mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-07 19:57:45 +03:00
1075 lines
38 KiB
C++
1075 lines
38 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Array.h>
|
|
#include <AK/Assertions.h>
|
|
#include <AK/BinaryHeap.h>
|
|
#include <AK/BinarySearch.h>
|
|
#include <AK/MemoryStream.h>
|
|
#include <string.h>
|
|
|
|
#include <LibCompress/Deflate.h>
|
|
|
|
namespace Compress {
|
|
|
|
static constexpr u8 deflate_special_code_length_copy = 16;
|
|
static constexpr u8 deflate_special_code_length_zeros = 17;
|
|
static constexpr u8 deflate_special_code_length_long_zeros = 18;
|
|
|
|
CanonicalCode const& CanonicalCode::fixed_literal_codes()
|
|
{
|
|
static CanonicalCode code;
|
|
static bool initialized = false;
|
|
|
|
if (initialized)
|
|
return code;
|
|
|
|
code = CanonicalCode::from_bytes(fixed_literal_bit_lengths).value();
|
|
initialized = true;
|
|
|
|
return code;
|
|
}
|
|
|
|
CanonicalCode const& CanonicalCode::fixed_distance_codes()
|
|
{
|
|
static CanonicalCode code;
|
|
static bool initialized = false;
|
|
|
|
if (initialized)
|
|
return code;
|
|
|
|
code = CanonicalCode::from_bytes(fixed_distance_bit_lengths).value();
|
|
initialized = true;
|
|
|
|
return code;
|
|
}
|
|
|
|
Optional<CanonicalCode> CanonicalCode::from_bytes(ReadonlyBytes bytes)
|
|
{
|
|
// FIXME: I can't quite follow the algorithm here, but it seems to work.
|
|
|
|
CanonicalCode code;
|
|
|
|
auto non_zero_symbols = 0;
|
|
auto last_non_zero = -1;
|
|
for (size_t i = 0; i < bytes.size(); i++) {
|
|
if (bytes[i] != 0) {
|
|
non_zero_symbols++;
|
|
last_non_zero = i;
|
|
}
|
|
}
|
|
if (non_zero_symbols == 1) { // special case - only 1 symbol
|
|
code.m_symbol_codes.append(0b10);
|
|
code.m_symbol_values.append(last_non_zero);
|
|
code.m_bit_codes[last_non_zero] = 0;
|
|
code.m_bit_code_lengths[last_non_zero] = 1;
|
|
return code;
|
|
}
|
|
|
|
auto next_code = 0;
|
|
for (size_t code_length = 1; code_length <= 15; ++code_length) {
|
|
next_code <<= 1;
|
|
auto start_bit = 1 << code_length;
|
|
|
|
for (size_t symbol = 0; symbol < bytes.size(); ++symbol) {
|
|
if (bytes[symbol] != code_length)
|
|
continue;
|
|
|
|
if (next_code > start_bit)
|
|
return {};
|
|
|
|
code.m_symbol_codes.append(start_bit | next_code);
|
|
code.m_symbol_values.append(symbol);
|
|
code.m_bit_codes[symbol] = fast_reverse16(start_bit | next_code, code_length); // DEFLATE writes huffman encoded symbols as lsb-first
|
|
code.m_bit_code_lengths[symbol] = code_length;
|
|
|
|
next_code++;
|
|
}
|
|
}
|
|
|
|
if (next_code != (1 << 15)) {
|
|
return {};
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
u32 CanonicalCode::read_symbol(InputBitStream& stream) const
|
|
{
|
|
u32 code_bits = 1;
|
|
|
|
for (;;) {
|
|
code_bits = code_bits << 1 | stream.read_bits(1);
|
|
if (code_bits >= (1 << 16))
|
|
return UINT32_MAX; // the maximum symbol in deflate is 288, so we use UINT32_MAX (an impossible value) to indicate an error
|
|
|
|
// FIXME: This is very inefficient and could greatly be improved by implementing this
|
|
// algorithm: https://www.hanshq.net/zip.html#huffdec
|
|
size_t index;
|
|
if (binary_search(m_symbol_codes.span(), code_bits, &index))
|
|
return m_symbol_values[index];
|
|
}
|
|
}
|
|
|
|
void CanonicalCode::write_symbol(OutputBitStream& stream, u32 symbol) const
|
|
{
|
|
stream.write_bits(m_bit_codes[symbol], m_bit_code_lengths[symbol]);
|
|
}
|
|
|
|
DeflateDecompressor::CompressedBlock::CompressedBlock(DeflateDecompressor& decompressor, CanonicalCode literal_codes, Optional<CanonicalCode> distance_codes)
|
|
: m_decompressor(decompressor)
|
|
, m_literal_codes(literal_codes)
|
|
, m_distance_codes(distance_codes)
|
|
{
|
|
}
|
|
|
|
bool DeflateDecompressor::CompressedBlock::try_read_more()
|
|
{
|
|
if (m_eof == true)
|
|
return false;
|
|
|
|
auto const symbol = m_literal_codes.read_symbol(m_decompressor.m_input_stream);
|
|
|
|
if (symbol >= 286) { // invalid deflate literal/length symbol
|
|
m_decompressor.set_fatal_error();
|
|
return false;
|
|
}
|
|
|
|
if (symbol < 256) {
|
|
m_decompressor.m_output_stream << static_cast<u8>(symbol);
|
|
return true;
|
|
} else if (symbol == 256) {
|
|
m_eof = true;
|
|
return false;
|
|
} else {
|
|
if (!m_distance_codes.has_value()) {
|
|
m_decompressor.set_fatal_error();
|
|
return false;
|
|
}
|
|
|
|
auto const length = m_decompressor.decode_length(symbol);
|
|
auto const distance_symbol = m_distance_codes.value().read_symbol(m_decompressor.m_input_stream);
|
|
if (distance_symbol >= 30) { // invalid deflate distance symbol
|
|
m_decompressor.set_fatal_error();
|
|
return false;
|
|
}
|
|
auto const distance = m_decompressor.decode_distance(distance_symbol);
