#include "Scheduler.h" #include "Process.h" #include "system.h" #include "RTC.h" #include "i8253.h" #include //#define LOG_EVERY_CONTEXT_SWITCH //#define SCHEDULER_DEBUG static const dword time_slice = 20; // *1ms Process* current; Process* g_last_fpu_process; Process* g_finalizer; static Process* s_colonel_process; struct TaskRedirectionData { word selector; TSS32 tss; }; static TaskRedirectionData s_redirection; static bool s_active; bool Scheduler::is_active() { return s_active; } bool Scheduler::pick_next() { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!s_active); TemporaryChange change(s_active, true); ASSERT(s_active); if (!current) { // XXX: The first ever context_switch() goes to the idle process. // This to setup a reliable place we can return to. return context_switch(*s_colonel_process); } // Check and unblock processes whose wait conditions have been met. Process::for_each([] (Process& process) { if (process.state() == Process::BlockedSleep) { if (process.wakeup_time() <= system.uptime) process.unblock(); return true; } if (process.state() == Process::BlockedWait) { process.for_each_child([&process] (Process& child) { if (child.state() != Process::Dead) return true; if (process.waitee_pid() == -1 || process.waitee_pid() == child.pid()) { process.m_waitee_pid = child.pid(); process.unblock(); return false; } return true; }); return true; } if (process.state() == Process::BlockedRead) { ASSERT(process.m_blocked_fd != -1); // FIXME: Block until the amount of data wanted is available. if (process.m_fds[process.m_blocked_fd].descriptor->can_read(process)) process.unblock(); return true; } if (process.state() == Process::BlockedWrite) { ASSERT(process.m_blocked_fd != -1); if (process.m_fds[process.m_blocked_fd].descriptor->can_write(process)) process.unblock(); return true; } if (process.state() == Process::BlockedSelect) { if (process.wakeup_requested()) { process.m_wakeup_requested = false; process.unblock(); return true; } if (process.m_select_has_timeout) { auto now_sec = RTC::now(); auto now_usec = PIT::ticks_since_boot() % 1000; if (now_sec > process.m_select_timeout.tv_sec || (now_sec == process.m_select_timeout.tv_sec && now_usec >= process.m_select_timeout.tv_usec)) { process.unblock(); return true; } } for (int fd : process.m_select_read_fds) { if (process.m_fds[fd].descriptor->can_read(process)) { process.unblock(); return true; } } for (int fd : process.m_select_write_fds) { if (process.m_fds[fd].descriptor->can_write(process)) { process.unblock(); return true; } } return true; } if (process.state() == Process::Skip1SchedulerPass) { process.set_state(Process::Skip0SchedulerPasses); return true; } if (process.state() == Process::Skip0SchedulerPasses) { process.set_state(Process::Runnable); return true; } if (process.state() == Process::Dead) { if (current != &process && !Process::from_pid(process.ppid())) { auto name = process.name(); auto pid = process.pid(); auto exit_status = Process::reap(process); dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status); } return true; } if (process.state() == Process::Dying) { ASSERT(g_finalizer); if (g_finalizer->state() == Process::BlockedLurking) g_finalizer->unblock(); return true; } return true; }); // Dispatch any pending signals. // FIXME: Do we really need this to be a separate pass over the process list? Process::for_each_living([] (auto& process) { if (!process.has_unmasked_pending_signals()) return true; // We know how to interrupt blocked processes, but if they are just executing // at some random point in the kernel, let them continue. They'll be in userspace // sooner or later and we can deliver the signal then. // FIXME: Maybe we could check when returning from a syscall if there's a pending // signal and dispatch it then and there? Would that be doable without the // syscall effectively being "interrupted" despite having completed? if (process.in_kernel() && !process.is_blocked()) return true; // NOTE: dispatch_one_pending_signal() may unblock the process. bool was_blocked = process.is_blocked(); if (process.dispatch_one_pending_signal() == ShouldUnblockProcess::No) return true; if (was_blocked) { dbgprintf("Unblock %s(%u) due to signal\n", process.name().characters(), process.pid()); process.m_was_interrupted_while_blocked = true; process.unblock(); } return true; }); #ifdef SCHEDULER_DEBUG dbgprintf("Scheduler choices:\n"); for (auto* process = g_processes->head(); process; process = process->next()) { //if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep) // continue; dbgprintf("[K%x] % 12s %s(%u) @ %w:%x\n", process, to_string(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip); } #endif auto* previous_head = g_processes->head(); for (;;) { // Move head to