/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { class PageDirectoryEntry; } namespace Kernel::Memory { constexpr bool page_round_up_would_wrap(FlatPtr x) { return x > (explode_byte(0xFF) & ~0xFFF); } constexpr FlatPtr page_round_up(FlatPtr x) { FlatPtr rounded = (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1)); // Rounding up >0xfffff000 wraps back to 0. That's never what we want. VERIFY(x == 0 || rounded != 0); return rounded; } constexpr FlatPtr page_round_down(FlatPtr x) { return ((FlatPtr)(x)) & ~(PAGE_SIZE - 1); } inline FlatPtr virtual_to_low_physical(FlatPtr virtual_) { return virtual_ - physical_to_virtual_offset; } enum class UsedMemoryRangeType { LowMemory = 0, Kernel, BootModule, PhysicalPages, __Count }; static constexpr StringView UserMemoryRangeTypeNames[] { "Low memory", "Kernel", "Boot module", "Physical Pages" }; static_assert(array_size(UserMemoryRangeTypeNames) == to_underlying(UsedMemoryRangeType::__Count)); struct UsedMemoryRange { UsedMemoryRangeType type {}; PhysicalAddress start; PhysicalAddress end; }; struct ContiguousReservedMemoryRange { PhysicalAddress start; PhysicalSize length {}; }; enum class PhysicalMemoryRangeType { Usable = 0, Reserved, ACPI_Reclaimable, ACPI_NVS, BadMemory, Unknown, }; struct PhysicalMemoryRange { PhysicalMemoryRangeType type { PhysicalMemoryRangeType::Unknown }; PhysicalAddress start; PhysicalSize length {}; }; #define MM Kernel::Memory::MemoryManager::the() struct MemoryManagerData { static ProcessorSpecificDataID processor_specific_data_id() { return ProcessorSpecificDataID::MemoryManager; } Spinlock m_quickmap_in_use; u32 m_quickmap_prev_flags; PhysicalAddress m_last_quickmap_pd; PhysicalAddress m_last_quickmap_pt; }; // NOLINTNEXTLINE(readability-redundant-declaration) FIXME: Why do we declare this here *and* in Thread.h? extern RecursiveSpinlock s_mm_lock; // This class represents a set of committed physical pages. // When you ask MemoryManager to commit pages for you, you get one of these in return. // You can allocate pages from it via `take_one()` // It will uncommit any (unallocated) remaining pages when destroyed. class CommittedPhysicalPageSet { AK_MAKE_NONCOPYABLE(CommittedPhysicalPageSet); public: CommittedPhysicalPageSet(Badge, size_t page_count) : m_page_count(page_count) { } CommittedPhysicalPageSet(CommittedPhysicalPageSet&& other) : m_page_count(exchange(other.m_page_count, 0)) { } ~CommittedPhysicalPageSet(); bool is_empty() const { return m_page_count == 0; } size_t page_count() const { return m_page_count; } [[nodiscard]] NonnullRefPtr take_one(); void uncommit_one(); void operator=(CommittedPhysicalPageSet&&) = delete; private: size_t m_page_count { 0 }; }; class MemoryManager { AK_MAKE_ETERNAL friend class PageDirectory; friend class AnonymousVMObject; friend class Region; friend class VMObject; public: static MemoryManager& the(); static bool is_initialized(); static void initialize(u32 cpu); static inline MemoryManagerData& get_data() { return ProcessorSpecific::get(); } PageFaultResponse handle_page_fault(PageFault const&); void set_page_writable_direct(VirtualAddress, bool); void protect_readonly_after_init_memory(); void unmap_prekernel(); void unmap_text_after_init(); void protect_ksyms_after_init(); static void enter_process_address_space(Process&); static void enter_address_space(AddressSpace&); bool validate_user_stack_no_lock(AddressSpace&, VirtualAddress) const; bool validate_user_stack(AddressSpace&, VirtualAddress) const; enum class ShouldZeroFill { No, Yes }; ErrorOr commit_user_physical_pages(size_t page_count); void uncommit_user_physical_pages(Badge, size_t page_count); NonnullRefPtr allocate_committed_user_physical_page(Badge, ShouldZeroFill = ShouldZeroFill::Yes); RefPtr allocate_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr); RefPtr allocate_supervisor_physical_page(); NonnullRefPtrVector allocate_contiguous_supervisor_physical_pages(size_t size); void deallocate_physical_page(PhysicalAddress); ErrorOr> allocate_contiguous_kernel_region(size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes); ErrorOr> allocate_kernel_region(size_t, StringView name, Region::Access access, AllocationStrategy strategy = AllocationStrategy::Reserve, Region::Cacheable = Region::Cacheable::Yes); ErrorOr> allocate_kernel_region(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes); ErrorOr> allocate_kernel_region_with_vmobject(VMObject&, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes); ErrorOr> allocate_kernel_region_with_vmobject(VirtualRange