|
|
|
|
for (size_t idx = 0; idx < length; ++idx) {
|
|
u8 byte = 0;
|
|
m_decompressor.m_output_stream.read({ &byte, sizeof(byte) }, distance);
|
|
if (m_decompressor.m_output_stream.handle_any_error()) {
|
|
m_decompressor.set_fatal_error();
|
|
return false; // a back reference was requested that was too far back (outside our current sliding window)
|
|
}
|
|
m_decompressor.m_output_stream << byte;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
DeflateDecompressor::UncompressedBlock::UncompressedBlock(DeflateDecompressor& decompressor, size_t length)
|
|
: m_decompressor(decompressor)
|
|
, m_bytes_remaining(length)
|
|
{
|
|
}
|
|
|
|
bool DeflateDecompressor::UncompressedBlock::try_read_more()
|
|
{
|
|
if (m_bytes_remaining == 0)
|
|
return false;
|
|
|
|
auto const nread = min(m_bytes_remaining, m_decompressor.m_output_stream.remaining_contiguous_space());
|
|
m_bytes_remaining -= nread;
|
|
|
|
m_decompressor.m_input_stream >> m_decompressor.m_output_stream.reserve_contiguous_space(nread);
|
|
|
|
return true;
|
|
}
|
|
|
|
DeflateDecompressor::DeflateDecompressor(InputStream& stream)
|
|
: m_input_stream(stream)
|
|
{
|
|
}
|
|
|
|
DeflateDecompressor::~DeflateDecompressor()
|
|
{
|
|
if (m_state == State::ReadingCompressedBlock)
|
|
m_compressed_block.~CompressedBlock();
|
|
if (m_state == State::ReadingUncompressedBlock)
|
|
m_uncompressed_block.~UncompressedBlock();
|
|
}
|
|
|
|
size_t DeflateDecompressor::read(Bytes bytes)
|
|
{
|
|
size_t total_read = 0;
|
|
while (total_read < bytes.size()) {
|
|
if (has_any_error())
|
|
break;
|
|
|
|
auto slice = bytes.slice(total_read);
|
|
|
|
if (m_state == State::Idle) {
|
|
if (m_read_final_bock)
|
|
break;
|
|
|
|
m_read_final_bock = m_input_stream.read_bit();
|
|
auto const block_type = m_input_stream.read_bits(2);
|
|
|
|
if (m_input_stream.has_any_error()) {
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
if (block_type == 0b00) {
|
|
m_input_stream.align_to_byte_boundary();
|
|
|
|
LittleEndian<u16> length, negated_length;
|
|
m_input_stream >> length >> negated_length;
|
|
|
|
if (m_input_stream.has_any_error()) {
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
if ((length ^ 0xffff) != negated_length) {
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
m_state = State::ReadingUncompressedBlock;
|
|
new (&m_uncompressed_block) UncompressedBlock(*this, length);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (block_type == 0b01) {
|
|
m_state = State::ReadingCompressedBlock;
|
|
new (&m_compressed_block) CompressedBlock(*this, CanonicalCode::fixed_literal_codes(), CanonicalCode::fixed_distance_codes());
|
|
|
|
continue;
|
|
}
|
|
|
|
if (block_type == 0b10) {
|
|
CanonicalCode literal_codes;
|
|
Optional<CanonicalCode> distance_codes;
|
|
decode_codes(literal_codes, distance_codes);
|
|
|
|
if (m_input_stream.has_any_error()) {
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
m_state = State::ReadingCompressedBlock;
|
|
new (&m_compressed_block) CompressedBlock(*this, literal_codes, distance_codes);
|
|
|
|
continue;
|
|
}
|
|
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
if (m_state == State::ReadingCompressedBlock) {
|
|
auto nread = m_output_stream.read(slice);
|
|
|
|
while (nread < slice.size() && m_compressed_block.try_read_more()) {
|
|
nread += m_output_stream.read(slice.slice(nread));
|
|
}
|
|
|
|
if (m_input_stream.has_any_error()) {
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
total_read += nread;
|
|
if (nread == slice.size())
|
|
break;
|
|
|
|
m_compressed_block.~CompressedBlock();
|
|
m_state = State::Idle;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (m_state == State::ReadingUncompressedBlock) {
|
|
auto nread = m_output_stream.read(slice);
|
|
|
|
while (nread < slice.size() && m_uncompressed_block.try_read_more()) {
|
|
nread += m_output_stream.read(slice.slice(nread));
|
|
}
|
|
|
|
if (m_input_stream.has_any_error()) {
|
|
set_fatal_error();
|
|
break;
|
|
}
|
|
|
|
total_read += nread;
|
|
if (nread == slice.size())
|
|
break;
|
|
|
|
m_uncompressed_block.~UncompressedBlock();
|
|
m_state = State::Idle;
|
|
|
|
continue;
|
|
}
|
|
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
return total_read;
|
|
}
|
|
|
|
bool DeflateDecompressor::read_or_error(Bytes bytes)
|
|
{
|
|
if (read(bytes) < bytes.size()) {
|
|
set_fatal_error();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DeflateDecompressor::discard_or_error(size_t count)
|
|
{
|
|
u8 buffer[4096];
|
|
|
|
size_t ndiscarded = 0;
|
|
while (ndiscarded < count) {
|
|
if (unreliable_eof()) {
|
|
set_fatal_error();
|
|
return false;
|
|
}
|
|
|
|
