ladybird/Kernel/Net/RTL8139NetworkAdapter.cpp
Liav A e5ffa960d7 Kernel: Create support for PCI ECAM
The new PCI subsystem is initialized during runtime.
PCI::Initializer is supposed to be called during early boot, to
perform a few tests, and initialize the proper configuration space
access mechanism. Kernel boot parameters can be specified by a user to
determine what tests will occur, to aid debugging on problematic
machines.
After that, PCI::Initializer should be dismissed.

PCI::IOAccess is a class that is derived from PCI::Access
class and implements PCI configuration space access mechanism via x86
IO ports.
PCI::MMIOAccess is a class that is derived from PCI::Access
and implements PCI configurtaion space access mechanism via memory
access.

The new PCI subsystem also supports determination of IO/MMIO space
needed by a device by checking a given BAR.
In addition, Every device or component that use the PCI subsystem has
changed to match the last changes.
2020-01-02 00:50:09 +01:00

376 lines
12 KiB
C++

#include <Kernel/IO.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h>
//#define RTL8139_DEBUG
#define REG_MAC 0x00
#define REG_MAR0 0x08
#define REG_MAR4 0x12
#define REG_TXSTATUS0 0x10
#define REG_TXADDR0 0x20
#define REG_RXBUF 0x30
#define REG_COMMAND 0x37
#define REG_CAPR 0x38
#define REG_IMR 0x3C
#define REG_ISR 0x3E
#define REG_TXCFG 0x40
#define REG_RXCFG 0x44
#define REG_MPC 0x4C
#define REG_CFG9346 0x50
#define REG_CONFIG1 0x52
#define REG_MSR 0x58
#define REG_BMCR 0x62
#define TX_STATUS_OWN 0x2000
#define TX_STATUS_THRESHOLD_MAX 0x3F0000
#define COMMAND_RX_EMPTY 0x01
#define COMMAND_TX_ENABLE 0x04
#define COMMAND_RX_ENABLE 0x08
#define COMMAND_RESET 0x10
#define INT_RXOK 0x01
#define INT_RXERR 0x02
#define INT_TXOK 0x04
#define INT_TXERR 0x08
#define INT_RX_BUFFER_OVERFLOW 0x10
#define INT_LINK_CHANGE 0x20
#define INT_RX_FIFO_OVERFLOW 0x40
#define INT_LENGTH_CHANGE 0x2000
#define INT_SYSTEM_ERROR 0x8000
#define CFG9346_NONE 0x00
#define CFG9346_EEM0 0x40
#define CFG9346_EEM1 0x80
#define TXCFG_TXRR_ZERO 0x00
#define TXCFG_MAX_DMA_16B 0x000
#define TXCFG_MAX_DMA_32B 0x100
#define TXCFG_MAX_DMA_64B 0x200
#define TXCFG_MAX_DMA_128B 0x300
#define TXCFG_MAX_DMA_256B 0x400
#define TXCFG_MAX_DMA_512B 0x500
#define TXCFG_MAX_DMA_1K 0x600
#define TXCFG_MAX_DMA_2K 0x700
#define TXCFG_IFG11 0x3000000
#define RXCFG_AAP 0x01
#define RXCFG_APM 0x02
#define RXCFG_AM 0x04
#define RXCFG_AB 0x08
#define RXCFG_AR 0x10
#define RXCFG_WRAP_INHIBIT 0x80
#define RXCFG_MAX_DMA_16B 0x000
#define RXCFG_MAX_DMA_32B 0x100
#define RXCFG_MAX_DMA_64B 0x200
#define RXCFG_MAX_DMA_128B 0x300
#define RXCFG_MAX_DMA_256B 0x400
#define RXCFG_MAX_DMA_512B 0x500
#define RXCFG_MAX_DMA_1K 0x600
#define RXCFG_MAX_DMA_UNLIMITED 0x0700
#define RXCFG_RBLN_8K 0x0000