const&, VMObject&, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes); struct SystemMemoryInfo { PhysicalSize user_physical_pages { 0 }; PhysicalSize user_physical_pages_used { 0 }; PhysicalSize user_physical_pages_committed { 0 }; PhysicalSize user_physical_pages_uncommitted { 0 }; PhysicalSize super_physical_pages { 0 }; PhysicalSize super_physical_pages_used { 0 }; }; SystemMemoryInfo get_system_memory_info() { SpinlockLocker lock(s_mm_lock); return m_system_memory_info; } template Callback> static void for_each_vmobject(Callback callback) { VMObject::all_instances().with([&](auto& list) { for (auto& vmobject : list) { if (callback(vmobject) == IterationDecision::Break) break; } }); } template Callback> static void for_each_vmobject(Callback callback) { VMObject::all_instances().with([&](auto& list) { for (auto& vmobject : list) { callback(vmobject); } }); } static Region* find_user_region_from_vaddr(AddressSpace&, VirtualAddress); static Region* find_user_region_from_vaddr_no_lock(AddressSpace&, VirtualAddress); static void validate_syscall_preconditions(AddressSpace&, RegisterState const&); void dump_kernel_regions(); PhysicalPage& shared_zero_page() { return *m_shared_zero_page; } PhysicalPage& lazy_committed_page() { return *m_lazy_committed_page; } PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; } Vector const& used_memory_ranges() { return m_used_memory_ranges; } bool is_allowed_to_mmap_to_userspace(PhysicalAddress, VirtualRange const&) const; PhysicalPageEntry& get_physical_page_entry(PhysicalAddress); PhysicalAddress get_physical_address(PhysicalPage const&); void copy_physical_page(PhysicalPage&, u8 page_buffer[PAGE_SIZE]); private: MemoryManager(); ~MemoryManager(); void initialize_physical_pages(); void register_reserved_ranges(); void register_region(Region&); void unregister_region(Region&); void protect_kernel_image(); void parse_memory_map(); static void flush_tlb_local(VirtualAddress, size_t page_count = 1); static void flush_tlb(PageDirectory const*, VirtualAddress, size_t page_count = 1); static Region* kernel_region_from_vaddr(VirtualAddress); static Region* find_region_from_vaddr(VirtualAddress); RefPtr find_free_user_physical_page(bool); ALWAYS_INLINE u8* quickmap_page(PhysicalPage& page) { return quickmap_page(page.paddr()); } u8* quickmap_page(PhysicalAddress const&); void unquickmap_page(); PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index); PageTableEntry* quickmap_pt(PhysicalAddress); PageTableEntry* pte(PageDirectory&, VirtualAddress); PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress); enum class IsLastPTERelease { Yes, No }; enum class UnsafeIgnoreMissingPageTable { Yes, No }; void release_pte(PageDirectory&, VirtualAddress, IsLastPTERelease, UnsafeIgnoreMissingPageTable = UnsafeIgnoreMissingPageTable::No); RefPtr m_kernel_page_directory; RefPtr m_shared_zero_page; RefPtr m_lazy_committed_page; SystemMemoryInfo m_system_memory_info; NonnullOwnPtrVector m_user_physical_regions; OwnPtr m_super_physical_region; OwnPtr m_physical_pages_region; PhysicalPageEntry* m_physical_page_entries { nullptr }; size_t m_physical_page_entries_count { 0 }; RedBlackTree m_kernel_regions; Vector m_used_memory_ranges; Vector m_physical_memory_ranges; Vector m_reserved_memory_ranges; }; inline bool is_user_address(VirtualAddress vaddr) { return vaddr.get() < USER_RANGE_CEILING; } inline bool is_user_range(VirtualAddress vaddr, size_t size) { if (vaddr.offset(size) < vaddr) return false; if (!is_user_address(vaddr)) return false; if (size <= 1) return true; return is_user_address(vaddr.offset(size - 1)); } inline bool is_user_range(VirtualRange const& range) { return is_user_range(range.base(), range.size()); } inline bool PhysicalPage::is_shared_zero_page() const { return this == &MM.shared_zero_page(); } inline bool PhysicalPage::is_lazy_committed_page() const { return this == &MM.lazy_committed_page(); } inline ErrorOr expand_range_to_page_boundaries(FlatPtr address, size_t size) { if (Memory::page_round_up_would_wrap(size)) return EINVAL; if ((address + size) < address) return EINVAL; if (Memory::page_round_up_would_wrap(address + size)) return EINVAL; auto base = VirtualAddress { address }.page_base(); auto end = Memory::page_round_up(address + size); return Memory::VirtualRange { base, end - base.get() }; } }