ndiscarded += read({ buffer, min<size_t>(count - ndiscarded, 4096) });
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DeflateDecompressor::unreliable_eof() const { return m_state == State::Idle && m_read_final_bock; }
|
|
|
|
bool DeflateDecompressor::handle_any_error()
|
|
{
|
|
bool handled_errors = m_input_stream.handle_any_error();
|
|
return Stream::handle_any_error() || handled_errors;
|
|
}
|
|
|
|
Optional<ByteBuffer> DeflateDecompressor::decompress_all(ReadonlyBytes bytes)
|
|
{
|
|
InputMemoryStream memory_stream { bytes };
|
|
DeflateDecompressor deflate_stream { memory_stream };
|
|
DuplexMemoryStream output_stream;
|
|
|
|
u8 buffer[4096];
|
|
while (!deflate_stream.has_any_error() && !deflate_stream.unreliable_eof()) {
|
|
auto const nread = deflate_stream.read({ buffer, sizeof(buffer) });
|
|
output_stream.write_or_error({ buffer, nread });
|
|
}
|
|
|
|
if (deflate_stream.handle_any_error())
|
|
return {};
|
|
|
|
return output_stream.copy_into_contiguous_buffer();
|
|
}
|
|
|
|
u32 DeflateDecompressor::decode_length(u32 symbol)
|
|
{
|
|
// FIXME: I can't quite follow the algorithm here, but it seems to work.
|
|
|
|
if (symbol <= 264)
|
|
return symbol - 254;
|
|
|
|
if (symbol <= 284) {
|
|
auto extra_bits = (symbol - 261) / 4;
|
|
return (((symbol - 265) % 4 + 4) << extra_bits) + 3 + m_input_stream.read_bits(extra_bits);
|
|
}
|
|
|
|
if (symbol == 285)
|
|
return 258;
|
|
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
u32 DeflateDecompressor::decode_distance(u32 symbol)
|
|
{
|
|
// FIXME: I can't quite follow the algorithm here, but it seems to work.
|
|
|
|
if (symbol <= 3)
|
|
return symbol + 1;
|
|
|
|
if (symbol <= 29) {
|
|
auto extra_bits = (symbol / 2) - 1;
|
|
return ((symbol % 2 + 2) << extra_bits) + 1 + m_input_stream.read_bits(extra_bits);
|
|
}
|
|
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
void DeflateDecompressor::decode_codes(CanonicalCode& literal_code, Optional<CanonicalCode>& distance_code)
|
|
{
|
|
auto literal_code_count = m_input_stream.read_bits(5) + 257;
|
|
auto distance_code_count = m_input_stream.read_bits(5) + 1;
|
|
auto code_length_count = m_input_stream.read_bits(4) + 4;
|
|
|
|
// First we have to extract the code lengths of the code that was used to encode the code lengths of
|
|
// the code that was used to encode the block.
|
|
|
|
u8 code_lengths_code_lengths[19] = { 0 };
|
|
for (size_t i = 0; i < code_length_count; ++i) {
|
|
code_lengths_code_lengths[code_lengths_code_lengths_order[i]] = m_input_stream.read_bits(3);
|
|
}
|
|
|
|
// Now we can extract the code that was used to encode the code lengths of the code that was used to
|
|
// encode the block.
|
|
|
|
auto code_length_code_result = CanonicalCode::from_bytes({ code_lengths_code_lengths, sizeof(code_lengths_code_lengths) });
|
|
if (!code_length_code_result.has_value()) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
auto const code_length_code = code_length_code_result.value();
|
|
|
|
// Next we extract the code lengths of the code that was used to encode the block.
|
|
|
|
Vector<u8> code_lengths;
|
|
while (code_lengths.size() < literal_code_count + distance_code_count) {
|
|
auto symbol = code_length_code.read_symbol(m_input_stream);
|
|
|
|
if (symbol == UINT32_MAX) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
|
|
if (symbol < deflate_special_code_length_copy) {
|
|
code_lengths.append(static_cast<u8>(symbol));
|
|
continue;
|
|
} else if (symbol == deflate_special_code_length_zeros) {
|
|
auto nrepeat = 3 + m_input_stream.read_bits(3);
|
|
for (size_t j = 0; j < nrepeat; ++j)
|
|
code_lengths.append(0);
|
|
continue;
|
|
} else if (symbol == deflate_special_code_length_long_zeros) {
|
|
auto nrepeat = 11 + m_input_stream.read_bits(7);
|
|
for (size_t j = 0; j < nrepeat; ++j)
|
|
code_lengths.append(0);
|
|
continue;
|
|
} else {
|
|
VERIFY(symbol == deflate_special_code_length_copy);
|
|
|
|
if (code_lengths.is_empty()) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
|
|
auto nrepeat = 3 + m_input_stream.read_bits(2);
|
|
for (size_t j = 0; j < nrepeat; ++j)
|
|
code_lengths.append(code_lengths.last());
|
|
}
|
|
}
|
|
|
|
if (code_lengths.size() != literal_code_count + distance_code_count) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
|
|
// Now we extract the code that was used to encode literals and lengths in the block.
|
|
|
|
auto literal_code_result = CanonicalCode::from_bytes(code_lengths.span().trim(literal_code_count));
|
|
if (!literal_code_result.has_value()) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
literal_code = literal_code_result.value();
|
|
|
|
// Now we extract the code that was used to encode distances in the block.
