ladybird/AK/Vector.h
Lenny Maiorani f99d1d3bd7 Vector: Implement find, find_if, find_first_matching in terms of AK::find*
Problem:
- The implementation of `find` is coupled to the implementation of `Vector`.
- `Vector::find` takes the predicate by value which might be expensive.

Solution:
- Decouple the implementation of `find` from `Vector` by using a
  generic `find` algorithm.
- Change the name of `find` with a predicate to `find_if` so that a
  binding reference can be used and the predicate can be forwarded to
  avoid copies.
- Change all the `find(pred)` call sites to use `find_if`.
2021-01-11 19:45:05 +01:00

608 lines
16 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Find.h>
#include <AK/Forward.h>
#include <AK/Iterator.h>
#include <AK/Optional.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/TypedTransfer.h>
#include <AK/kmalloc.h>
// NOTE: We can't include <initializer_list> during the toolchain bootstrap,
// since it's part of libstdc++, and libstdc++ depends on LibC.
// For this reason, we don't support Vector(initializer_list) in LibC.
#ifndef SERENITY_LIBC_BUILD
# include <initializer_list>
#endif
#ifndef __serenity__
# include <new>
#endif
namespace AK {
template<typename T, size_t inline_capacity>
class Vector {
public:
using value_type = T;
Vector()
: m_capacity(inline_capacity)
{
}
~Vector()
{
clear();
}
#ifndef SERENITY_LIBC_BUILD
Vector(std::initializer_list<T> list)
{
ensure_capacity(list.size());
for (auto& item : list)
unchecked_append(item);
}
#endif
Vector(Vector&& other)
: m_size(other.m_size)
, m_capacity(other.m_capacity)
, m_outline_buffer(other.m_outline_buffer)
{
if constexpr (inline_capacity > 0) {
if (!m_outline_buffer) {
for (size_t i = 0; i < m_size; ++i) {
new (&inline_buffer()[i]) T(move(other.inline_buffer()[i]));
other.inline_buffer()[i].~T();
}
}
}
other.m_outline_buffer = nullptr;
other.m_size = 0;
other.reset_capacity();
}
Vector(const Vector& other)
{
ensure_capacity(other.size());
TypedTransfer<T>::copy(data(), other.data(), other.size());
m_size = other.size();
}
template<size_t other_inline_capacity>
Vector(const Vector<T, other_inline_capacity>& other)
{
ensure_capacity(other.size());
TypedTransfer<T>::copy(data(), other.data(), other.size());
m_size = other.size();
}
Span<T> span() { return { data(), size() }; }
Span<const T> span() const { return { data(), size() }; }
// FIXME: What about assigning from a vector with lower inline capacity?
Vector& operator=(Vector&& other)
{
if (this != &other) {
clear();
m_size = other.m_size;
m_capacity = other.m_capacity;
m_outline_buffer = other.m_outline_buffer;
if constexpr (inline_capacity > 0) {
if (!m_outline_buffer) {
for (size_t i = 0; i < m_size; ++i) {
new (&inline_buffer()[i]) T(move(other.inline_buffer()[i]));
other.inline_buffer()[i].~T();
}
}
}
other.m_outline_buffer = nullptr;
other.m_size = 0;
other.reset_capacity();
}
return *this;
}
void clear()
{
clear_with_capacity();
if (m_outline_buffer) {
kfree(m_outline_buffer);
m_outline_buffer = nullptr;
}
reset_capacity();
}
void clear_with_capacity()
{
for (size_t i = 0; i < m_size; ++i)
data()[i].~T();
m_size = 0;
}
template<typename V>
bool operator==(const V& other) const
{
if (m_size != other.size())
return false;
return TypedTransfer<T>::compare(data(), other.data(), size());
}
operator Span<T>() { return span(); }
operator Span<const T>() const { return span(); }
bool contains_slow(const T& value) const
{
for (size_t i = 0; i < size(); ++i) {
if (Traits<T>::equals(at(i), value))
return true;
}
return false;
}
// NOTE: Vector::is_null() exists for the benefit of String::copy().
