mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-11 09:18:05 +03:00
db5bf6e64c
This makes it much more obvious what the difference between get() and get_mutable() is.
1023 lines
45 KiB
C++
1023 lines
45 KiB
C++
/*
|
||
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
|
||
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include "InlineFormattingContext.h"
|
||
#include <AK/Function.h>
|
||
#include <AK/StdLibExtras.h>
|
||
#include <LibWeb/Layout/BlockContainer.h>
|
||
#include <LibWeb/Layout/BlockFormattingContext.h>
|
||
#include <LibWeb/Layout/Box.h>
|
||
#include <LibWeb/Layout/FlexFormattingContext.h>
|
||
#include <LibWeb/Layout/InitialContainingBlock.h>
|
||
#include <LibWeb/Layout/TextNode.h>
|
||
|
||
namespace Web::Layout {
|
||
|
||
static float get_pixel_size(FormattingState const& state, Box const& box, Optional<CSS::LengthPercentage> const& length_percentage)
|
||
{
|
||
if (!length_percentage.has_value())
|
||
return 0;
|
||
auto inner_main_size = CSS::Length::make_px(state.get(*box.containing_block()).content_width);
|
||
return length_percentage->resolved(box, inner_main_size).to_px(box);
|
||
}
|
||
|
||
static bool is_undefined_or_auto(Optional<CSS::LengthPercentage> const& length_percentage)
|
||
{
|
||
if (!length_percentage.has_value())
|
||
return true;
|
||
return length_percentage->is_length() && length_percentage->length().is_auto();
|
||
}
|
||
|
||
FlexFormattingContext::FlexFormattingContext(FormattingState& state, Box const& flex_container, FormattingContext* parent)
|
||
: FormattingContext(Type::Flex, state, flex_container, parent)
|
||
, m_flex_container_state(m_state.get_mutable(flex_container))
|
||
, m_flex_direction(flex_container.computed_values().flex_direction())
|
||
{
|
||
}
|
||
|
||
FlexFormattingContext::~FlexFormattingContext()
|
||
{
|
||
}
|
||
|
||
void FlexFormattingContext::run(Box const& run_box, LayoutMode)
|
||
{
|
||
VERIFY(&run_box == &flex_container());
|
||
|
||
// This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm
|
||
|
||
// FIXME: Implement reverse and ordering.
|
||
|
||
// 1. Generate anonymous flex items
|
||
generate_anonymous_flex_items();
|
||
|
||
// 2. Determine the available main and cross space for the flex items
|
||
float main_max_size = NumericLimits<float>::max();
|
||
float main_min_size = 0;
|
||
float cross_max_size = NumericLimits<float>::max();
|
||
float cross_min_size = 0;
|
||
bool main_is_constrained = false;
|
||
bool cross_is_constrained = false;
|
||
bool main_size_is_infinite = false;
|
||
auto available_space = determine_available_main_and_cross_space(main_size_is_infinite, main_is_constrained, cross_is_constrained, main_min_size, main_max_size, cross_min_size, cross_max_size);
|
||
auto main_available_size = available_space.main;
|
||
[[maybe_unused]] auto cross_available_size = available_space.cross;
|
||
|
||
// 3. Determine the flex base size and hypothetical main size of each item
|
||
for (auto& flex_item : m_flex_items) {
|
||
determine_flex_base_size_and_hypothetical_main_size(flex_item);
|
||
}
|
||
|
||
// 4. Determine the main size of the flex container
|
||
determine_main_size_of_flex_container(main_is_constrained, main_size_is_infinite, main_available_size, main_min_size, main_max_size);
|
||
|
||
// 5. Collect flex items into flex lines:
|
||
// After this step no additional items are to be added to flex_lines or any of its items!
|
||
collect_flex_items_into_flex_lines(main_available_size);
|
||
|
||
// 6. Resolve the flexible lengths
|
||
resolve_flexible_lengths(main_available_size);
|
||
|
||
// Cross Size Determination
|
||
// 7. Determine the hypothetical cross size of each item
|
||
for (auto& flex_item : m_flex_items) {
|
||
flex_item.hypothetical_cross_size = determine_hypothetical_cross_size_of_item(flex_item.box);
|
||
}
|
||
|
||
// 8. Calculate the cross size of each flex line.
|
||
calculate_cross_size_of_each_flex_line(cross_min_size, cross_max_size);
|
||
|
||
// 9. Handle 'align-content: stretch'.
|
||
// FIXME: This
|
||
|
||
// 10. Collapse visibility:collapse items.
|
||
// FIXME: This
|
||
|
||
// 11. Determine the used cross size of each flex item.
|
||
determine_used_cross_size_of_each_flex_item();
|
||
|
||
// 12. Distribute any remaining free space.
|
||
distribute_any_remaining_free_space(main_available_size);
|
||
|
||
// 13. Resolve cross-axis auto margins.
|
||
// FIXME: This
|
||
|
||
// 14. Align all flex items along the cross-axis
|
||
align_all_flex_items_along_the_cross_axis();
|
||
|
||
// 15. Determine the flex container’s used cross size:
|
||
determine_flex_container_used_cross_size(cross_min_size, cross_max_size);
|
||
|
||
// 16. Align all flex lines (per align-content)
|
||
align_all_flex_lines();
|
||
}
|
||
|
||
void FlexFormattingContext::populate_specified_margins(FlexItem& item, CSS::FlexDirection flex_direction) const
|
||
{
|
||
auto width_of_containing_block = m_state.get(*item.box.containing_block()).content_width;
|
||
auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block);
|
||
// FIXME: This should also take reverse-ness into account
|
||
if (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse) {
|
||
item.margins.main_before = item.box.computed_values().margin().left.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
item.margins.main_after = item.box.computed_values().margin().right.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
item.margins.cross_before = item.box.computed_values().margin().top.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
item.margins.cross_after = item.box.computed_values().margin().bottom.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
} else {
|
||
item.margins.main_before = item.box.computed_values().margin().top.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
item.margins.main_after = item.box.computed_values().margin().bottom.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
item.margins.cross_before = item.box.computed_values().margin().left.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
item.margins.cross_after = item.box.computed_values().margin().right.resolved(item.box, width_of_containing_block_as_length).to_px(item.box);
|
||
}
|
||
};
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#flex-items
|
||
void FlexFormattingContext::generate_anonymous_flex_items()
|
||
{
|
||
auto& containing_block_state = m_state.get(*flex_container().containing_block());
|
||
// More like, sift through the already generated items.