|
|
|
|
if (distance_code_count == 1) {
|
|
auto length = code_lengths[literal_code_count];
|
|
|
|
if (length == 0) {
|
|
return;
|
|
} else if (length != 1) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto distance_code_result = CanonicalCode::from_bytes(code_lengths.span().slice(literal_code_count));
|
|
if (!distance_code_result.has_value()) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
distance_code = distance_code_result.value();
|
|
}
|
|
|
|
DeflateCompressor::DeflateCompressor(OutputStream& stream, CompressionLevel compression_level)
|
|
: m_compression_level(compression_level)
|
|
, m_compression_constants(compression_constants[static_cast<int>(m_compression_level)])
|
|
, m_output_stream(stream)
|
|
{
|
|
m_symbol_frequencies.fill(0);
|
|
m_distance_frequencies.fill(0);
|
|
}
|
|
|
|
DeflateCompressor::~DeflateCompressor()
|
|
{
|
|
VERIFY(m_finished);
|
|
}
|
|
|
|
size_t DeflateCompressor::write(ReadonlyBytes bytes)
|
|
{
|
|
VERIFY(!m_finished);
|
|
|
|
if (bytes.size() == 0)
|
|
return 0; // recursion base case
|
|
|
|
auto n_written = bytes.copy_trimmed_to(pending_block().slice(m_pending_block_size));
|
|
m_pending_block_size += n_written;
|
|
|
|
if (m_pending_block_size == block_size)
|
|
flush();
|
|
|
|
return n_written + write(bytes.slice(n_written));
|
|
}
|
|
|
|
bool DeflateCompressor::write_or_error(ReadonlyBytes bytes)
|
|
{
|
|
if (write(bytes) < bytes.size()) {
|
|
set_fatal_error();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Knuth's multiplicative hash on 4 bytes
|
|
u16 DeflateCompressor::hash_sequence(u8 const* bytes)
|
|
{
|
|
constexpr const u32 knuth_constant = 2654435761; // shares no common factors with 2^32
|
|
return ((bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24) * knuth_constant) >> (32 - hash_bits);
|
|
}
|
|
|
|
size_t DeflateCompressor::compare_match_candidate(size_t start, size_t candidate, size_t previous_match_length, size_t maximum_match_length)
|
|
{
|
|
VERIFY(previous_match_length < maximum_match_length);
|
|
|
|
// We firstly check that the match is at least (prev_match_length + 1) long, we check backwards as there's a higher chance the end mismatches
|
|
for (ssize_t i = previous_match_length; i >= 0; i--) {
|
|
if (m_rolling_window[start + i] != m_rolling_window[candidate + i])
|
|
return 0;
|
|
}
|
|
|
|
// Find the actual length
|
|
auto match_length = previous_match_length + 1;
|
|
while (match_length < maximum_match_length && m_rolling_window[start + match_length] == m_rolling_window[candidate + match_length]) {
|
|
match_length++;
|
|
}
|
|
|
|
VERIFY(match_length > previous_match_length);
|
|
VERIFY(match_length <= maximum_match_length);
|
|
return match_length;
|
|
}
|
|
|
|
size_t DeflateCompressor::find_back_match(size_t start, u16 hash, size_t previous_match_length, size_t maximum_match_length, size_t& match_position)
|
|
{
|
|
auto max_chain_length = m_compression_constants.max_chain;
|
|
if (previous_match_length == 0)
|
|
previous_match_length = min_match_length - 1; // we only care about matches that are at least min_match_length long
|
|
if (previous_match_length >= maximum_match_length)
|
|
return 0; // we can't improve a maximum length match
|
|
if (previous_match_length >= m_compression_constants.max_lazy_length)
|
|
return 0; // the previous match is already pretty, we shouldn't waste another full search
|
|
if (previous_match_length >= m_compression_constants.good_match_length)
|
|
max_chain_length /= 4; // we already have a pretty good much, so do a shorter search
|
|
|
|
auto candidate = m_hash_head[hash];
|
|
auto match_found = false;
|
|
while (max_chain_length--) {
|
|
if (candidate == empty_slot)
|
|
break; // no remaining candidates
|
|
|
|
VERIFY(candidate < start);
|
|
if (start - candidate > window_size)
|
|
break; // outside the window
|
|
|
|
auto match_length = compare_match_candidate(start, candidate, previous_match_length, maximum_match_length);
|
|
|
|
if (match_length != 0) {
|
|
match_found = true;
|
|
match_position = candidate;
|
|
previous_match_length = match_length;
|
|
|
|
if (match_length == maximum_match_length)
|
|
return match_length; // bail if we got the maximum possible length
|
|
}
|
|
|
|
candidate = m_hash_prev[candidate % window_size];
|
|
}
|
|
if (!match_found)
|
|
return 0; // we didn't find any matches
|
|
return previous_match_length; // we found matches, but they were at most previous_match_length long
|
|
}
|
|
|
|
ALWAYS_INLINE u8 DeflateCompressor::distance_to_base(u16 distance)
|
|
{
|
|
return (distance <= 256) ? distance_to_base_lo[distance - 1] : distance_to_base_hi[(distance - 1) >> 7];
|
|
}
|
|
|
|
