/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Defined in the linker script typedef void (*ctor_func_t)(); extern ctor_func_t start_heap_ctors; extern ctor_func_t end_heap_ctors; extern ctor_func_t start_ctors; extern ctor_func_t end_ctors; extern u32 __stack_chk_guard; u32 __stack_chk_guard; extern "C" u8* start_of_safemem_text; extern "C" u8* end_of_safemem_text; extern "C" u8* start_of_safemem_atomic_text; extern "C" u8* end_of_safemem_atomic_text; extern "C" u8* end_of_kernel_image; multiboot_module_entry_t multiboot_copy_boot_modules_array[16]; size_t multiboot_copy_boot_modules_count; extern "C" const char kernel_cmdline[4096]; namespace Kernel { [[noreturn]] static void init_stage2(void*); static void setup_serial_debug(); // boot.S expects these functions to exactly have the following signatures. // We declare them here to ensure their signatures don't accidentally change. extern "C" void init_finished(u32 cpu) __attribute__((used)); extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info); extern "C" [[noreturn]] void init(); READONLY_AFTER_INIT VirtualConsole* tty0; static Processor s_bsp_processor; // global but let's keep it "private" // SerenityOS Kernel C++ entry point :^) // // This is where C++ execution begins, after boot.S transfers control here. // // The purpose of init() is to start multi-tasking. It does the bare minimum // amount of work needed to start the scheduler. // // Once multi-tasking is ready, we spawn a new thread that starts in the // init_stage2() function. Initialization continues there. extern "C" UNMAP_AFTER_INIT [[noreturn]] void init() { if ((FlatPtr)&end_of_kernel_image >= 0xc2000000u) { // The kernel has grown too large again! asm volatile("cli;hlt"); } setup_serial_debug(); // We need to copy the command line before kmalloc is initialized, // as it may overwrite parts of multiboot! CommandLine::early_initialize(kernel_cmdline); memcpy(multiboot_copy_boot_modules_array, (u8*)low_physical_to_virtual(multiboot_info_ptr->mods_addr), multiboot_info_ptr->mods_count * sizeof(multiboot_module_entry_t)); multiboot_copy_boot_modules_count = multiboot_info_ptr->mods_count; s_bsp_processor.early_initialize(0); // Invoke the constructors needed for the kernel heap for (ctor_func_t* ctor = &start_heap_ctors; ctor < &end_heap_ctors; ctor++) (*ctor)(); kmalloc_init(); slab_alloc_init(); ConsoleDevice::initialize(); s_bsp_processor.initialize(0); CommandLine::initialize(); MemoryManager::initialize(0); // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections. VERIFY(&start_of_safemem_text != &end_of_safemem_text); VERIFY(&start_of_safemem_atomic_text != &end_of_safemem_atomic_text); // Invoke all static global constructors in the kernel. // Note that we want to do this as early as possible. for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++) (*ctor)(); APIC::initialize(); InterruptManagement::initialize(); ACPI::initialize(); VFS::initialize(); dmesgln("Starting SerenityOS..."); TimeManagement::initialize(0); __stack_chk_guard = get_fast_random(); NullDevice::initialize(); if (!get_serial_debug()) new SerialDevice(SERIAL_COM1_ADDR, 64); new SerialDevice(SERIAL_COM2_ADDR, 65); new SerialDevice(SERIAL_COM3_ADDR, 66); new SerialDevice(SERIAL_COM4_ADDR, 67); VMWareBackdoor::the(); // don't wait until first mouse packet HIDManagement::initialize(); PCI::initialize(); GraphicsManagement::the().initialize(); ConsoleManagement::the().initialize(); Thread::initialize(); Process::initialize(); Scheduler::initialize(); WorkQueue::initialize(); { RefPtr init_stage2_thread; Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2, nullptr); // We need to make sure we drop the reference for init_stage2_thread // before calling into Scheduler::start, otherwise we will have a // dangling Thread that never gets cleaned up } Scheduler::start(); VERIFY_NOT_REACHED(); } // // This is where C++ execution begins for APs, after boot.S transfers control here. // // The purpose of init_ap() is to initialize APs for multi-tasking. // extern "C" UNMAP_AFTER_INIT [[noreturn]] void init_ap(u32 cpu, Processor* processor_info) { processor_info->early_initialize(cpu); processor_info->initialize(cpu); MemoryManager::initialize(cpu); Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu)); Scheduler::start(); VERIFY_NOT_REACHED(); } // // This method is called once a CPU enters the scheduler and its idle thread // At this point the initial boot stack can be freed // extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu) { if (cpu == 0) { // TODO: we can reuse the boot stack, maybe for kmalloc()? } else { APIC::the().init_finished(cpu); TimeManagement::initialize(cpu); } } void init_stage2(void*) { if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) { // We can't start the APs until we have a scheduler up and running. // We need to be able to process ICI messages, otherwise another // core may send too many and end up deadlocking once the pool is // exhausted APIC::the().boot_aps(); } SyncTask::spawn(); FinalizerTask::spawn(); auto boot_profiling = kernel_command_line().is_boot_profiling_enabled(); USB::UHCIController::detect(); DMIExpose::initialize(); VirtIO::detect(); E1000NetworkAdapter::detect(); NE2000NetworkAdapter::detect(); RTL8139NetworkAdapter::detect(); LoopbackAdapter::the(); Syscall::initialize(); new MemoryDevice; new ZeroDevice; new FullDevice; new RandomDevice; PTYMultiplexer::initialize(); SB16::detect(); StorageManagement::initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio()); if (!VFS::the().mount_root(StorageManagement::the().root_filesystem())) { PANIC("VFS::mount_root failed"); } Process::current()->set_root_directory(VFS::the().root_custody()); load_kernel_symbol_table(); // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point. MM.protect_readonly_after_init_memory(); // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point. MM.unmap_memory_after_init(); int error; // FIXME: It would be nicer to set the mode from userspace. // FIXME: It would be smarter to not hardcode that the first tty is the only graphical one ConsoleManagement::the().first_tty()->set_graphical(GraphicsManagement::the().framebuffer_devices_exist()); RefPtr thread; auto userspace_init = kernel_command_line().userspace_init(); auto init_args = kernel_command_line().userspace_init_args(); Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, move(init_args), {}, tty0); if (error != 0) { PANIC("init_stage2: Error spawning SystemServer: {}", error); } thread->set_priority(THREAD_PRIORITY_HIGH); if (boot_profiling) { dbgln("Starting full system boot profiling"); auto result = Process::current()->sys$profiling_enable(-1); VERIFY(!result.is_error()); } NetworkTask::spawn(); Process::current()->sys$exit(0); VERIFY_NOT_REACHED(); } UNMAP_AFTER_INIT void setup_serial_debug() { // serial_debug will output all the dbgln() data to COM1 at // 8-N-1 57600 baud. this is particularly useful for debugging the boot // process on live hardware. if (StringView(kernel_cmdline).contains("serial_debug")) { set_serial_debug(true); } } extern "C" { multiboot_info_t* multiboot_info_ptr; } // Define some Itanium C++ ABI methods to stop the linker from complaining. // If we actually call these something has gone horribly wrong void* __dso_handle __attribute__((visibility("hidden"))); }