#define RXCFG_RBLN_16K 0x0800
#define RXCFG_RBLN_32K 0x1000
#define RXCFG_RBLN_64K 0x1800
#define RXCFG_FTH_NONE 0xE000
#define MSR_LINKB 0x02
#define MSR_RX_FLOW_CONTROL_ENABLE 0x40
#define BMCR_SPEED 0x2000
#define BMCR_AUTO_NEGOTIATE 0x1000
#define BMCR_DUPLEX 0x0100
#define RX_MULTICAST 0x8000
#define RX_PHYSICAL_MATCH 0x4000
#define RX_BROADCAST 0x2000
#define RX_INVALID_SYMBOL_ERROR 0x20
#define RX_RUNT 0x10
#define RX_LONG 0x08
#define RX_CRC_ERROR 0x04
#define RX_FRAME_ALIGNMENT_ERROR 0x02
#define RX_OK 0x01
#define PACKET_SIZE_MAX 0x600
#define PACKET_SIZE_MIN 0x16
#define RX_BUFFER_SIZE 32768
#define TX_BUFFER_SIZE PACKET_SIZE_MAX
OwnPtr<RTL8139NetworkAdapter> RTL8139NetworkAdapter::autodetect()
{
static const PCI::ID rtl8139_id = { 0x10EC, 0x8139 };
PCI::Address found_address;
PCI::enumerate_all([&](const PCI::Address& address, PCI::ID id) {
if (id == rtl8139_id) {
found_address = address;
return;
}
});
if (found_address.is_null())
return nullptr;
u8 irq = PCI::get_interrupt_line(found_address);
return make<RTL8139NetworkAdapter>(found_address, irq);
}
RTL8139NetworkAdapter::RTL8139NetworkAdapter(PCI::Address pci_address, u8 irq)
: IRQHandler(irq)
, m_pci_address(pci_address)
{
set_interface_name("rtl8139");
kprintf("RTL8139: Found at PCI address %b:%b:%b\n", pci_address.bus(), pci_address.slot(), pci_address.function());
enable_bus_mastering(m_pci_address);
m_io_base = PCI::get_BAR0(m_pci_address) & ~1;
m_interrupt_line = PCI::get_interrupt_line(m_pci_address);
kprintf("RTL8139: IO port base: %w\n", m_io_base);
kprintf("RTL8139: Interrupt line: %u\n", m_interrupt_line);
// we add space to account for overhang from the last packet - the rtl8139
// can optionally guarantee that packets will be contiguous by
// purposefully overrunning the rx buffer
m_rx_buffer_addr = (u32)kmalloc_aligned(RX_BUFFER_SIZE + PACKET_SIZE_MAX, 16);
kprintf("RTL8139: RX buffer: P%p\n", m_rx_buffer_addr);
auto tx_buffer_addr = (u32)kmalloc_aligned(TX_BUFFER_SIZE * 4, 16);
for (int i = 0; i < RTL8139_TX_BUFFER_COUNT; i++) {
m_tx_buffer_addr[i] = tx_buffer_addr + TX_BUFFER_SIZE * i;
kprintf("RTL8139: TX buffer %d: P%p\n", i, m_tx_buffer_addr[i]);
}
m_packet_buffer = (u32)kmalloc(PACKET_SIZE_MAX);
kprintf("RTL8139: Packet buffer: P%p\n", m_packet_buffer);
reset();
read_mac_address();
const auto& mac = mac_address();
kprintf("RTL8139: MAC address: %s\n", mac.to_string().characters());
enable_irq();
}
RTL8139NetworkAdapter::~RTL8139NetworkAdapter()
{
}
void RTL8139NetworkAdapter::handle_irq()
{
for (;;) {
int status = in16(REG_ISR);
out16(REG_ISR, status);
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter::handle_irq status=%#04x\n", status);
#endif
if ((status & (INT_RXOK | INT_RXERR | INT_TXOK | INT_TXERR | INT_RX_BUFFER_OVERFLOW | INT_LINK_CHANGE | INT_RX_FIFO_OVERFLOW | INT_LENGTH_CHANGE | INT_SYSTEM_ERROR)) == 0)