template<size_t Size>
|
|
void DeflateCompressor::generate_huffman_lengths(Array<u8, Size>& lengths, Array<u16, Size> const& frequencies, size_t max_bit_length, u16 frequency_cap)
|
|
{
|
|
VERIFY((1u << max_bit_length) >= Size);
|
|
u16 heap_keys[Size]; // Used for O(n) heap construction
|
|
u16 heap_values[Size];
|
|
|
|
u16 huffman_links[Size * 2 + 1] = { 0 };
|
|
size_t non_zero_freqs = 0;
|
|
for (size_t i = 0; i < Size; i++) {
|
|
auto frequency = frequencies[i];
|
|
if (frequency == 0)
|
|
continue;
|
|
|
|
if (frequency > frequency_cap) {
|
|
frequency = frequency_cap;
|
|
}
|
|
|
|
heap_keys[non_zero_freqs] = frequency; // sort symbols by frequency
|
|
heap_values[non_zero_freqs] = Size + non_zero_freqs; // huffman_links "links"
|
|
non_zero_freqs++;
|
|
}
|
|
|
|
// special case for only 1 used symbol
|
|
if (non_zero_freqs < 2) {
|
|
for (size_t i = 0; i < Size; i++)
|
|
lengths[i] = (frequencies[i] == 0) ? 0 : 1;
|
|
return;
|
|
}
|
|
|
|
BinaryHeap<u16, u16, Size> heap { heap_keys, heap_values, non_zero_freqs };
|
|
|
|
// build the huffman tree - binary heap is used for efficient frequency comparisons
|
|
while (heap.size() > 1) {
|
|
u16 lowest_frequency = heap.peek_min_key();
|
|
u16 lowest_link = heap.pop_min();
|
|
u16 second_lowest_frequency = heap.peek_min_key();
|
|
u16 second_lowest_link = heap.pop_min();
|
|
|
|
u16 new_link = heap.size() + 2;
|
|
|
|
heap.insert(lowest_frequency + second_lowest_frequency, new_link);
|
|
|
|
huffman_links[lowest_link] = new_link;
|
|
huffman_links[second_lowest_link] = new_link;
|
|
}
|
|
|
|
non_zero_freqs = 0;
|
|
for (size_t i = 0; i < Size; i++) {
|
|
if (frequencies[i] == 0) {
|
|
lengths[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
u16 link = huffman_links[Size + non_zero_freqs];
|
|
non_zero_freqs++;
|
|
|
|
size_t bit_length = 1;
|
|
while (link != 2) {
|
|
bit_length++;
|
|
link = huffman_links[link];
|
|
}
|
|
|
|
if (bit_length > max_bit_length) {
|
|
VERIFY(frequency_cap != 1);
|
|
return generate_huffman_lengths(lengths, frequencies, max_bit_length, frequency_cap / 2);
|
|
}
|
|
|
|
lengths[i] = bit_length;
|
|
}
|
|
}
|
|
|
|
void DeflateCompressor::lz77_compress_block()
|
|
{
|
|
for (auto& slot : m_hash_head) { // initialize chained hash table
|
|
slot = empty_slot;
|
|
}
|
|
|
|
auto insert_hash = [&](auto pos, auto hash) {
|
|
auto window_pos = pos % window_size;
|
|
m_hash_prev[window_pos] = m_hash_head[hash];
|
|
m_hash_head[hash] = window_pos;
|
|
};
|
|
|
|
auto emit_literal = [&](auto literal) {
|
|
VERIFY(m_pending_symbol_size <= block_size + 1);
|
|
auto index = m_pending_symbol_size++;
|
|
m_symbol_buffer[index].distance = 0;
|
|
m_symbol_buffer[index].literal = literal;
|
|
m_symbol_frequencies[literal]++;
|
|
};
|
|
|
|
auto emit_back_reference = [&](auto distance, auto length) {
|
|
VERIFY(m_pending_symbol_size <= block_size + 1);
|
|
auto index = m_pending_symbol_size++;
|
|
m_symbol_buffer[index].distance = distance;
|
|
m_symbol_buffer[index].length = length;
|
|
m_symbol_frequencies[length_to_symbol[length]]++;
|
|
m_distance_frequencies[distance_to_base(distance)]++;
|
|
};
|
|
|
|
size_t previous_match_length = 0;
|
|
size_t previous_match_position = 0;
|
|
|
|
VERIFY(m_compression_constants.great_match_length <= max_match_length);
|
|
|
|
// our block starts at block_size and is m_pending_block_size in length
|
|
auto block_end = block_size + m_pending_block_size;
|
|
size_t current_position;
|
|
for (current_position = block_size; current_position < block_end - min_match_length + 1; current_position++) {
|
|
auto hash = hash_sequence(&m_rolling_window[current_position]);
|
|
size_t match_position;
|
|
auto match_length = find_back_match(current_position, hash, previous_match_length,
|
|
min(m_compression_constants.great_match_length, block_end - current_position), match_position);
|
|
|
|
insert_hash(current_position, hash);
|
|
|
|
// if the previous match is as good as the new match, just use it
|
|
if (previous_match_length != 0 && previous_match_length >= match_length) {
|
|
emit_back_reference((current_position - 1) - previous_match_position, previous_match_length);
|
|
|
|
// skip all the bytes that are included in this match
|
|
for (size_t j = current_position + 1; j < min(current_position - 1 + previous_match_length, block_end - min_match_length + 1); j++) {
|
|
insert_hash(j, hash_sequence(&m_rolling_window[j]));
|
|
}
|
|
current_position = (current_position - 1) + previous_match_length - 1;
|
|
previous_match_length = 0;
|
|
continue;
|
|
}
|
|
|
|
if (match_length == 0) {
|
|
VERIFY(previous_match_length == 0);
|
|
emit_literal(m_rolling_window[current_position]);
