/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include // Make a reasonable guess as to which timespec/timeval definition to use. // It doesn't really matter, since both are identical. #ifdef KERNEL # include #else # include # include #endif namespace AK { int days_in_month(int year, unsigned month) { VERIFY(month >= 1 && month <= 12); if (month == 2) return is_leap_year(year) ? 29 : 28; bool is_long_month = (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12); return is_long_month ? 31 : 30; } unsigned day_of_week(int year, unsigned month, int day) { VERIFY(month >= 1 && month <= 12); constexpr Array seek_table = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 }; if (month < 3) --year; return (year + year / 4 - year / 100 + year / 400 + seek_table[month - 1] + day) % 7; } Time Time::from_ticks(clock_t ticks, time_t ticks_per_second) { auto secs = ticks % ticks_per_second; i32 nsecs = 1'000'000'000 * (ticks - (ticks_per_second * secs)) / ticks_per_second; i32 extra_secs = sane_mod(nsecs, 1'000'000'000); return Time::from_half_sanitized(secs, extra_secs, nsecs); } Time Time::from_timespec(const struct timespec& ts) { i32 nsecs = ts.tv_nsec; i32 extra_secs = sane_mod(nsecs, 1'000'000'000); return Time::from_half_sanitized(ts.tv_sec, extra_secs, nsecs); } Time Time::from_timeval(const struct timeval& tv) { i32 usecs = tv.tv_usec; i32 extra_secs = sane_mod(usecs, 1'000'000); VERIFY(0 <= usecs && usecs < 1'000'000); return Time::from_half_sanitized(tv.tv_sec, extra_secs, usecs * 1'000); } i64 Time::to_truncated_seconds() const { VERIFY(m_nanoseconds < 1'000'000'000); if (m_seconds < 0 && m_nanoseconds) { // Since m_seconds is negative, adding 1 can't possibly overflow return m_seconds + 1; } return m_seconds; } i64 Time::to_truncated_milliseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); milliseconds *= 1'000; milliseconds += m_nanoseconds / 1'000'000; if (m_seconds < 0) { if (m_nanoseconds % 1'000'000 != 0) { // Does not overflow: milliseconds <= 1'999. milliseconds++; } // We dropped one second previously, put it back in now that we have handled the rounding. milliseconds -= 1'000; } if (!milliseconds.has_overflow()) return milliseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Time::to_truncated_microseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); microseconds *= 1'000'000; microseconds += m_nanoseconds / 1'000; if (m_seconds < 0) { if (m_nanoseconds % 1'000 != 0) { // Does not overflow: microseconds <= 1'999'999. microseconds++; } // We dropped one second previously, put it back in now that we have handled the rounding. microseconds -= 1'000'000; } if (!microseconds.has_overflow()) return microseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Time::to_seconds() const { VERIFY(m_nanoseconds < 1'000'000'000); if (m_seconds >= 0 && m_nanoseconds) { Checked seconds(m_seconds); seconds++; return seconds.has_overflow() ? 0x7fff'ffff'ffff'ffffLL : seconds.value(); } return m_seconds; } i64 Time::to_milliseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); milliseconds *= 1'000; milliseconds += m_nanoseconds / 1'000'000; if (m_seconds >= 0 && m_nanoseconds % 1'000'000 != 0) milliseconds++; if (m_seconds < 0) { // We dropped one second previously, put it back in now that we have handled the rounding. milliseconds -= 1'000; } if (!milliseconds.has_overflow()) return milliseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Time::to_microseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); microseconds *= 1'000'000; microseconds += m_nanoseconds / 1'000; if (m_seconds >= 0 && m_nanoseconds % 1'000 != 0) microseconds++; if (m_seconds < 0) { // We dropped one second previously, put it back in now that we have handled the rounding. microseconds -= 1'000'000; } if (!microseconds.has_overflow()) return microseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Time::to_nanoseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked nanoseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); nanoseconds *= 1'000'000'000; nanoseconds += m_nanoseconds; if (m_seconds < 