|
||
// After this step no items are to be added or removed from flex_items!
|
||
// It holds every item we need to consider and there should be nothing in the following
|
||
// calculations that could change that.
|
||
// This is particularly important since we take references to the items stored in flex_items
|
||
// later, whose addresses won't be stable if we added or removed any items.
|
||
if (!flex_container().has_definite_width()) {
|
||
m_flex_container_state.content_width = containing_block_state.content_width;
|
||
} else {
|
||
auto container_width = containing_block_state.content_width;
|
||
|
||
auto& maybe_width = flex_container().computed_values().width();
|
||
if (maybe_width.has_value()) {
|
||
auto width = maybe_width->resolved(flex_container(), CSS::Length::make_px(container_width)).to_px(flex_container());
|
||
m_flex_container_state.content_width = width;
|
||
} else {
|
||
m_flex_container_state.content_width = 0;
|
||
}
|
||
}
|
||
|
||
if (!flex_container().has_definite_height()) {
|
||
m_flex_container_state.content_height = containing_block_state.content_height;
|
||
} else {
|
||
auto container_height = containing_block_state.content_height;
|
||
auto& maybe_height = flex_container().computed_values().height();
|
||
if (maybe_height.has_value()) {
|
||
auto height = maybe_height->resolved(flex_container(), CSS::Length::make_px(container_height)).to_px(flex_container());
|
||
m_flex_container_state.content_height = height;
|
||
} else {
|
||
m_flex_container_state.content_height = 0;
|
||
}
|
||
}
|
||
|
||
flex_container().for_each_child_of_type<Box>([&](Box& child_box) {
|
||
(void)layout_inside(child_box, LayoutMode::Default);
|
||
// Skip anonymous text runs that are only whitespace.
|
||
if (child_box.is_anonymous() && !child_box.first_child_of_type<BlockContainer>()) {
|
||
bool contains_only_white_space = true;
|
||
child_box.for_each_in_inclusive_subtree_of_type<TextNode>([&contains_only_white_space](auto& text_node) {
|
||
if (!text_node.text_for_rendering().is_whitespace()) {
|
||
contains_only_white_space = false;
|
||
return IterationDecision::Break;
|
||
}
|
||
return IterationDecision::Continue;
|
||
});
|
||
if (contains_only_white_space)
|
||
return IterationDecision::Continue;
|
||
}
|
||
|
||
// Skip any "out-of-flow" children
|
||
if (child_box.is_out_of_flow(*this))
|
||
return IterationDecision::Continue;
|
||
|
||
child_box.set_flex_item(true);
|
||
FlexItem flex_item = { child_box };
|
||
populate_specified_margins(flex_item, m_flex_direction);
|
||
m_flex_items.append(move(flex_item));
|
||
return IterationDecision::Continue;
|
||
});
|
||
}
|
||
|
||
bool FlexFormattingContext::has_definite_main_size(Box const& box) const
|
||
{
|
||
return is_row_layout() ? box.has_definite_width() : box.has_definite_height();
|
||
}
|
||
|
||
float FlexFormattingContext::specified_main_size(Box const& box) const
|
||
{
|
||
auto const& box_state = m_state.get(box);
|
||
return is_row_layout() ? box_state.content_width : box_state.content_height;
|
||
}
|
||
|
||
float FlexFormattingContext::specified_cross_size(Box const& box) const
|
||
{
|
||
auto const& box_state = m_state.get(box);
|
||
return is_row_layout() ? box_state.content_height : box_state.content_width;
|
||
}
|
||
|
||
bool FlexFormattingContext::has_main_min_size(Box const& box) const
|
||
{
|
||
auto value = is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
|
||
return !is_undefined_or_auto(value);
|
||
}
|
||
|
||
bool FlexFormattingContext::has_cross_min_size(Box const& box) const
|
||
{
|
||
auto value = is_row_layout() ? box.computed_values().min_height() : box.computed_values().min_width();
|
||
return !is_undefined_or_auto(value);
|
||
}
|
||
|
||
bool FlexFormattingContext::has_definite_cross_size(Box const& box) const
|
||
{
|
||
return (is_row_layout() ? box.has_definite_height() : box.has_definite_width()) && cross_size_is_absolute_or_resolved_nicely(box);
|
||
}
|
||
|
||
bool FlexFormattingContext::cross_size_is_absolute_or_resolved_nicely(NodeWithStyle const& box) const
|
||
{
|
||
auto length_percentage = is_row_layout() ? box.computed_values().height() : box.computed_values().width();
|
||
|
||
if (!length_percentage.has_value())
|
||
return false;
|
||
|
||
// FIXME: Handle calc here.