|
|
continue;
|
|
}
|
|
|
|
// if this is a lazy match, and the new match is better than the old one, output previous as literal
|
|
if (previous_match_length != 0) {
|
|
emit_literal(m_rolling_window[current_position - 1]);
|
|
}
|
|
|
|
previous_match_length = match_length;
|
|
previous_match_position = match_position;
|
|
}
|
|
|
|
// clean up leftover lazy match
|
|
if (previous_match_length != 0) {
|
|
emit_back_reference((current_position - 1) - previous_match_position, previous_match_length);
|
|
current_position = (current_position - 1) + previous_match_length;
|
|
}
|
|
|
|
// output remaining literals
|
|
while (current_position < block_end) {
|
|
emit_literal(m_rolling_window[current_position++]);
|
|
}
|
|
}
|
|
|
|
size_t DeflateCompressor::huffman_block_length(Array<u8, max_huffman_literals> const& literal_bit_lengths, Array<u8, max_huffman_distances> const& distance_bit_lengths)
|
|
{
|
|
size_t length = 0;
|
|
|
|
for (size_t i = 0; i < 286; i++) {
|
|
auto frequency = m_symbol_frequencies[i];
|
|
length += literal_bit_lengths[i] * frequency;
|
|
|
|
if (i >= 257) // back reference length symbols
|
|
length += packed_length_symbols[i - 257].extra_bits * frequency;
|
|
}
|
|
|
|
for (size_t i = 0; i < 30; i++) {
|
|
auto frequency = m_distance_frequencies[i];
|
|
length += distance_bit_lengths[i] * frequency;
|
|
length += packed_distances[i].extra_bits * frequency;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
size_t DeflateCompressor::uncompressed_block_length()
|
|
{
|
|
auto padding = 8 - ((m_output_stream.bit_offset() + 3) % 8);
|
|
// 3 bit block header + align to byte + 2 * 16 bit length fields + block contents
|
|
return 3 + padding + (2 * 16) + m_pending_block_size * 8;
|
|
}
|
|
|
|
size_t DeflateCompressor::fixed_block_length()
|
|
{
|
|
// block header + fixed huffman encoded block contents
|
|
return 3 + huffman_block_length(fixed_literal_bit_lengths, fixed_distance_bit_lengths);
|
|
}
|
|
|
|
size_t DeflateCompressor::dynamic_block_length(Array<u8, max_huffman_literals> const& literal_bit_lengths, Array<u8, max_huffman_distances> const& distance_bit_lengths, Array<u8, 19> const& code_lengths_bit_lengths, Array<u16, 19> const& code_lengths_frequencies, size_t code_lengths_count)
|
|
{
|
|
// block header + literal code count + distance code count + code length count
|
|
auto length = 3 + 5 + 5 + 4;
|
|
|
|
// 3 bits per code_length
|
|
length += 3 * code_lengths_count;
|
|
|
|
for (size_t i = 0; i < code_lengths_frequencies.size(); i++) {
|
|
auto frequency = code_lengths_frequencies[i];
|
|
length += code_lengths_bit_lengths[i] * frequency;
|
|
|
|
if (i == deflate_special_code_length_copy) {
|
|
length += 2 * frequency;
|
|
} else if (i == deflate_special_code_length_zeros) {
|
|
length += 3 * frequency;
|
|
} else if (i == deflate_special_code_length_long_zeros) {
|
|
length += 7 * frequency;
|
|
}
|
|
}
|
|
|
|
return length + huffman_block_length(literal_bit_lengths, distance_bit_lengths);
|
|
}
|
|
|
|
void DeflateCompressor::write_huffman(CanonicalCode const& literal_code, Optional<CanonicalCode> const& distance_code)
|
|
{
|
|
auto has_distances = distance_code.has_value();
|
|
for (size_t i = 0; i < m_pending_symbol_size; i++) {
|
|
if (m_symbol_buffer[i].distance == 0) {
|
|
literal_code.write_symbol(m_output_stream, m_symbol_buffer[i].literal);
|
|
continue;
|
|
}
|
|
VERIFY(has_distances);
|
|
auto symbol = length_to_symbol[m_symbol_buffer[i].length];
|
|
literal_code.write_symbol(m_output_stream, symbol);
|
|
// Emit extra bits if needed
|
|
m_output_stream.write_bits(m_symbol_buffer[i].length - packed_length_symbols[symbol - 257].base_length, packed_length_symbols[symbol - 257].extra_bits);
|
|
|
|
auto base_distance = distance_to_base(m_symbol_buffer[i].distance);
|
|
distance_code.value().write_symbol(m_output_stream, base_distance);
|
|
// Emit extra bits if needed
|
|
m_output_stream.write_bits(m_symbol_buffer[i].distance - packed_distances[base_distance].base_distance, packed_distances[base_distance].extra_bits);
|
|
}
|
|
}
|
|
|
|
size_t DeflateCompressor::encode_huffman_lengths(Array<u8, max_huffman_literals + max_huffman_distances> const& lengths, size_t lengths_count, Array<code_length_symbol, max_huffman_literals + max_huffman_distances>& encoded_lengths)
|
|
{
|
|
size_t encoded_count = 0;
|
|
size_t i = 0;
|
|
while (i < lengths_count) {
|
|
if (lengths[i] == 0) {
|
|
auto zero_count = 0;
|
|
for (size_t j = i; j < min(lengths_count, i + 138) && lengths[j] == 0; j++)
|
|
zero_count++;
|
|
|
|
if (zero_count < 3) { // below minimum repeated zero count
|
|
encoded_lengths[encoded_count++].symbol = 0;