break;
if (status & INT_RXOK) {
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter: rx ready\n");
#endif
receive();
}
if (status & INT_RXERR) {
kprintf("RTL8139NetworkAdapter: rx error - resetting device\n");
reset();
}
if (status & INT_TXOK) {
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter: tx complete\n");
#endif
}
if (status & INT_TXERR) {
kprintf("RTL8139NetworkAdapter: tx error - resetting device\n");
reset();
}
if (status & INT_RX_BUFFER_OVERFLOW) {
kprintf("RTL8139NetworkAdapter: rx buffer overflow\n");
}
if (status & INT_LINK_CHANGE) {
m_link_up = (in8(REG_MSR) & MSR_LINKB) == 0;
kprintf("RTL8139NetworkAdapter: link status changed up=%d\n", m_link_up);
}
if (status & INT_RX_FIFO_OVERFLOW) {
kprintf("RTL8139NetworkAdapter: rx fifo overflow\n");
}
if (status & INT_LENGTH_CHANGE) {
kprintf("RTL8139NetworkAdapter: cable length change\n");
}
if (status & INT_SYSTEM_ERROR) {
kprintf("RTL8139NetworkAdapter: system error - resetting device\n");
reset();
}
}
}
void RTL8139NetworkAdapter::reset()
{
m_rx_buffer_offset = 0;
m_tx_next_buffer = 0;
// reset the device to clear out all the buffers and config
out8(REG_COMMAND, COMMAND_RESET);
while ((in8(REG_COMMAND) & COMMAND_RESET) != 0)
;
// unlock config registers
out8(REG_CFG9346, CFG9346_EEM0 | CFG9346_EEM1);
// turn on multicast
out32(REG_MAR0, 0xffffffff);
out32(REG_MAR4, 0xffffffff);
// enable rx/tx
out8(REG_COMMAND, COMMAND_RX_ENABLE | COMMAND_TX_ENABLE);
// device might be in sleep mode, this will take it out
out8(REG_CONFIG1, 0);
// set up rx buffer
out32(REG_RXBUF, m_rx_buffer_addr);
// reset missed packet counter
out8(REG_MPC, 0);
// "basic mode control register" options - 100mbit, full duplex, auto
// negotiation
out16(REG_BMCR, BMCR_SPEED | BMCR_AUTO_NEGOTIATE | BMCR_DUPLEX);
// enable flow control
out8(REG_MSR, MSR_RX_FLOW_CONTROL_ENABLE);
// configure rx: accept physical (MAC) match, multicast, and broadcast,
// use the optional contiguous packet feature, the maximum dma transfer
// size, a 32k buffer, and no fifo threshold
out32(REG_RXCFG, RXCFG_APM | RXCFG_AM | RXCFG_AB | RXCFG_WRAP_INHIBIT | RXCFG_MAX_DMA_UNLIMITED | RXCFG_RBLN_32K | RXCFG_FTH_NONE);
// configure tx: default retry count (16), max DMA burst size of 1024
// bytes, interframe gap time of the only allowable value. the DMA burst
// size is important - silent failures have been observed with 2048 bytes.
out32(REG_TXCFG, TXCFG_TXRR_ZERO | TXCFG_MAX_DMA_1K | TXCFG_IFG11);
// tell the chip where we want it to DMA from for outgoing packets.
for (int i = 0; i < 4; i++)
out32(REG_TXADDR0 + (i * 4), m_tx_buffer_addr[i]);
// re-lock config registers
out8(REG_CFG9346, CFG9346_NONE);
// enable rx/tx again in case they got turned off (apparently some cards
// do this?)