|
||
if (length_percentage->is_length()) {
|
||
auto& length = length_percentage->length();
|
||
if (length.is_absolute() || length.is_relative())
|
||
return true;
|
||
if (length.is_auto())
|
||
return false;
|
||
}
|
||
|
||
if (!box.parent())
|
||
return false;
|
||
if (length_percentage->is_percentage() && cross_size_is_absolute_or_resolved_nicely(*box.parent()))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
float FlexFormattingContext::specified_main_size_of_child_box(Box const& child_box) const
|
||
{
|
||
auto main_size_of_parent = specified_main_size(flex_container());
|
||
auto& value = is_row_layout() ? child_box.computed_values().width() : child_box.computed_values().height();
|
||
if (!value.has_value())
|
||
return 0;
|
||
return value->resolved(child_box, CSS::Length::make_px(main_size_of_parent)).to_px(child_box);
|
||
}
|
||
|
||
float FlexFormattingContext::specified_main_min_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_size(m_state, box, box.computed_values().min_width())
|
||
: get_pixel_size(m_state, box, box.computed_values().min_height());
|
||
}
|
||
|
||
float FlexFormattingContext::specified_cross_min_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_size(m_state, box, box.computed_values().min_height())
|
||
: get_pixel_size(m_state, box, box.computed_values().min_width());
|
||
}
|
||
|
||
bool FlexFormattingContext::has_main_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? !is_undefined_or_auto(box.computed_values().max_width())
|
||
: !is_undefined_or_auto(box.computed_values().max_height());
|
||
}
|
||
|
||
bool FlexFormattingContext::has_cross_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? !is_undefined_or_auto(box.computed_values().max_height())
|
||
: !is_undefined_or_auto(box.computed_values().max_width());
|
||
}
|
||
|
||
float FlexFormattingContext::specified_main_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_size(m_state, box, box.computed_values().max_width())
|
||
: get_pixel_size(m_state, box, box.computed_values().max_height());
|
||
}
|
||
|
||
float FlexFormattingContext::specified_cross_max_size(Box const& box) const
|
||
{
|
||
return is_row_layout()
|
||
? get_pixel_size(m_state, box, box.computed_values().max_height())
|
||
: get_pixel_size(m_state, box, box.computed_values().max_width());
|
||
}
|
||
|
||
float FlexFormattingContext::calculated_main_size(Box const& box) const
|
||
{
|
||
auto const& box_state = m_state.get(box);
|
||
return is_row_layout() ? box_state.content_width : box_state.content_height;
|
||
}
|
||
|
||
bool FlexFormattingContext::is_cross_auto(Box const& box) const
|
||
{
|
||
auto& cross_length = is_row_layout() ? box.computed_values().height() : box.computed_values().width();
|
||
return cross_length.has_value() && cross_length->is_length() && cross_length->length().is_auto();
|
||
}
|
||
|
||
bool FlexFormattingContext::is_main_axis_margin_first_auto(Box const& box) const
|
||
{
|
||
if (is_row_layout())
|
||
return box.computed_values().margin().left.is_length() && box.computed_values().margin().left.length().is_auto();
|
||
return box.computed_values().margin().top.is_length() && box.computed_values().margin().top.length().is_auto();
|
||
}
|
||
|
||
bool FlexFormattingContext::is_main_axis_margin_second_auto(Box const& box) const
|
||
{
|
||
if (is_row_layout())
|
||
return box.computed_values().margin().right.is_length() && box.computed_values().margin().right.length().is_auto();
|
||
return box.computed_values().margin().bottom.is_length() && box.computed_values().margin().bottom.length().is_auto();
|
||
}
|
||
|
||
void FlexFormattingContext::set_main_size(Box const& box, float size)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).content_width = size;
|
||
else
|
||
m_state.get_mutable(box).content_height = size;
|
||
}
|
||
|
||
void FlexFormattingContext::set_cross_size(Box const& box, float size)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).content_height = size;
|
||
else
|
||
m_state.get_mutable(box).content_width = size;
|
||
}
|
||
|
||
void FlexFormattingContext::set_offset(Box const& box, float main_offset, float cross_offset)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).offset = Gfx::FloatPoint { main_offset, cross_offset };
|
||
else
|
||
m_state.get_mutable(box).offset = Gfx::FloatPoint { cross_offset, main_offset };
|
||
}
|
||
|
||
void FlexFormattingContext::set_main_axis_first_margin(Box const& box, float margin)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).margin_left = margin;
|
||
else
|
||
m_state.get_mutable(box).margin_top = margin;
|
||
}
|
||
|
||
void FlexFormattingContext::set_main_axis_second_margin(Box const& box, float margin)
|
||
{
|
||
if (is_row_layout())
|
||
m_state.get_mutable(box).margin_right = margin;
|
||
else
|
||
m_state.get_mutable(box).margin_bottom = margin;
|
||
}
|
||
|
||
float FlexFormattingContext::sum_of_margin_padding_border_in_main_axis(Box const& box) const
|
||
{
|
||
auto const& box_state = m_state.get(box);
|
||
|
||
if (is_row_layout()) {
|
||
return box_state.margin_left + box_state.margin_right
|
||
+ box_state.padding_left + box_state.padding_right
|
||
+ box_state.border_left + box_state.border_right;
|
||
} else {
|
||
return box_state.margin_top + box_state.margin_bottom
|
||
+ box_state.padding_top + box_state.padding_bottom
|
||
+ box_state.border_top + box_state.border_bottom;
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-available
|
||
FlexFormattingContext::AvailableSpace FlexFormattingContext::determine_available_main_and_cross_space(bool& main_size_is_infinite, bool& main_is_constrained, bool& cross_is_constrained, float& main_min_size, float& main_max_size, float& cross_min_size, float& cross_max_size) const
|
||
{
|
||
auto containing_block_effective_main_size = [&](Box const& box) {
|
||
auto& containing_block = *box.containing_block();
|
||
if (is_row_layout()) {
|
||
if (containing_block.has_definite_width())
|
||
return m_state.get(containing_block).content_width;
|
||
main_size_is_infinite = true;
|
||
return NumericLimits<float>::max();
|
||
} else {
|
||
if (containing_block.has_definite_height())
|
||
return m_state.get(containing_block).content_height;
|
||
main_size_is_infinite = true;
|
||
return NumericLimits<float>::max();
|
||
}
|
||
};
|
||
|
||
float main_available_space = 0;
|
||
main_is_constrained = false;
|
||
|
||
// For each dimension,
|
||
// if that dimension of the flex container’s content box is a definite size, use that;
|
||
// if that dimension of the flex container is being sized under a min or max-content constraint, the available space in that dimension is that constraint;
|
||
// otherwise, subtract the flex container’s margin, border, and padding from the space available to the flex container in that dimension and use that value. (This might result in an infinite value.)