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (zero_count <= 10) {
|
|
encoded_lengths[encoded_count].symbol = deflate_special_code_length_zeros;
|
|
encoded_lengths[encoded_count++].count = zero_count;
|
|
} else {
|
|
encoded_lengths[encoded_count].symbol = deflate_special_code_length_long_zeros;
|
|
encoded_lengths[encoded_count++].count = zero_count;
|
|
}
|
|
i += zero_count;
|
|
continue;
|
|
}
|
|
|
|
encoded_lengths[encoded_count++].symbol = lengths[i++];
|
|
|
|
auto copy_count = 0;
|
|
for (size_t j = i; j < min(lengths_count, i + 6) && lengths[j] == lengths[i - 1]; j++)
|
|
copy_count++;
|
|
|
|
if (copy_count >= 3) {
|
|
encoded_lengths[encoded_count].symbol = deflate_special_code_length_copy;
|
|
encoded_lengths[encoded_count++].count = copy_count;
|
|
i += copy_count;
|
|
continue;
|
|
}
|
|
}
|
|
return encoded_count;
|
|
}
|
|
|
|
size_t DeflateCompressor::encode_block_lengths(Array<u8, max_huffman_literals> const& literal_bit_lengths, Array<u8, max_huffman_distances> const& distance_bit_lengths, Array<code_length_symbol, max_huffman_literals + max_huffman_distances>& encoded_lengths, size_t& literal_code_count, size_t& distance_code_count)
|
|
{
|
|
literal_code_count = max_huffman_literals;
|
|
distance_code_count = max_huffman_distances;
|
|
|
|
VERIFY(literal_bit_lengths[256] != 0); // Make sure at least the EndOfBlock marker is present
|
|
while (literal_bit_lengths[literal_code_count - 1] == 0)
|
|
literal_code_count--;
|
|
|
|
// Drop trailing zero lengths, keeping at least one
|
|
while (distance_bit_lengths[distance_code_count - 1] == 0 && distance_code_count > 1)
|
|
distance_code_count--;
|
|
|
|
Array<u8, max_huffman_literals + max_huffman_distances> all_lengths {};
|
|
size_t lengths_count = 0;
|
|
for (size_t i = 0; i < literal_code_count; i++) {
|
|
all_lengths[lengths_count++] = literal_bit_lengths[i];
|
|
}
|
|
for (size_t i = 0; i < distance_code_count; i++) {
|
|
all_lengths[lengths_count++] = distance_bit_lengths[i];
|
|
}
|
|
|
|
return encode_huffman_lengths(all_lengths, lengths_count, encoded_lengths);
|
|
}
|
|
|
|
void DeflateCompressor::write_dynamic_huffman(CanonicalCode const& literal_code, size_t literal_code_count, Optional<CanonicalCode> const& distance_code, size_t distance_code_count, Array<u8, 19> const& code_lengths_bit_lengths, size_t code_length_count, Array<code_length_symbol, max_huffman_literals + max_huffman_distances> const& encoded_lengths, size_t encoded_lengths_count)
|
|
{
|
|
m_output_stream.write_bits(literal_code_count - 257, 5);
|
|
m_output_stream.write_bits(distance_code_count - 1, 5);
|
|
m_output_stream.write_bits(code_length_count - 4, 4);
|
|
|
|
for (size_t i = 0; i < code_length_count; i++) {
|
|
m_output_stream.write_bits(code_lengths_bit_lengths[code_lengths_code_lengths_order[i]], 3);
|
|
}
|
|
|
|
auto code_lengths_code = CanonicalCode::from_bytes(code_lengths_bit_lengths);
|
|
VERIFY(code_lengths_code.has_value());
|
|
for (size_t i = 0; i < encoded_lengths_count; i++) {
|
|
auto encoded_length = encoded_lengths[i];
|
|
code_lengths_code->write_symbol(m_output_stream, encoded_length.symbol);
|
|
if (encoded_length.symbol == deflate_special_code_length_copy) {
|
|
m_output_stream.write_bits(encoded_length.count - 3, 2);
|
|
} else if (encoded_length.symbol == deflate_special_code_length_zeros) {
|
|
m_output_stream.write_bits(encoded_length.count - 3, 3);
|
|
} else if (encoded_length.symbol == deflate_special_code_length_long_zeros) {
|
|
m_output_stream.write_bits(encoded_length.count - 11, 7);
|
|
}
|
|
}
|
|
|
|
write_huffman(literal_code, distance_code);
|
|
}
|
|
|
|
void DeflateCompressor::flush()
|
|
{
|
|
if (m_output_stream.handle_any_error()) {
|
|
set_fatal_error();
|
|
return;
|
|
}
|
|
|
|
m_output_stream.write_bit(m_finished);
|
|
|
|
// if this is just an empty block to signify the end of the deflate stream use the smallest block possible (10 bits total)
|
|
if (m_pending_block_size == 0) {
|
|
VERIFY(m_finished); // we shouldn't be writing empty blocks unless this is the final one
|
|
m_output_stream.write_bits(0b01, 2); // fixed huffman codes
|
|
m_output_stream.write_bits(0b0000000, 7); // end of block symbol
|
|
m_output_stream.align_to_byte_boundary();
|
|
return;
|
|
}
|
|
|
|
auto write_uncompressed = [&]() {
|
|
m_output_stream.write_bits(0b00, 2); // no compression
|
|
m_output_stream.align_to_byte_boundary();
|
|
LittleEndian<u16> len = m_pending_block_size;
|
|
m_output_stream << len;
|
|
LittleEndian<u16> nlen = ~m_pending_block_size;
|
|
m_output_stream << nlen;
|
|
m_output_stream.write_or_error(pending_block().slice(0, m_pending_block_size));