0) { // We dropped one second previously, put it back in now that we have handled the rounding. nanoseconds -= 1'000'000'000; } if (!nanoseconds.has_overflow()) return nanoseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } timespec Time::to_timespec() const { VERIFY(m_nanoseconds < 1'000'000'000); return { static_cast(m_seconds), static_cast(m_nanoseconds) }; } timeval Time::to_timeval() const { VERIFY(m_nanoseconds < 1'000'000'000); return { static_cast(m_seconds), static_cast(m_nanoseconds) / 1000 }; } Time Time::operator+(const Time& other) const { VERIFY(m_nanoseconds < 1'000'000'000); VERIFY(other.m_nanoseconds < 1'000'000'000); u32 new_nsecs = m_nanoseconds + other.m_nanoseconds; u32 extra_secs = new_nsecs / 1'000'000'000; new_nsecs %= 1'000'000'000; i64 this_secs = m_seconds; i64 other_secs = other.m_seconds; // We would like to just add "this_secs + other_secs + extra_secs". // However, computing this naively may overflow even though the result is in-bounds. // Example in 8-bit: (-127) + (-2) + (+1) = (-128), which fits in an i8. // Example in 8-bit, the other way around: (-2) + (127) + (+1) = 126. // So we do something more sophisticated: if (extra_secs) { VERIFY(extra_secs == 1); if (this_secs != 0x7fff'ffff'ffff'ffff) { this_secs += 1; } else if (other_secs != 0x7fff'ffff'ffff'ffff) { other_secs += 1; } else { /* If *both* are INT64_MAX, then adding them will overflow in any case. */ return Time::max(); } } Checked new_secs { this_secs }; new_secs += other_secs; if (new_secs.has_overflow()) { if (other_secs > 0) return Time::max(); else return Time::min(); } return Time { new_secs.value(), new_nsecs }; } Time& Time::operator+=(const Time& other) { *this = *this + other; return *this; } Time Time::operator-(const Time& other) const { VERIFY(m_nanoseconds < 1'000'000'000); VERIFY(other.m_nanoseconds < 1'000'000'000); if (other.m_nanoseconds) return *this + Time((i64) ~(u64)other.m_seconds, 1'000'000'000 - other.m_nanoseconds); if (other.m_seconds != (i64)-0x8000'0000'0000'0000) return *this + Time(-other.m_seconds, 0); // Only remaining case: We want to subtract -0x8000'0000'0000'0000 seconds, // i.e. add a very large number. if (m_seconds >= 0) return Time::max(); return Time { (m_seconds + 0x4000'0000'0000'0000) + 0x4000'0000'0000'0000, m_nanoseconds }; } Time& Time::operator-=(const Time& other) { *this = *this - other; return *this; } bool Time::operator<(const Time& other) const { return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds < other.m_nanoseconds); } bool Time::operator<=(const Time& other) const { return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds <= other.m_nanoseconds); } bool Time::operator>(const Time& other) const { return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds > other.m_nanoseconds); } bool Time::operator>=(const Time& other) const { return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds >= other.m_nanoseconds); } Time Time::from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds) { VERIFY(nanoseconds < 1'000'000'000); if ((seconds <= 0 && extra_seconds > 0) || (seconds >= 0 && extra_seconds < 0)) { // Opposite signs mean that we can definitely add them together without fear of overflowing i64: seconds += extra_seconds; extra_seconds = 0; } // Now the only possible way to become invalid is overflowing i64 towards positive infinity: if (Checked::addition_would_overflow(seconds, extra_seconds)) { if (seconds < 0) { return Time::min(); } else { return Time::max(); } } return Time { seconds + extra_seconds, nanoseconds }; } #ifndef KERNEL namespace { static Time now_time_from_clock(clockid_t clock_id) { timespec now_spec {}; ::clock_gettime(clock_id, &now_spec); return Time::from_timespec(now_spec); } } Time Time::now_realtime() { return now_time_from_clock(CLOCK_REALTIME); } Time Time::now_realtime_coarse() { return now_time_from_clock(CLOCK_REALTIME_COARSE); } Time Time::now_monotonic() { return now_time_from_clock(CLOCK_MONOTONIC); } Time Time::now_monotonic_coarse() { return now_time_from_clock(CLOCK_MONOTONIC_COARSE); } #endif }