|
||
|
||
if (has_definite_main_size(flex_container())) {
|
||
main_is_constrained = true;
|
||
main_available_space = specified_main_size(flex_container());
|
||
} else {
|
||
if (has_main_max_size(flex_container())) {
|
||
main_max_size = specified_main_max_size(flex_container());
|
||
main_available_space = main_max_size;
|
||
main_is_constrained = true;
|
||
}
|
||
if (has_main_min_size(flex_container())) {
|
||
main_min_size = specified_main_min_size(flex_container());
|
||
main_is_constrained = true;
|
||
}
|
||
|
||
if (!main_is_constrained) {
|
||
auto available_main_size = containing_block_effective_main_size(flex_container());
|
||
main_available_space = available_main_size - sum_of_margin_padding_border_in_main_axis(flex_container());
|
||
if (flex_container().computed_values().flex_wrap() == CSS::FlexWrap::Wrap || flex_container().computed_values().flex_wrap() == CSS::FlexWrap::WrapReverse) {
|
||
main_available_space = specified_main_size(*flex_container().containing_block());
|
||
main_is_constrained = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
float cross_available_space = 0;
|
||
cross_is_constrained = false;
|
||
|
||
if (has_definite_cross_size(flex_container())) {
|
||
cross_available_space = specified_cross_size(flex_container());
|
||
} else {
|
||
if (has_cross_max_size(flex_container())) {
|
||
cross_max_size = specified_cross_max_size(flex_container());
|
||
cross_is_constrained = true;
|
||
}
|
||
if (has_cross_min_size(flex_container())) {
|
||
cross_min_size = specified_cross_min_size(flex_container());
|
||
cross_is_constrained = true;
|
||
}
|
||
|
||
// FIXME: Is this right? Probably not.
|
||
if (!cross_is_constrained)
|
||
cross_available_space = cross_max_size;
|
||
}
|
||
|
||
return AvailableSpace { .main = main_available_space, .cross = cross_available_space };
|
||
}
|
||
|
||
float FlexFormattingContext::layout_for_maximum_main_size(Box const& box)
|
||
{
|
||
bool main_constrained = false;
|
||
if (is_row_layout()) {
|
||
if (!is_undefined_or_auto(box.computed_values().width()) || !is_undefined_or_auto(box.computed_values().min_width())) {
|
||
main_constrained = true;
|
||
}
|
||
} else {
|
||
if (!is_undefined_or_auto(box.computed_values().height()) || !is_undefined_or_auto(box.computed_values().min_height())) {
|
||
main_constrained = true;
|
||
}
|
||
}
|
||
|
||
if (!main_constrained && box.children_are_inline()) {
|
||
auto& block_container = verify_cast<BlockContainer>(box);
|
||
BlockFormattingContext bfc(m_state, block_container, this);
|
||
bfc.run(box, LayoutMode::Default);
|
||
InlineFormattingContext ifc(m_state, block_container, bfc);
|
||
|
||
if (is_row_layout()) {
|
||
ifc.run(box, LayoutMode::OnlyRequiredLineBreaks);
|
||
return m_state.get(box).content_width;
|
||
} else {
|
||
ifc.run(box, LayoutMode::AllPossibleLineBreaks);
|
||
return m_state.get(box).content_height;
|
||
}
|
||
}
|
||
if (is_row_layout()) {
|
||
(void)layout_inside(box, LayoutMode::OnlyRequiredLineBreaks);
|
||
return m_state.get(box).content_width;
|
||
} else {
|
||
return BlockFormattingContext::compute_theoretical_height(m_state, box);
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-main-item
|
||
void FlexFormattingContext::determine_flex_base_size_and_hypothetical_main_size(FlexItem& flex_item)
|
||
{
|
||
auto& child_box = flex_item.box;
|
||
|
||
flex_item.flex_base_size = [&] {
|
||
auto const& used_flex_basis = child_box.computed_values().flex_basis();
|
||
|
||
// A. If the item has a definite used flex basis, that’s the flex base size.
|
||
if (used_flex_basis.is_definite()) {
|
||
auto specified_base_size = get_pixel_size(m_state, child_box, used_flex_basis.length_percentage.value());
|
||
if (specified_base_size == 0)
|
||
return calculated_main_size(flex_item.box);
|
||
return specified_base_size;
|
||
}
|
||
|
||
// B. If the flex item has ...
|
||
// - an intrinsic aspect ratio,
|
||
// - a used flex basis of content, and
|
||
// - a definite cross size,
|
||
if (flex_item.box.has_intrinsic_aspect_ratio()
|
||
&& used_flex_basis.type == CSS::FlexBasis::Content
|
||
&& has_definite_cross_size(child_box)) {
|
||
TODO();
|
||
// flex_base_size is calculated from definite cross size and intrinsic aspect ratio
|
||
}
|
||
|
||
// C. If the used flex basis is content or depends on its available space,
|
||
// and the flex container is being sized under a min-content or max-content constraint
|
||
// (e.g. when performing automatic table layout [CSS21]), size the item under that constraint.
|
||
// The flex base size is the item’s resulting main size.