bool is_null() const { return false; }
bool is_empty() const { return size() == 0; }
ALWAYS_INLINE size_t size() const { return m_size; }
size_t capacity() const { return m_capacity; }
T* data()
{
if constexpr (inline_capacity > 0)
return m_outline_buffer ? m_outline_buffer : inline_buffer();
return m_outline_buffer;
}
const T* data() const
{
if constexpr (inline_capacity > 0)
return m_outline_buffer ? m_outline_buffer : inline_buffer();
return m_outline_buffer;
}
ALWAYS_INLINE const T& at(size_t i) const
{
ASSERT(i < m_size);
return data()[i];
}
ALWAYS_INLINE T& at(size_t i)
{
ASSERT(i < m_size);
return data()[i];
}
ALWAYS_INLINE const T& operator[](size_t i) const { return at(i); }
ALWAYS_INLINE T& operator[](size_t i) { return at(i); }
const T& first() const { return at(0); }
T& first() { return at(0); }
const T& last() const { return at(size() - 1); }
T& last() { return at(size() - 1); }
T take_last()
{
ASSERT(!is_empty());
T value = move(last());
last().~T();
--m_size;
return value;
}
T take_first()
{
ASSERT(!is_empty());
T value = move(first());
remove(0);
return value;
}
T take(size_t index)
{
T value = move(at(index));
remove(index);
return value;
}
T unstable_take(size_t index)
{
ASSERT(index < m_size);
swap(at(index), at(m_size - 1));
return take_last();
}
void remove(size_t index)
{
ASSERT(index < m_size);
if constexpr (Traits<T>::is_trivial()) {
TypedTransfer<T>::copy(slot(index), slot(index + 1), m_size - index - 1);
} else {
at(index).~T();
for (size_t i = index + 1; i < m_size; ++i) {
new (slot(i - 1)) T(move(at(i)));
at(i).~T();
}
}
--m_size;
}
void insert(size_t index, T&& value)
{
ASSERT(index <= size());
if (index == size())
return append(move(value));
grow_capacity(size() + 1);
++m_size;
if constexpr (Traits<T>::is_trivial()) {
TypedTransfer<T>::move(slot(index + 1), slot(index), m_size - index - 1);
} else {
for (size_t i = size() - 1; i > index; --i) {
new (slot(i)) T(move(at(i - 1)));
at(i - 1).~T();
}
}
new (slot(index)) T(move(value));
}
void insert(size_t index, const T& value)
{
insert(index, T(value));
}
template<typename C>
void insert_before_matching(T&& value, C callback, size_t first_index = 0, size_t* inserted_index = nullptr)
{
for (size_t i = first_index; i < size(); ++i) {
if (callback(at(i))) {
insert(i, move(value));
if (inserted_index)
*inserted_index = i;
return;
}
}
append(move(value));
if (inserted_index)
*inserted_index = size() - 1;
}
Vector& operator=(const Vector& other)
{
if (this != &other) {
clear();
ensure_capacity(other.size());
TypedTransfer<T>::copy(data(), other.data(), other.size());
m_size = other.size();
}
return *this;
}
template<size_t other_inline_capacity>
Vector& operator=(const Vector<T, other_inline_capacity>& other)
{
clear();
ensure_capacity(other.size());
TypedTransfer<T>::copy(data(), other.data(), other.size());
m_size = other.size();
return *this;
}
void append(Vector&& other)
{
if (is_empty()) {
*this = move(other);
return;
}
auto other_size = other.size();
Vector tmp = move(other);
grow_capacity(size() + other_size);
TypedTransfer<T>::move(data() + m_size, tmp.data(), other_size);
m_size += other_size;
}
void append(const Vector& other)
{
grow_capacity(size() + other.size());
TypedTransfer<T>::copy(data() + m_size, other.data(), other.size());
m_size += other.m_size;
}
template<typename Callback>
Optional<T> first_matching(Callback callback)
{
for (size_t i = 0; i < size(); ++i) {
if (callback(at(i))) {
return at(i);
}
}
return {};
}
template<typename Callback>
Optional<T> last_matching(Callback callback)
{
for (ssize_t i = size() - 1; i >= 0; --i) {
if (callback(at(i))) {
return at(i);
}
}
return {};
}
template<typename Callback>
bool remove_first_matching(Callback callback)
{
for (size_t i = 0; i < size(); ++i) {
if (callback(at(i))) {
remove(i);
return true;
}
}
return false;
}
template<typename Callback>
void remove_all_matching(Callback callback)
{
for (size_t i = 0; i < size();) {
if (callback(at(i))) {
remove(i);
} else {
++i;
}
}
}
ALWAYS_INLINE void unchecked_append(T&& value)
{
ASSERT((size() + 1) <= capacity());
new (slot(m_size)) T(move(value));
++m_size;
}
ALWAYS_INLINE void unchecked_append(const T& value)
