; } default: VERIFY_NOT_REACHED(); } VERIFY_NOT_REACHED(); } bool Parser::validate_reset_register(Memory::TypedMapping const& fadt) { // According to https://uefi.org/specs/ACPI/6.4/04_ACPI_Hardware_Specification/ACPI_Hardware_Specification.html#reset-register, // the reset register can only be located in I/O bus, PCI bus or memory-mapped. return (fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemMemory || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemIO); } void Parser::try_acpi_reboot() { InterruptDisabler disabler; if (!can_reboot()) { dmesgln("ACPI: Reboot not supported!"); return; } dbgln_if(ACPI_DEBUG, "ACPI: Rebooting, probing FADT ({})", m_fadt); auto fadt_or_error = Memory::map_typed(m_fadt); if (fadt_or_error.is_error()) { dmesgln("ACPI: Failed probing FADT {}", fadt_or_error.error()); return; } auto fadt = fadt_or_error.release_value(); VERIFY(validate_reset_register(fadt)); access_generic_address(fadt->reset_reg, fadt->reset_value); Processor::halt(); } void Parser::try_acpi_shutdown() { dmesgln("ACPI: Shutdown is not supported with the current configuration, aborting!"); } size_t Parser::get_table_size(PhysicalAddress table_header) { InterruptDisabler disabler; dbgln_if(ACPI_DEBUG, "ACPI: Checking SDT Length"); return Memory::map_typed(table_header).release_value_but_fixme_should_propagate_errors()->length; } u8 Parser::get_table_revision(PhysicalAddress table_header) { InterruptDisabler disabler; dbgln_if(ACPI_DEBUG, "ACPI: Checking SDT Revision"); return Memory::map_typed(table_header).release_value_but_fixme_should_propagate_errors()->revision; } UNMAP_AFTER_INIT void Parser::initialize_main_system_description_table() { dbgln_if(ACPI_DEBUG, "ACPI: Checking Main SDT Length to choose the correct mapping size"); VERIFY(!m_main_system_description_table.is_null()); auto length = get_table_size(m_main_system_description_table); auto revision = get_table_revision(m_main_system_description_table); auto sdt = Memory::map_typed(m_main_system_description_table, length).release_value_but_fixme_should_propagate_errors(); dmesgln("ACPI: Main Description Table valid? {}", validate_table(*sdt, length)); if (m_xsdt_supported) { auto& xsdt = (Structures::XSDT const&)*sdt; dmesgln("ACPI: Using XSDT, enumerating tables @ {}", m_main_system_description_table); dmesgln("ACPI: XSDT revision {}, total length: {}", revision, length); dbgln_if(ACPI_DEBUG, "ACPI: XSDT pointer @ {}", VirtualAddress { &xsdt }); for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) { dbgln_if(ACPI_DEBUG, "ACPI: Found new table [{0}], @ V{1:p} - P{1:p}", i, &xsdt.table_ptrs[i]); m_sdt_pointers.append(PhysicalAddress(xsdt.table_ptrs[i])); } } else { auto& rsdt = (Structures::RSDT const&)*sdt; dmesgln("ACPI: Using RSDT, enumerating tables @ {}", m_main_system_description_table); dmesgln("ACPI: RSDT revision {}, total length: {}", revision, length); dbgln_if(ACPI_DEBUG, "ACPI: RSDT pointer @ V{}", &rsdt); for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) { dbgln_if(ACPI_DEBUG, "ACPI: Found new table [{0}], @ V{1:p} - P{1:p}", i, &rsdt.table_ptrs[i]); m_sdt_pointers.append(PhysicalAddress(rsdt.table_ptrs[i])); } } } UNMAP_AFTER_INIT void Parser::locate_main_system_description_table() { auto rsdp = Memory::map_typed(m_rsdp).release_value_but_fixme_should_propagate_errors(); if (rsdp->base.revision == 0) { m_xsdt_supported = false; } else if (rsdp->base.revision >= 2) { if (rsdp->xsdt_ptr != (u64) nullptr) { m_xsdt_supported = true; } else { m_xsdt_supported = false; } } if (!m_xsdt_supported) { m_main_system_description_table = PhysicalAddress(rsdp->base.rsdt_ptr); } else { m_main_system_description_table = PhysicalAddress(rsdp->xsdt_ptr); } } UNMAP_AFTER_INIT Parser::Parser(PhysicalAddress rsdp, PhysicalAddress fadt, u8 irq_number) : IRQHandler(irq_number) , m_rsdp(rsdp) , m_fadt(fadt) { dmesgln("ACPI: Using RSDP @ {}", rsdp); locate_static_data(); } static bool validate_table(Structures::SDTHeader const& v_header, size_t length) { u8 checksum = 0; auto* sdt = (u8 const*)&v_header; for (size_t i = 0; i < length; i++) checksum += sdt[i]; if (checksum == 0) return true; return false; } }