|
||
if (used_flex_basis.type == CSS::FlexBasis::Content
|
||
// FIXME: && sized under min-content or max-content constraints
|
||
&& false) {
|
||
TODO();
|
||
// Size child_box under the constraints, flex_base_size is then the resulting main_size.
|
||
}
|
||
|
||
// D. Otherwise, if the used flex basis is content or depends on its available space,
|
||
// the available main size is infinite, and the flex item’s inline axis is parallel to the main axis,
|
||
// lay the item out using the rules for a box in an orthogonal flow [CSS3-WRITING-MODES].
|
||
// The flex base size is the item’s max-content main size.
|
||
if (used_flex_basis.type == CSS::FlexBasis::Content
|
||
// FIXME: && main_size is infinite && inline axis is parallel to the main axis
|
||
&& false && false) {
|
||
TODO();
|
||
// Use rules for a flex_container in orthogonal flow
|
||
}
|
||
|
||
// E. Otherwise, size the item into the available space using its used flex basis in place of its main size,
|
||
// treating a value of content as max-content. If a cross size is needed to determine the main size
|
||
// (e.g. when the flex item’s main size is in its block axis) and the flex item’s cross size is auto and not definite,
|
||
// in this calculation use fit-content as the flex item’s cross size.
|
||
// The flex base size is the item’s resulting main size.
|
||
// FIXME: This is probably too naive.
|
||
// FIXME: Care about FlexBasis::Auto
|
||
if (has_definite_main_size(child_box))
|
||
return specified_main_size_of_child_box(child_box);
|
||
return layout_for_maximum_main_size(child_box);
|
||
}();
|
||
|
||
// The hypothetical main size is the item’s flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero).
|
||
auto clamp_min = has_main_min_size(child_box) ? specified_main_min_size(child_box) : 0;
|
||
auto clamp_max = has_main_max_size(child_box) ? specified_main_max_size(child_box) : NumericLimits<float>::max();
|
||
flex_item.hypothetical_main_size = clamp(flex_item.flex_base_size, clamp_min, clamp_max);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-main-container
|
||
void FlexFormattingContext::determine_main_size_of_flex_container(bool const main_is_constrained, bool const main_size_is_infinite, float& main_available_size, float const main_min_size, float const main_max_size)
|
||
{
|
||
if ((!main_is_constrained && main_size_is_infinite) || main_available_size == 0) {
|
||
// Uses https://www.w3.org/TR/css-flexbox-1/#intrinsic-main-sizes
|
||
// 9.9.1
|
||
// 1.
|
||
float largest_max_content_flex_fraction = 0;
|
||
for (auto& flex_item : m_flex_items) {
|
||
// FIXME: This needs some serious work.
|
||
float max_content_contribution = calculated_main_size(flex_item.box);
|
||
float max_content_flex_fraction = max_content_contribution - flex_item.flex_base_size;
|
||
if (max_content_flex_fraction > 0) {
|
||
max_content_flex_fraction /= max(flex_item.box.computed_values().flex_grow(), 1.0f);
|
||
} else {
|
||
max_content_flex_fraction /= max(flex_item.box.computed_values().flex_shrink(), 1.0f) * flex_item.flex_base_size;
|
||
}
|
||
flex_item.max_content_flex_fraction = max_content_flex_fraction;
|
||
|
||
if (max_content_flex_fraction > largest_max_content_flex_fraction)
|
||
largest_max_content_flex_fraction = max_content_flex_fraction;
|
||
}
|
||
|
||
// 2. Omitted
|
||
// 3.
|
||
float result = 0;
|
||
for (auto& flex_item : m_flex_items) {
|
||
auto product = 0;
|
||
if (flex_item.max_content_flex_fraction > 0) {
|
||
product = largest_max_content_flex_fraction * flex_item.box.computed_values().flex_grow();
|
||
} else {
|
||
product = largest_max_content_flex_fraction * max(flex_item.box.computed_values().flex_shrink(), 1.0f) * flex_item.flex_base_size;
|
||
}
|
||
result += flex_item.flex_base_size + product;
|
||
}
|
||
main_available_size = clamp(result, main_min_size, main_max_size);
|
||
}
|
||
set_main_size(flex_container(), main_available_size);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-line-break
|
||
void FlexFormattingContext::collect_flex_items_into_flex_lines(float const main_available_size)
|
||
{
|
||
// FIXME: Also support wrap-reverse
|
||
|
||
// If the flex container is single-line, collect all the flex items into a single flex line.
|
||
if (is_single_line()) {
|
||
FlexLine line;
|
||
for (auto& flex_item : m_flex_items) {
|
||
line.items.append(&flex_item);
|
||
}
|
||
m_flex_lines.append(move(line));
|
||
return;
|
||
}
|
||
|
||
// Otherwise, starting from the first uncollected item, collect consecutive items one by one
|
||
// until the first time that the next collected item would not fit into the flex container’s inner main size
|
||
// (or until a forced break is encountered, see §10 Fragmenting Flex Layout).
|
||
// If the very first uncollected item wouldn't fit, collect just it into the line.
|
||
|
||
// For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.)
|
||
|
||
// Repeat until all flex items have been collected into flex lines.