tail. g_processes->append(g_processes->remove_head()); auto* process = g_processes->head(); if (process->state() == Process::Runnable || process->state() == Process::Running) { #ifdef SCHEDULER_DEBUG dbgprintf("switch to %s(%u) @ %w:%x\n", process->name().characters(), process->pid(), process->tss().cs, process->tss().eip); #endif return context_switch(*process); } if (process == previous_head) { // Back at process_head, nothing wants to run. Send in the colonel! return context_switch(*s_colonel_process); } } } bool Scheduler::donate_to(Process* beneficiary, const char* reason) { (void)reason; unsigned ticks_left = current->ticks_left(); if (!beneficiary || beneficiary->state() != Process::Runnable || ticks_left <= 1) { return yield(); } unsigned ticks_to_donate = ticks_left - 1; #ifdef SCHEDULER_DEBUG dbgprintf("%s(%u) donating %u ticks to %s(%u), reason=%s\n", current->name().characters(), current->pid(), ticks_to_donate, beneficiary->name().characters(), beneficiary->pid(), reason); #endif context_switch(*beneficiary); beneficiary->set_ticks_left(ticks_to_donate); switch_now(); return 0; } bool Scheduler::yield() { InterruptDisabler disabler; ASSERT(current); //dbgprintf("%s<%u> yield()\n", current->name().characters(), current->pid()); if (!pick_next()) return 1; //dbgprintf("yield() jumping to new process: %x (%s)\n", current->far_ptr().selector, current->name().characters()); switch_now(); return 0; } void Scheduler::pick_next_and_switch_now() { bool someone_wants_to_run = pick_next(); ASSERT(someone_wants_to_run); switch_now(); } void Scheduler::switch_now() { Descriptor& descriptor = get_gdt_entry(current->selector()); descriptor.type = 9; flush_gdt(); asm("sti\n" "ljmp *(%%eax)\n" ::"a"(¤t->far_ptr()) ); } bool Scheduler::context_switch(Process& process) { process.set_ticks_left(time_slice); process.did_schedule(); if (current == &process) return false; if (current) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (current->state() == Process::Running) current->set_state(Process::Runnable); #ifdef LOG_EVERY_CONTEXT_SWITCH dbgprintf("Scheduler: %s(%u) -> %s(%u) %w:%x\n", current->name().characters(), current->pid(), process.name().characters(), process.pid(), process.tss().cs, process.tss().eip); #endif } current = &process; process.set_state(Process::Running); #ifdef COOL_GLOBALS g_cool_globals->current_pid = process.pid(); #endif if (!process.selector()) { process.set_selector(gdt_alloc_entry()); auto& descriptor = get_gdt_entry(process.selector()); descriptor.set_base(&process.tss()); descriptor.set_limit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; } auto& descriptor = get_gdt_entry(process.selector()); descriptor.type = 11; // Busy TSS flush_gdt(); return true; } static void initialize_redirection() { auto& descriptor = get_gdt_entry(s_redirection.selector); descriptor.set_base(&s_redirection.tss); descriptor.set_limit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; descriptor.type = 9; flush_gdt(); } void Scheduler::prepare_for_iret_to_new_process() { auto& descriptor = get_gdt_entry(s_redirection.selector); descriptor.type = 9; s_redirection.tss.backlink = current->selector(); load_task_register(s_redirection.selector); } void Scheduler::prepare_to_modify_tss(Process& process) { // This ensures that a currently running process modifying its own TSS // in order to yield() and end up somewhere else doesn't just end up // right after the yield(). if (current == &process) load_task_register(s_redirection.selector); } Process* Scheduler::colonel() { return s_colonel_process; } void Scheduler::initialize() { s_redirection.selector = gdt_alloc_entry(); initialize_redirection(); s_colonel_process = Process::create_kernel_process("colonel", nullptr); load_task_register(s_redirection.selector); } void Scheduler::timer_tick(RegisterDump& regs) { if (!current) return; system.uptime++; if (current->tick()) return; current->tss().gs = regs.gs; current->tss().fs = regs.fs; current->tss().es = regs.es; current->tss().ds = regs.ds; current->tss().edi = regs.edi; current->tss().esi = regs.esi; current->tss().ebp = regs.ebp; current->tss().ebx = regs.ebx; current->tss().edx = regs.edx; current->tss().ecx = regs.ecx; current->tss().eax = regs.eax; current->tss().eip = regs.eip; current->tss().cs = regs.cs; current->tss().eflags = regs.eflags; // Compute process stack pointer. // Add 12 for CS, EIP, EFLAGS (interrupt mechanic) current->tss().esp = regs.esp + 12; current->tss().ss = regs.ss; if ((current->tss().cs & 3) != 0) { current->tss().ss = regs.ss_if_crossRing; current->tss().esp = regs.esp_if_crossRing; } if (!pick_next()) return; prepare_for_iret_to_new_process(); // Set the NT (nested task) flag. asm( "pushf\n" "orl $0x00004000, (%esp)\n" "popf\n" ); }