ladybird/Userland/Libraries/LibWeb/SVG/SVGPathElement.cpp
Shannon Booth bad44f8fc9 LibWeb: Remove Bindings/Forward.h from LibWeb/Forward.h
This was resulting in a whole lot of rebuilding whenever a new IDL
interface was added.

Instead, just directly include the prototype in every C++ file which
needs it. While we only really need a forward declaration in each cpp
file; including the full prototype header (which itself only includes
LibJS/Object.h, which is already transitively brought in by
PlatformObject) - it seems like a small price to pay compared to what
feels like a full rebuild of LibWeb whenever a new IDL file is added.

Given all of these includes are only needed for the ::initialize
method, there is probably a smart way of avoiding this problem
altogether. I've considered both using some macro trickery or generating
these functions somehow instead.
2024-04-27 18:29:35 -04:00

281 lines
10 KiB
C++

/*
* Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Optional.h>
#include <LibGfx/Path.h>
#include <LibWeb/Bindings/SVGPathElementPrototype.h>
#include <LibWeb/DOM/Document.h>
#include <LibWeb/DOM/Event.h>
#include <LibWeb/Layout/SVGGeometryBox.h>
#include <LibWeb/SVG/SVGPathElement.h>
namespace Web::SVG {
JS_DEFINE_ALLOCATOR(SVGPathElement);
[[maybe_unused]] static void print_instruction(PathInstruction const& instruction)
{
VERIFY(PATH_DEBUG);
auto& data = instruction.data;
switch (instruction.type) {
case PathInstructionType::Move:
dbgln("Move (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 2)
dbgln(" x={}, y={}", data[i], data[i + 1]);
break;
case PathInstructionType::ClosePath:
dbgln("ClosePath (absolute={})", instruction.absolute);
break;
case PathInstructionType::Line:
dbgln("Line (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 2)
dbgln(" x={}, y={}", data[i], data[i + 1]);
break;
case PathInstructionType::HorizontalLine:
dbgln("HorizontalLine (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); ++i)
dbgln(" x={}", data[i]);
break;
case PathInstructionType::VerticalLine:
dbgln("VerticalLine (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); ++i)
dbgln(" y={}", data[i]);
break;
case PathInstructionType::Curve:
dbgln("Curve (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 6)
dbgln(" (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]);
break;
case PathInstructionType::SmoothCurve:
dbgln("SmoothCurve (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 4)
dbgln(" (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
break;
case PathInstructionType::QuadraticBezierCurve:
dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 4)
dbgln(" (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
break;
case PathInstructionType::SmoothQuadraticBezierCurve:
dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 2)
dbgln(" x={}, y={}", data[i], data[i + 1]);
break;
case PathInstructionType::EllipticalArc:
dbgln("EllipticalArc (absolute={})", instruction.absolute);
for (size_t i = 0; i < data.size(); i += 7)
dbgln(" (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})",
data[i],
data[i + 1],
data[i + 2],
data[i + 3],
data[i + 4],
data[i + 5],
data[i + 6]);
break;
case PathInstructionType::Invalid:
dbgln("Invalid");
break;
}
}
SVGPathElement::SVGPathElement(DOM::Document& document, DOM::QualifiedName qualified_name)
: SVGGeometryElement(document, move(qualified_name))
{
}
void SVGPathElement::initialize(JS::Realm& realm)
{
Base::initialize(realm);
WEB_SET_PROTOTYPE_FOR_INTERFACE(SVGPathElement);
}
void SVGPathElement::attribute_changed(FlyString const& name, Optional<String> const& value)
{
SVGGeometryElement::attribute_changed(name, value);
if (name == "d")
m_instructions = AttributeParser::parse_path_data(value.value_or(String {}));
}
Gfx::Path path_from_path_instructions(ReadonlySpan<PathInstruction> instructions)
{
Gfx::Path path;
Optional<Gfx::FloatPoint> previous_control_point;
PathInstructionType last_instruction = PathInstructionType::Invalid;
for (auto& instruction : instructions) {
// If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
auto last_point = path.last_point();
auto& absolute = instruction.absolute;
auto& data = instruction.data;