|
||
|
||
FlexLine line;
|
||
float line_main_size = 0;
|
||
for (auto& flex_item : m_flex_items) {
|
||
if ((line_main_size + flex_item.hypothetical_main_size) > main_available_size) {
|
||
m_flex_lines.append(move(line));
|
||
line = {};
|
||
line_main_size = 0;
|
||
}
|
||
line.items.append(&flex_item);
|
||
line_main_size += flex_item.hypothetical_main_size;
|
||
}
|
||
m_flex_lines.append(move(line));
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#resolve-flexible-lengths
|
||
void FlexFormattingContext::resolve_flexible_lengths(float const main_available_size)
|
||
{
|
||
enum FlexFactor {
|
||
FlexGrowFactor,
|
||
FlexShrinkFactor
|
||
};
|
||
|
||
FlexFactor used_flex_factor;
|
||
// 6.1. Determine used flex factor
|
||
for (auto& flex_line : m_flex_lines) {
|
||
size_t number_of_unfrozen_items_on_line = flex_line.items.size();
|
||
|
||
float sum_of_hypothetical_main_sizes = 0;
|
||
for (auto& flex_item : flex_line.items) {
|
||
sum_of_hypothetical_main_sizes += flex_item->hypothetical_main_size;
|
||
}
|
||
if (sum_of_hypothetical_main_sizes < main_available_size)
|
||
used_flex_factor = FlexFactor::FlexGrowFactor;
|
||
else
|
||
used_flex_factor = FlexFactor::FlexShrinkFactor;
|
||
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (used_flex_factor == FlexFactor::FlexGrowFactor)
|
||
flex_item->flex_factor = flex_item->box.computed_values().flex_grow();
|
||
else if (used_flex_factor == FlexFactor::FlexShrinkFactor)
|
||
flex_item->flex_factor = flex_item->box.computed_values().flex_shrink();
|
||
}
|
||
|
||
// 6.2. Size inflexible items
|
||
auto freeze_item_setting_target_main_size_to_hypothetical_main_size = [&number_of_unfrozen_items_on_line](FlexItem& item) {
|
||
item.target_main_size = item.hypothetical_main_size;
|
||
number_of_unfrozen_items_on_line--;
|
||
item.frozen = true;
|
||
};
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (flex_item->flex_factor.has_value() && flex_item->flex_factor.value() == 0) {
|
||
freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item);
|
||
} else if (used_flex_factor == FlexFactor::FlexGrowFactor) {
|
||
// FIXME: Spec doesn't include the == case, but we take a too basic approach to calculating the values used so this is appropriate
|
||
if (flex_item->flex_base_size > flex_item->hypothetical_main_size) {
|
||
freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item);
|
||
}
|
||
} else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
|
||
if (flex_item->flex_base_size < flex_item->hypothetical_main_size) {
|
||
freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item);
|
||
}
|
||
}
|
||
}
|
||
|
||
// 6.3. Calculate initial free space
|
||
auto calculate_free_space = [&]() {
|
||
float sum_of_items_on_line = 0;
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (flex_item->frozen)
|
||
sum_of_items_on_line += flex_item->target_main_size;
|
||
else
|
||
sum_of_items_on_line += flex_item->flex_base_size;
|
||
}
|
||
return main_available_size - sum_of_items_on_line;
|
||
};
|
||
|
||
float initial_free_space = calculate_free_space();
|
||
|
||
// 6.4 Loop
|
||
auto for_each_unfrozen_item = [&flex_line](auto callback) {
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (!flex_item->frozen)
|
||
callback(flex_item);
|
||
}
|
||
};
|
||
|
||
while (number_of_unfrozen_items_on_line > 0) {
|
||
// b Calculate the remaining free space
|
||
auto remaining_free_space = calculate_free_space();
|
||
float sum_of_unfrozen_flex_items_flex_factors = 0;
|
||
for_each_unfrozen_item([&](FlexItem* item) {
|
||
sum_of_unfrozen_flex_items_flex_factors += item->flex_factor.value_or(1);
|
||
});
|
||
|
||
if (sum_of_unfrozen_flex_items_flex_factors < 1) {
|
||
auto intermediate_free_space = initial_free_space * sum_of_unfrozen_flex_items_flex_factors;
|
||
if (AK::abs(intermediate_free_space) < AK::abs(remaining_free_space))
|
||
remaining_free_space = intermediate_free_space;
|
||
}
|
||
|
||
// c Distribute free space proportional to the flex factors
|
||
if (remaining_free_space != 0) {
|
||
if (used_flex_factor == FlexFactor::FlexGrowFactor) {
|
||
float sum_of_flex_grow_factor_of_unfrozen_items = sum_of_unfrozen_flex_items_flex_factors;
|
||
for_each_unfrozen_item([&](FlexItem* flex_item) {
|
||
float ratio = flex_item->flex_factor.value_or(1) / sum_of_flex_grow_factor_of_unfrozen_items;
|
||
flex_item->target_main_size = flex_item->flex_base_size + (remaining_free_space * ratio);
|
||
});
|
||
} else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
|
||
float sum_of_scaled_flex_shrink_factor_of_unfrozen_items = 0;
|
||
for_each_unfrozen_item([&](FlexItem* flex_item) {
|
||
flex_item->scaled_flex_shrink_factor = flex_item->flex_factor.value_or(1) * flex_item->flex_base_size;
|
||
sum_of_scaled_flex_shrink_factor_of_unfrozen_items += flex_item->scaled_flex_shrink_factor;
|
||
});
|
||
|
||
for_each_unfrozen_item([&](FlexItem* flex_item) {
|
||
float ratio = 1.0f;
|
||
if (sum_of_scaled_flex_shrink_factor_of_unfrozen_items != 0.0f)
|
||
ratio = flex_item->scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factor_of_unfrozen_items;
|
||
flex_item->target_main_size = flex_item->flex_base_size - (AK::abs(remaining_free_space) * ratio);
|
||
});
|
||
}
|
||
} else {
|
||
// This isn't spec but makes sense.
|
||
for_each_unfrozen_item([&](FlexItem* flex_item) {
|
||
flex_item->target_main_size = flex_item->flex_base_size;
|
||
});
|
||
}
|
||
// d Fix min/max violations.
