ladybird/Kernel/Heap/kmalloc.cpp
Andreas Kling 09b1b09c19 Kernel: Assert if rounding-up-to-page-size would wrap around to 0
If we try to align a number above 0xfffff000 to the next multiple of
the page size (4 KiB), it would wrap around to 0. This is most likely
never what we want, so let's assert if that happens.
2021-02-14 10:01:50 +01:00

293 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Really really *really* Q&D malloc() and free() implementations
* just to get going. Don't ever let anyone see this shit. :^)
*/
#include <AK/Assertions.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/Optional.h>
#include <AK/StringView.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Panic.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/SpinLock.h>
#include <Kernel/StdLib.h>
#include <Kernel/VM/MemoryManager.h>
#define SANITIZE_KMALLOC
#define CHUNK_SIZE 32
#define POOL_SIZE (2 * MiB)
#define ETERNAL_RANGE_SIZE (2 * MiB)
static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()
static void kmalloc_allocate_backup_memory();
struct KmallocGlobalHeap {
struct ExpandGlobalHeap {
KmallocGlobalHeap& m_global_heap;
ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
: m_global_heap(global_heap)
{
}
bool m_adding { false };
bool add_memory(size_t allocation_request)
{
if (!MemoryManager::is_initialized()) {
klog() << "kmalloc(): Cannot expand heap before MM is initialized!";
return false;
}
ASSERT(!m_adding);
TemporaryChange change(m_adding, true);
// At this point we have very little memory left. Any attempt to
// kmalloc() could fail, so use our backup memory first, so we
// can't really reliably allocate even a new region of memory.
// This is why we keep a backup region, which we can
auto region = move(m_global_heap.m_backup_memory);
if (!region) {
// Be careful to not log too much here. We don't want to trigger
// any further calls to kmalloc(). We're already out of memory
// and don't have any backup memory, either!
klog() << "kmalloc(): Cannot expand heap: no backup memory";
return false;
}
// At this point we should have at least enough memory from the
// backup region to be able to log properly
klog() << "kmalloc(): Adding memory to heap at " << region->vaddr() << ", bytes: " << region->size();
auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
m_global_heap.m_subheap_memory.append(region.release_nonnull());
// Since we pulled in our backup heap, make sure we allocate another
// backup heap before returning. Otherwise we potentially lose
// the ability to expand the heap next time we get called.
ScopeGuard guard([&]() {
// We may need to defer allocating backup memory because the
// heap expansion may have been triggered while holding some
// other spinlock. If the expansion happens to need the same
// spinlock we would deadlock. So, if we're in any lock, defer
Processor::current().deferred_call_queue(kmalloc_allocate_backup_memory);
});
// Now that we added our backup memory, check if the backup heap
// was big enough to likely satisfy the request
if (subheap.free_bytes() < allocation_request) {
// Looks like we probably need more
size_t memory_size = page_round_up(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request));
// Add some more to the new heap. We're already using it for other
// allocations not including the original allocation_request
// that triggered heap expansion. If we don't allocate
memory_size += 1 * MiB;
region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
if (region) {
klog() << "kmalloc(): Adding even more memory to heap at " << region->vaddr() << ", bytes: " << region->size();
m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
m_global_heap.m_subheap_memory.append(region.release_nonnull());
} else {
klog() << "kmalloc(): Could not expand heap to satisfy allocation of " << allocation_request << " bytes";
return false;
}
}
return true;
}
bool remove_memory(void* memory)
{
// This is actually relatively unlikely to happen, because it requires that all
// allocated memory in a subheap to be freed. Only then the subheap can be removed...
for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
auto region = m_global_heap.m_subheap_memory.take(i);
if (!m_global_heap.m_backup_memory) {
klog() << "kmalloc(): Using removed memory as backup: " << region->vaddr() << ", bytes: " << region->size();
m_global_heap.m_backup_memory = move(region);
} else {
klog() << "kmalloc(): Queue removing memory from heap at " << region->vaddr() << ", bytes: " << region->size();
Processor::deferred_call_queue([this, region = move(region)]() mutable {
// We need to defer freeing the region to prevent a potential
// deadlock since we are still holding the kmalloc lock
// We don't really need to do anything other than holding
// onto the region. Unless we already used the backup
// memory, in which case we want to use the region as the
// new backup.
ScopedSpinLock lock(s_lock);
if (!m_global_heap.m_backup_memory) {
klog() << "kmalloc(): Queued memory region at " << region->vaddr() << ", bytes: " << region->size() << " will be used as new backup";
m_global_heap.m_backup_memory = move(region);
} else {
klog() << "kmalloc(): Queued memory region at " << region->vaddr() << ", bytes: " << region->size() << " will be freed now";
}
});
}
return true;
}
}
klog() << "kmalloc(): Cannot remove memory from heap: " << VirtualAddress(memory);
return false;
}
};
typedef ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap> HeapType;
HeapType m_heap;
NonnullOwnPtrVector<Region> m_subheap_memory;
OwnPtr<Region> m_backup_memory;
KmallocGlobalHeap(u8* memory, size_t memory_size)
: m_heap(memory, memory_size, ExpandGlobalHeap(*this))
{
}
void allocate_backup_memory()
{
if (m_backup_memory)
return;
m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
}
size_t backup_memory_bytes() const
{
return m_backup_memory ? m_backup_memory->size() : 0;
}
};
static KmallocGlobalHeap* g_kmalloc_global;
static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalHeap)];
// Treat the heap as logically separate from .bss
__attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
__attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];
static size_t g_kmalloc_bytes_eternal = 0;
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
bool g_dump_kmalloc_stacks;
static u8* s_next_eternal_ptr;
static u8* s_end_of_eternal_range;
static void kmalloc_allocate_backup_memory()
{
g_kmalloc_global->allocate_backup_memory();
}
void kmalloc_enable_expand()
{
g_kmalloc_global->allocate_backup_memory();
}
void kmalloc_init()
{
// Zero out heap since it's placed after end_of_kernel_bss.
memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalHeap(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));
s_lock.initialize();
s_next_eternal_ptr = kmalloc_eternal_heap;
s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_pool_heap);
}
void* kmalloc_eternal(size_t size)
{
size = round_up_to_power_of_two(size, sizeof(void*));
ScopedSpinLock lock(s_lock);
void* ptr = s_next_eternal_ptr;
s_next_eternal_ptr += size;
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
g_kmalloc_bytes_eternal += size;
return ptr;
}
void* kmalloc_impl(size_t size)
{
ScopedSpinLock lock(s_lock);
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
dbgln("kmalloc({})", size);
Kernel::dump_backtrace();
}
void* ptr = g_kmalloc_global->m_heap.allocate(size);
if (!ptr) {
PANIC("kmalloc: Out of memory (requested size: {})");
}
return ptr;
}
void kfree(void* ptr)
{
if (!ptr)
return;
ScopedSpinLock lock(s_lock);
++g_kfree_call_count;
g_kmalloc_global->m_heap.deallocate(ptr);
}
void* krealloc(void* ptr, size_t new_size)
{
ScopedSpinLock lock(s_lock);
return g_kmalloc_global->m_heap.reallocate(ptr, new_size);
}
void* operator new(size_t size)
{
return kmalloc(size);
}
void* operator new[](size_t size)
{
return kmalloc(size);
}
void get_kmalloc_stats(kmalloc_stats& stats)
{
ScopedSpinLock lock(s_lock);
stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
stats.bytes_eternal = g_kmalloc_bytes_eternal;
stats.kmalloc_call_count = g_kmalloc_call_count;
stats.kfree_call_count = g_kfree_call_count;
}