out8(REG_COMMAND, COMMAND_RX_ENABLE | COMMAND_TX_ENABLE);
// choose irqs, then clear any pending
out16(REG_IMR, INT_RXOK | INT_RXERR | INT_TXOK | INT_TXERR | INT_RX_BUFFER_OVERFLOW | INT_LINK_CHANGE | INT_RX_FIFO_OVERFLOW | INT_LENGTH_CHANGE | INT_SYSTEM_ERROR);
out16(REG_ISR, 0xffff);
}
void RTL8139NetworkAdapter::read_mac_address()
{
u8 mac[6];
for (int i = 0; i < 6; i++)
mac[i] = in8(REG_MAC + i);
set_mac_address(mac);
}
void RTL8139NetworkAdapter::send_raw(const u8* data, int length)
{
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter::send_raw length=%d\n", length);
#endif
if (length > PACKET_SIZE_MAX) {
kprintf("RTL8139NetworkAdapter: packet was too big; discarding\n");
return;
}
int hw_buffer = -1;
for (int i = 0; i < RTL8139_TX_BUFFER_COUNT; i++) {
int potential_buffer = (m_tx_next_buffer + i) % 4;
auto status = in32(REG_TXSTATUS0 + (potential_buffer * 4));
if (status & TX_STATUS_OWN) {
hw_buffer = potential_buffer;
break;
}
}
if (hw_buffer == -1) {
kprintf("RTL8139NetworkAdapter: hardware buffers full; discarding packet\n");
return;
} else {
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter: chose buffer %d @ %p\n", hw_buffer, m_tx_buffer_addr[hw_buffer]);
#endif
m_tx_next_buffer = (hw_buffer + 1) % 4;
}
memcpy((void*)(m_tx_buffer_addr[hw_buffer]), data, length);
memset((void*)(m_tx_buffer_addr[hw_buffer] + length), 0, TX_BUFFER_SIZE - length);
// the rtl8139 will not actually emit packets onto the network if they're
// smaller than 64 bytes. the rtl8139 adds a checksum to the end of each
// packet, and that checksum is four bytes long, so we pad the packet to
// 60 bytes if necessary to make sure the whole thing is large enough.
if (length < 60) {
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter: adjusting payload size from %d to 60\n", length);
#endif
length = 60;
}
out32(REG_TXSTATUS0 + (hw_buffer * 4), length);
}
void RTL8139NetworkAdapter::receive()
{
auto* start_of_packet = (const u8*)(m_rx_buffer_addr + m_rx_buffer_offset);
u16 status = *(const u16*)(start_of_packet + 0);
u16 length = *(const u16*)(start_of_packet + 2);
#ifdef RTL8139_DEBUG
kprintf("RTL8139NetworkAdapter::receive status=%04x length=%d offset=%d\n", status, length, m_rx_buffer_offset);
#endif
if (!(status & RX_OK) || (status & (RX_INVALID_SYMBOL_ERROR | RX_CRC_ERROR | RX_FRAME_ALIGNMENT_ERROR)) || (length >= PACKET_SIZE_MAX) || (length < PACKET_SIZE_MIN)) {
kprintf("RTL8139NetworkAdapter::receive got bad packet status=%04x length=%d\n", status, length);
reset();
return;
}
// we never have to worry about the packet wrapping around the buffer,
// since we set RXCFG_WRAP_INHIBIT, which allows the rtl8139 to write data
// past the end of the alloted space.
memcpy((u8*)m_packet_buffer, (const u8*)(start_of_packet + 4), length - 4);
// let the card know that we've read this data
m_rx_buffer_offset = ((m_rx_buffer_offset + length + 4 + 3) & ~3) % RX_BUFFER_SIZE;
out16(REG_CAPR, m_rx_buffer_offset - 0x10);
m_rx_buffer_offset %= RX_BUFFER_SIZE;
did_receive((const u8*)m_packet_buffer, length - 4);
}
void RTL8139NetworkAdapter::out8(u16 address, u8 data)
{
IO::out8(m_io_base + address, data);
}
void RTL8139NetworkAdapter::out16(u16 address, u16 data)
{
IO::out16(m_io_base + address, data);
}
void RTL8139NetworkAdapter::out32(u16 address, u32 data)
{
IO::out32(m_io_base + address, data);
}
u8 RTL8139NetworkAdapter::in8(u16 address)
{
return IO::in8(m_io_base + address);
}
u16 RTL8139NetworkAdapter::in16(u16 address)
{
return IO::in16(m_io_base + address);
}
u32 RTL8139NetworkAdapter::in32(u16 address)
{
return IO::in32(m_io_base + address);
}