|
||
float adjustments = 0.0f;
|
||
for_each_unfrozen_item([&](FlexItem* item) {
|
||
auto min_main = has_main_min_size(item->box)
|
||
? specified_main_min_size(item->box)
|
||
: 0;
|
||
auto max_main = has_main_max_size(item->box)
|
||
? specified_main_max_size(item->box)
|
||
: NumericLimits<float>::max();
|
||
|
||
float original_target_size = item->target_main_size;
|
||
|
||
if (item->target_main_size < min_main) {
|
||
item->target_main_size = min_main;
|
||
item->is_min_violation = true;
|
||
}
|
||
|
||
if (item->target_main_size > max_main) {
|
||
item->target_main_size = max_main;
|
||
item->is_max_violation = true;
|
||
}
|
||
float delta = item->target_main_size - original_target_size;
|
||
adjustments += delta;
|
||
});
|
||
// e Freeze over-flexed items
|
||
float total_violation = adjustments;
|
||
if (total_violation == 0) {
|
||
for_each_unfrozen_item([&](FlexItem* item) {
|
||
--number_of_unfrozen_items_on_line;
|
||
item->frozen = true;
|
||
});
|
||
} else if (total_violation > 0) {
|
||
for_each_unfrozen_item([&](FlexItem* item) {
|
||
if (item->is_min_violation) {
|
||
--number_of_unfrozen_items_on_line;
|
||
item->frozen = true;
|
||
}
|
||
});
|
||
} else if (total_violation < 0) {
|
||
for_each_unfrozen_item([&](FlexItem* item) {
|
||
if (item->is_max_violation) {
|
||
--number_of_unfrozen_items_on_line;
|
||
item->frozen = true;
|
||
}
|
||
});
|
||
}
|
||
}
|
||
|
||
// 6.5.
|
||
for (auto& flex_item : flex_line.items) {
|
||
flex_item->main_size = flex_item->target_main_size;
|
||
}
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-cross-item
|
||
float FlexFormattingContext::determine_hypothetical_cross_size_of_item(Box const& box)
|
||
{
|
||
bool cross_constrained = false;
|
||
if (is_row_layout()) {
|
||
if (!is_undefined_or_auto(box.computed_values().height()) || !is_undefined_or_auto(box.computed_values().min_height())) {
|
||
cross_constrained = true;
|
||
}
|
||
} else {
|
||
if (!is_undefined_or_auto(box.computed_values().width()) || !is_undefined_or_auto(box.computed_values().min_width())) {
|
||
cross_constrained = true;
|
||
}
|
||
}
|
||
|
||
if (!cross_constrained && box.children_are_inline()) {
|
||
auto& block_container = verify_cast<BlockContainer>(box);
|
||
BlockFormattingContext bfc(m_state, block_container, this);
|
||
bfc.run(box, LayoutMode::Default);
|
||
InlineFormattingContext ifc(m_state, block_container, bfc);
|
||
ifc.run(box, LayoutMode::OnlyRequiredLineBreaks);
|
||
|
||
auto const& box_state = m_state.get(box);
|
||
return is_row_layout() ? box_state.content_height : box_state.content_width;
|
||
}
|
||
if (is_row_layout())
|
||
return BlockFormattingContext::compute_theoretical_height(m_state, box);
|
||
|
||
BlockFormattingContext context(m_state, verify_cast<BlockContainer>(box), this);
|
||
context.compute_width(box);
|
||
return m_state.get(box).content_width;
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-cross-line
|
||
void FlexFormattingContext::calculate_cross_size_of_each_flex_line(float const cross_min_size, float const cross_max_size)
|
||
{
|
||
// If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex container’s inner cross size.
|
||
if (is_single_line() && has_definite_cross_size(flex_container())) {
|
||
m_flex_lines[0].cross_size = specified_cross_size(flex_container());
|
||
return;
|
||
}
|
||
|
||
// Otherwise, for each flex line:
|
||
for (auto& flex_line : m_flex_lines) {
|
||
// FIXME: 1. Collect all the flex items whose inline-axis is parallel to the main-axis, whose align-self is baseline,
|
||
// and whose cross-axis margins are both non-auto. Find the largest of the distances between each item’s baseline
|
||
// and its hypothetical outer cross-start edge, and the largest of the distances between each item’s baseline
|
||
// and its hypothetical outer cross-end edge, and sum these two values.
|
||
|
||
// FIXME: This isn't spec but makes sense here
|
||
if (has_definite_cross_size(flex_container()) && flex_container().computed_values().align_items() == CSS::AlignItems::Stretch) {
|
||
flex_line.cross_size = specified_cross_size(flex_container()) / m_flex_lines.size();
|
||
continue;
|
||
}
|
||
|
||
// 2. Among all the items not collected by the previous step, find the largest outer hypothetical cross size.
|
||
float largest_hypothetical_cross_size = 0;
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (largest_hypothetical_cross_size < flex_item->hypothetical_cross_size_with_margins())
|
||
largest_hypothetical_cross_size = flex_item->hypothetical_cross_size_with_margins();
|
||
}
|
||
|
||
// 3. The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero.
|
||
flex_line.cross_size = max(0.0f, largest_hypothetical_cross_size);
|
||
}
|
||
|
||
// If the flex container is single-line, then clamp the line’s cross-size to be within the container’s computed min and max cross sizes.
|
||
// Note that if CSS 2.1’s definition of min/max-width/height applied more generally, this behavior would fall out automatically.
|
||
if (is_single_line())
|
||
clamp(m_flex_lines[0].cross_size, cross_min_size, cross_max_size);
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-stretch
|
||
void FlexFormattingContext::determine_used_cross_size_of_each_flex_item()
|
||
{
|
||
// FIXME: Get the alignment via "align-self" of the item (which accesses "align-items" of the parent if unset)
|
||
for (auto& flex_line : m_flex_lines) {
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (is_cross_auto(flex_item->box) && flex_container().computed_values().align_items() == CSS::AlignItems::Stretch) {
|
||
flex_item->cross_size = flex_line.cross_size;
|
||
} else {
|
||
flex_item->cross_size = flex_item->hypothetical_cross_size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-main-align
|
||
void FlexFormattingContext::distribute_any_remaining_free_space(float const main_available_size)
|
||
{
|
||
for (auto& flex_line : m_flex_lines) {
|
||
// 12.1.