if constexpr (PATH_DEBUG) {
print_instruction(instruction);
}
bool clear_last_control_point = true;
switch (instruction.type) {
case PathInstructionType::Move: {
Gfx::FloatPoint point = { data[0], data[1] };
if (absolute) {
path.move_to(point);
} else {
path.move_to(point + last_point);
}
break;
}
case PathInstructionType::ClosePath:
path.close();
break;
case PathInstructionType::Line: {
Gfx::FloatPoint point = { data[0], data[1] };
if (absolute) {
path.line_to(point);
} else {
path.line_to(point + last_point);
}
break;
}
case PathInstructionType::HorizontalLine: {
if (absolute)
path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
else
path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
break;
}
case PathInstructionType::VerticalLine: {
if (absolute)
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
else
path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
break;
}
case PathInstructionType::EllipticalArc: {
double rx = data[0];
double ry = data[1];
double x_axis_rotation = AK::to_radians(static_cast<double>(data[2]));
double large_arc_flag = data[3];
double sweep_flag = data[4];
Gfx::FloatPoint next_point;
if (absolute)
next_point = { data[5], data[6] };
else
next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0);
break;
}
case PathInstructionType::QuadraticBezierCurve: {
clear_last_control_point = false;
Gfx::FloatPoint through = { data[0], data[1] };
Gfx::FloatPoint point = { data[2], data[3] };
if (absolute) {
path.quadratic_bezier_curve_to(through, point);
previous_control_point = through;
} else {
auto control_point = through + last_point;
path.quadratic_bezier_curve_to(control_point, point + last_point);
previous_control_point = control_point;
}
break;
}
case PathInstructionType::SmoothQuadraticBezierCurve: {
clear_last_control_point = false;
if (!previous_control_point.has_value()
|| ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) {
previous_control_point = last_point;
}
auto dx_end_control = last_point.dx_relative_to(previous_control_point.value());
auto dy_end_control = last_point.dy_relative_to(previous_control_point.value());
auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
Gfx::FloatPoint end_point = { data[0], data[1] };
if (absolute) {
path.quadratic_bezier_curve_to(control_point, end_point);
} else {
path.quadratic_bezier_curve_to(control_point, end_point + last_point);
}
previous_control_point = control_point;
break;
}
case PathInstructionType::Curve: {
clear_last_control_point = false;
Gfx::FloatPoint c1 = { data[0], data[1] };
Gfx::FloatPoint c2 = { data[2], data[3] };
Gfx::FloatPoint p2 = { data[4], data[5] };
if (!absolute) {
p2 += last_point;
c1 += last_point;
c2 += last_point;
}
path.cubic_bezier_curve_to(c1, c2, p2);
previous_control_point = c2;
break;
}
case PathInstructionType::SmoothCurve: {
clear_last_control_point = false;
if (!previous_control_point.has_value()
|| ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) {
previous_control_point = last_point;
}
// 9.5.2. Reflected control points https://svgwg.org/svg2-draft/paths.html#ReflectedControlPoints
// If the current point is (curx, cury) and the final control point of the previous path segment is (oldx2, oldy2),
// then the reflected point (i.e., (newx1, newy1), the first control point of the current path segment) is:
// (newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
auto reflected_previous_control_x = last_point.x() - previous_control_point.value().dx_relative_to(last_point);
auto reflected_previous_control_y = last_point.y() - previous_control_point.value().dy_relative_to(last_point);
Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y };
Gfx::FloatPoint c2 = { data[0], data[1] };
Gfx::FloatPoint p2 = { data[2], data[3] };
if (!absolute) {
p2 += last_point;
c2 += last_point;
}
path.cubic_bezier_curve_to(c1, c2, p2);
previous_control_point = c2;
break;
}
case PathInstructionType::Invalid:
VERIFY_NOT_REACHED();
}
if (clear_last_control_point) {
previous_control_point = Gfx::FloatPoint {};
}
last_instruction = instruction.type;
}
return path;
}
Gfx::Path SVGPathElement::get_path(CSSPixelSize)
{
return path_from_path_instructions(m_instructions);
}
}