{
unchecked_append(T(value));
}
template<class... Args>
void empend(Args&&... args)
{
grow_capacity(m_size + 1);
new (slot(m_size)) T { forward<Args>(args)... };
++m_size;
}
ALWAYS_INLINE void append(T&& value)
{
grow_capacity(size() + 1);
new (slot(m_size)) T(move(value));
++m_size;
}
ALWAYS_INLINE void append(const T& value)
{
append(T(value));
}
void prepend(T&& value)
{
insert(0, move(value));
}
void prepend(const T& value)
{
insert(0, value);
}
void prepend(Vector&& other)
{
if (other.is_empty())
return;
if (is_empty()) {
*this = move(other);
return;
}
auto other_size = other.size();
grow_capacity(size() + other_size);
for (size_t i = size() + other_size - 1; i >= other.size(); --i) {
new (slot(i)) T(move(at(i - other_size)));
at(i - other_size).~T();
}
Vector tmp = move(other);
TypedTransfer<T>::move(slot(0), tmp.data(), tmp.size());
m_size += other_size;
}
void prepend(const T* values, size_t count)
{
if (!count)
return;
grow_capacity(size() + count);
TypedTransfer<T>::move(slot(count), slot(0), m_size);
TypedTransfer<T>::copy(slot(0), values, count);
m_size += count;
}
void append(const T* values, size_t count)
{
if (!count)
return;
grow_capacity(size() + count);
TypedTransfer<T>::copy(slot(m_size), values, count);
m_size += count;
}
void grow_capacity(size_t needed_capacity)
{
if (m_capacity >= needed_capacity)
return;
ensure_capacity(padded_capacity(needed_capacity));
}
void ensure_capacity(size_t needed_capacity)
{
if (m_capacity >= needed_capacity)
return;
size_t new_capacity = needed_capacity;
auto* new_buffer = (T*)kmalloc(new_capacity * sizeof(T));
if constexpr (Traits<T>::is_trivial()) {
TypedTransfer<T>::copy(new_buffer, data(), m_size);
} else {
for (size_t i = 0; i < m_size; ++i) {
new (&new_buffer[i]) T(move(at(i)));
at(i).~T();
}
}
if (m_outline_buffer)
kfree(m_outline_buffer);
m_outline_buffer = new_buffer;
m_capacity = new_capacity;
}
void shrink(size_t new_size, bool keep_capacity = false)
{
ASSERT(new_size <= size());
if (new_size == size())
return;
if (!new_size) {
if (keep_capacity)
clear_with_capacity();
else
clear();
return;
}
for (size_t i = new_size; i < size(); ++i)
at(i).~T();
m_size = new_size;
}
void resize(size_t new_size, bool keep_capacity = false)
{
if (new_size <= size())
return shrink(new_size, keep_capacity);
ensure_capacity(new_size);
for (size_t i = size(); i < new_size; ++i)
new (slot(i)) T;
m_size = new_size;
}
void resize_and_keep_capacity(size_t new_size)
{
return resize(new_size, true);
}
using ConstIterator = SimpleIterator<const Vector, const T>;
using Iterator = SimpleIterator<Vector, T>;
ConstIterator begin() const { return ConstIterator::begin(*this); }
Iterator begin() { return Iterator::begin(*this); }
ConstIterator end() const { return ConstIterator::end(*this); }
Iterator end() { return Iterator::end(*this); }
template<typename TUnaryPredicate>
ConstIterator find_if(TUnaryPredicate&& finder) const
{
return AK::find_if(begin(), end(), forward<TUnaryPredicate>(finder));
}
template<typename TUnaryPredicate>
Iterator find_if(TUnaryPredicate&& finder)
{
return AK::find_if(begin(), end(), forward<TUnaryPredicate>(finder));
}
ConstIterator find(const T& value) const
{
return AK::find(begin(), end(), value);
}
Iterator find(const T& value)
{
return AK::find(begin(), end(), value);
}
Optional<size_t> find_first_index(const T& value)
{
if (const auto index = AK::find_index(begin(), end(), value);
index < size()) {
return index;
}
return {};
}
private:
void reset_capacity()
{
m_capacity = inline_capacity;
}
static size_t padded_capacity(size_t capacity)
{
return max(static_cast<size_t>(4), capacity + (capacity / 4) + 4);
}
T* slot(size_t i) { return &data()[i]; }
const T* slot(size_t i) const { return &data()[i]; }
T* inline_buffer()
{
static_assert(inline_capacity > 0);
return reinterpret_cast<T*>(m_inline_buffer_storage);
}
const T* inline_buffer() const
{
static_assert(inline_capacity > 0);
return reinterpret_cast<const T*>(m_inline_buffer_storage);
}
size_t m_size { 0 };
size_t m_capacity { 0 };
alignas(T) unsigned char m_inline_buffer_storage[sizeof(T) * inline_capacity];
T* m_outline_buffer { nullptr };
};
}
using AK::Vector;