|
||
float used_main_space = 0;
|
||
size_t auto_margins = 0;
|
||
for (auto& flex_item : flex_line.items) {
|
||
used_main_space += flex_item->main_size;
|
||
if (is_main_axis_margin_first_auto(flex_item->box))
|
||
++auto_margins;
|
||
if (is_main_axis_margin_second_auto(flex_item->box))
|
||
++auto_margins;
|
||
}
|
||
float remaining_free_space = main_available_size - used_main_space;
|
||
if (remaining_free_space > 0) {
|
||
float size_per_auto_margin = remaining_free_space / (float)auto_margins;
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (is_main_axis_margin_first_auto(flex_item->box))
|
||
set_main_axis_first_margin(flex_item->box, size_per_auto_margin);
|
||
if (is_main_axis_margin_second_auto(flex_item->box))
|
||
set_main_axis_second_margin(flex_item->box, size_per_auto_margin);
|
||
}
|
||
} else {
|
||
for (auto& flex_item : flex_line.items) {
|
||
if (is_main_axis_margin_first_auto(flex_item->box))
|
||
set_main_axis_first_margin(flex_item->box, 0);
|
||
if (is_main_axis_margin_second_auto(flex_item->box))
|
||
set_main_axis_second_margin(flex_item->box, 0);
|
||
}
|
||
}
|
||
|
||
// 12.2.
|
||
float space_between_items = 0;
|
||
float space_before_first_item = 0;
|
||
auto number_of_items = flex_line.items.size();
|
||
|
||
switch (flex_container().computed_values().justify_content()) {
|
||
case CSS::JustifyContent::FlexStart:
|
||
break;
|
||
case CSS::JustifyContent::FlexEnd:
|
||
space_before_first_item = main_available_size - used_main_space;
|
||
break;
|
||
case CSS::JustifyContent::Center:
|
||
space_before_first_item = (main_available_size - used_main_space) / 2.0f;
|
||
break;
|
||
case CSS::JustifyContent::SpaceBetween:
|
||
space_between_items = remaining_free_space / (number_of_items - 1);
|
||
break;
|
||
case CSS::JustifyContent::SpaceAround:
|
||
space_between_items = remaining_free_space / number_of_items;
|
||
space_before_first_item = space_between_items / 2.0f;
|
||
break;
|
||
}
|
||
|
||
// FIXME: Support reverse
|
||
float main_offset = space_before_first_item;
|
||
for (auto& flex_item : flex_line.items) {
|
||
flex_item->main_offset = main_offset;
|
||
main_offset += flex_item->main_size + space_between_items;
|
||
}
|
||
}
|
||
}
|
||
|
||
void FlexFormattingContext::align_all_flex_items_along_the_cross_axis()
|
||
{
|
||
// FIXME: Get the alignment via "align-self" of the item (which accesses "align-items" of the parent if unset)
|
||
// FIXME: Take better care of margins
|
||
float line_cross_offset = 0;
|
||
for (auto& flex_line : m_flex_lines) {
|
||
for (auto* flex_item : flex_line.items) {
|
||
switch (flex_container().computed_values().align_items()) {
|
||
case CSS::AlignItems::Baseline:
|
||
// FIXME: Implement this
|
||
// Fallthrough
|
||
case CSS::AlignItems::FlexStart:
|
||
case CSS::AlignItems::Stretch:
|
||
flex_item->cross_offset = line_cross_offset + flex_item->margins.cross_before;
|
||
break;
|
||
case CSS::AlignItems::FlexEnd:
|
||
flex_item->cross_offset = line_cross_offset + flex_line.cross_size - flex_item->cross_size;
|
||
break;
|
||
case CSS::AlignItems::Center:
|
||
flex_item->cross_offset = line_cross_offset + (flex_line.cross_size / 2.0f) - (flex_item->cross_size / 2.0f);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
line_cross_offset += flex_line.cross_size;
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-cross-container
|
||
void FlexFormattingContext::determine_flex_container_used_cross_size(float const cross_min_size, float const cross_max_size)
|
||
{
|
||
if (has_definite_cross_size(flex_container())) {
|
||
float clamped_cross_size = clamp(specified_cross_size(flex_container()), cross_min_size, cross_max_size);
|
||
set_cross_size(flex_container(), clamped_cross_size);
|
||
} else {
|
||
float sum_of_flex_lines_cross_sizes = 0;
|
||
for (auto& flex_line : m_flex_lines) {
|
||
sum_of_flex_lines_cross_sizes += flex_line.cross_size;
|
||
}
|
||
float clamped_cross_size = clamp(sum_of_flex_lines_cross_sizes, cross_min_size, cross_max_size);
|
||
set_cross_size(flex_container(), clamped_cross_size);
|
||
}
|
||
}
|
||
|
||
// https://www.w3.org/TR/css-flexbox-1/#algo-line-align
|
||
void FlexFormattingContext::align_all_flex_lines()
|
||
{
|
||
// FIXME: Support align-content
|
||
// FIXME: Support reverse
|
||
for (auto& flex_line : m_flex_lines) {
|
||
for (auto* flex_item : flex_line.items) {
|
||
set_main_size(flex_item->box, flex_item->main_size);
|
||
set_cross_size(flex_item->box, flex_item->cross_size);
|
||
set_offset(flex_item->box, flex_item->main_offset, flex_item->cross_offset);
|
||
}
|
||
}
|
||
}
|
||
|
||
}
|