|
|
};
|
|
|
|
if (m_compression_level == CompressionLevel::STORE) { // disabled compression fast path
|
|
write_uncompressed();
|
|
m_pending_block_size = 0;
|
|
return;
|
|
}
|
|
|
|
// The following implementation of lz77 compression and huffman encoding is based on the reference implementation by Hans Wennborg https://www.hanshq.net/zip.html
|
|
|
|
// this reads from the pending block and writes to m_symbol_buffer
|
|
lz77_compress_block();
|
|
|
|
// insert EndOfBlock marker to the symbol buffer
|
|
m_symbol_buffer[m_pending_symbol_size].distance = 0;
|
|
m_symbol_buffer[m_pending_symbol_size++].literal = 256;
|
|
m_symbol_frequencies[256]++;
|
|
|
|
// generate optimal dynamic huffman code lengths
|
|
Array<u8, max_huffman_literals> dynamic_literal_bit_lengths {};
|
|
Array<u8, max_huffman_distances> dynamic_distance_bit_lengths {};
|
|
generate_huffman_lengths(dynamic_literal_bit_lengths, m_symbol_frequencies, 15); // deflate data huffman can use up to 15 bits per symbol
|
|
generate_huffman_lengths(dynamic_distance_bit_lengths, m_distance_frequencies, 15);
|
|
|
|
// encode literal and distance lengths together in deflate format
|
|
Array<code_length_symbol, max_huffman_literals + max_huffman_distances> encoded_lengths {};
|
|
size_t literal_code_count;
|
|
size_t distance_code_count;
|
|
auto encoded_lengths_count = encode_block_lengths(dynamic_literal_bit_lengths, dynamic_distance_bit_lengths, encoded_lengths, literal_code_count, distance_code_count);
|
|
|
|
// count code length frequencies
|
|
Array<u16, 19> code_lengths_frequencies { 0 };
|
|
for (size_t i = 0; i < encoded_lengths_count; i++) {
|
|
code_lengths_frequencies[encoded_lengths[i].symbol]++;
|
|
}
|
|
// generate optimal huffman code lengths code lengths
|
|
Array<u8, 19> code_lengths_bit_lengths {};
|
|
generate_huffman_lengths(code_lengths_bit_lengths, code_lengths_frequencies, 7); // deflate code length huffman can use up to 7 bits per symbol
|
|
// calculate actual code length code lengths count (without trailing zeros)
|
|
auto code_lengths_count = code_lengths_bit_lengths.size();
|
|
while (code_lengths_bit_lengths[code_lengths_code_lengths_order[code_lengths_count - 1]] == 0)
|
|
code_lengths_count--;
|
|
|
|
auto uncompressed_size = uncompressed_block_length();
|
|
auto fixed_huffman_size = fixed_block_length();
|
|
auto dynamic_huffman_size = dynamic_block_length(dynamic_literal_bit_lengths, dynamic_distance_bit_lengths, code_lengths_bit_lengths, code_lengths_frequencies, code_lengths_count);
|
|
|
|
// If the compression somehow didn't reduce the size enough, just write out the block uncompressed as it allows for much faster decompression
|
|
if (uncompressed_size <= min(fixed_huffman_size, dynamic_huffman_size)) {
|
|
write_uncompressed();
|
|
} else if (fixed_huffman_size <= dynamic_huffman_size) { // If the fixed and dynamic huffman codes come out the same size, prefer the fixed version, as it takes less time to decode
|
|
m_output_stream.write_bits(0b01, 2); // fixed huffman codes
|
|
write_huffman(CanonicalCode::fixed_literal_codes(), CanonicalCode::fixed_distance_codes());
|
|
} else {
|
|
m_output_stream.write_bits(0b10, 2); // dynamic huffman codes
|
|
auto literal_code = CanonicalCode::from_bytes(dynamic_literal_bit_lengths);
|
|
VERIFY(literal_code.has_value());
|
|
auto distance_code = CanonicalCode::from_bytes(dynamic_distance_bit_lengths);
|
|
write_dynamic_huffman(literal_code.value(), literal_code_count, distance_code, distance_code_count, code_lengths_bit_lengths, code_lengths_count, encoded_lengths, encoded_lengths_count);
|
|
}
|
|
if (m_finished)
|
|
m_output_stream.align_to_byte_boundary();
|
|
|
|
// reset all block specific members
|
|
m_pending_block_size = 0;
|
|
m_pending_symbol_size = 0;
|
|
m_symbol_frequencies.fill(0);
|
|
m_distance_frequencies.fill(0);
|
|
// On the final block this copy will potentially produce an invalid search window, but since its the final block we dont care
|
|
pending_block().copy_trimmed_to({ m_rolling_window, block_size });
|
|
}
|
|
|
|
void DeflateCompressor::final_flush()
|
|
{
|
|
VERIFY(!m_finished);
|
|
m_finished = true;
|
|
flush();
|
|
}
|
|
|
|
Optional<ByteBuffer> DeflateCompressor::compress_all(ReadonlyBytes bytes, CompressionLevel compression_level)
|
|
{
|
|
DuplexMemoryStream output_stream;
|
|
DeflateCompressor deflate_stream { output_stream, compression_level };
|
|
|
|
deflate_stream.write_or_error(bytes);
|
|
|
|
deflate_stream.final_flush();
|
|
|
|
if (deflate_stream.handle_any_error())
|
|
return {};
|
|
|
|
return output_stream.copy_into_contiguous_buffer();
|
|
}
|
|
|
|
}
|