/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include namespace Gfx { template class Matrix { template friend class Matrix; public: static constexpr size_t Size = N; constexpr Matrix() = default; constexpr Matrix(std::initializer_list elements) { VERIFY(elements.size() == N * N); size_t i = 0; for (auto& element : elements) { m_elements[i / N][i % N] = element; ++i; } } template constexpr Matrix(Args... args) : Matrix({ (T)args... }) { } constexpr Matrix(Matrix const& other) { *this = other; } constexpr Matrix& operator=(Matrix const& other) { #ifndef __clang__ if (is_constant_evaluated()) { for (size_t i = 0; i < N; i++) { for (size_t j = 0; j < N; j++) { m_elements[i][j] = other.elements()[i][j]; } } return *this; } #endif __builtin_memcpy(m_elements, other.elements(), sizeof(T) * N * N); return *this; } constexpr auto elements() const { return m_elements; } constexpr auto elements() { return m_elements; } // FIXME: Change to multi-arg operator[] once we upgrade to C++23 constexpr auto const& operator()(size_t row, size_t col) const { return m_elements[row][col]; } constexpr auto& operator()(size_t row, size_t col) { return m_elements[row][col]; } [[nodiscard]] constexpr Matrix operator*(Matrix const& other) const { Matrix product; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { auto& element = product.m_elements[i][j]; if constexpr (N == 4) { element = m_elements[i][0] * other.m_elements[0][j] + m_elements[i][1] * other.m_elements[1][j] + m_elements[i][2] * other.m_elements[2][j] + m_elements[i][3] * other.m_elements[3][j]; } else if constexpr (N == 3) { element = m_elements[i][0] * other.m_elements[0][j] + m_elements[i][1] * other.m_elements[1][j] + m_elements[i][2] * other.m_elements[2][j]; } else if constexpr (N == 2) { element = m_elements[i][0] * other.m_elements[0][j] + m_elements[i][1] * other.m_elements[1][j]; } else if constexpr (N == 1) { element = m_elements[i][0] * other.m_elements[0][j]; } else { T value {}; for (size_t k = 0; k < N; ++k) value += m_elements[i][k] * other.m_elements[k][j]; element = value; } } } return product; } [[nodiscard]] constexpr Matrix operator+(Matrix const& other) const { Matrix sum; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) sum.m_elements[i][j] = m_elements[i][j] + other.m_elements[i][j]; } return sum; } [[nodiscard]] constexpr Matrix operator/(T divisor) const { Matrix division; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) division.m_elements[i][j] = m_elements[i][j] / divisor; } return division; } [[nodiscard]] friend constexpr Matrix operator*(Matrix const& matrix, T scalar) { Matrix scaled; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) scaled.m_elements[i][j] = matrix.m_elements[i][j] * scalar; } return scaled; } [[nodiscard]] friend constexpr Matrix operator*(T scalar, Matrix const& matrix) { return matrix * scalar; } [[nodiscard]] constexpr Matrix adjugate() const { if constexpr (N == 1) return Matrix(1); Matrix adjugate; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { int sign = (i + j) % 2 == 0 ? 1 : -1; adjugate.m_elements[j][i] = sign * first_minor(i, j); } } return adjugate; } [[nodiscard]] constexpr T determinant() const { if constexpr (N == 1) { return m_elements[0][0]; } else { T result = {}; int sign = 1; for (size_t j = 0; j < N; ++j) { result += sign * m_elements[0][j] * first_minor(0, j); sign *= -1; } return result; } } [[nodiscard]] constexpr T first_minor(size_t skip_row, size_t skip_column) const { static_assert(N > 1); VERIFY(skip_row < N); VERIFY(skip_column < N); Matrix first_minor; constexpr auto new_size = N - 1; size_t k = 0; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { if (i == skip_row || j == skip_column) continue; first_minor.elements()[k / new_size][k % new_size] = m_elements[i][j]; ++k; } } return first_minor.determinant(); } [[nodiscard]] constexpr static Matrix identity() { Matrix result; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { if (i == j) result.m_elements[i][j] = 1; else result.m_elements[i][j] = 0; } } return result; } [[nodiscard]] constexpr Matrix inverse() const { return adjugate() / determinant(); } [[nodiscard]] constexpr Matrix transpose() const { Matrix result; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) result.m_elements[i][j] = m_elements[j][i]; } return result; } template [[nodiscard]] constexpr Matrix submatrix_from_topleft() const requires(U > 0 && U < N) { Matrix result; for (size_t i = 0; i < U; ++i) { for (size_t j = 0; j < U; ++j) result.m_elements[i][j] = m_elements[i][j]; } return result; } constexpr bool is_invertible() const { return determinant() != static_cast(0.0); } private: T m_elements[N][N]; }; } using Gfx::Matrix;