mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-06 11:09:05 +03:00
4840 lines
193 KiB
C++
4840 lines
193 KiB
C++
/*
|
||
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
|
||
* Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
|
||
* Copyright (c) 2021-2022, David Tuin <davidot@serenityos.org>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include <AK/Demangle.h>
|
||
#include <AK/HashMap.h>
|
||
#include <AK/HashTable.h>
|
||
#include <AK/QuickSort.h>
|
||
#include <AK/ScopeGuard.h>
|
||
#include <AK/StringBuilder.h>
|
||
#include <AK/TemporaryChange.h>
|
||
#include <LibCrypto/BigInt/SignedBigInteger.h>
|
||
#include <LibJS/AST.h>
|
||
#include <LibJS/Heap/MarkedVector.h>
|
||
#include <LibJS/Interpreter.h>
|
||
#include <LibJS/Runtime/AbstractOperations.h>
|
||
#include <LibJS/Runtime/Accessor.h>
|
||
#include <LibJS/Runtime/Array.h>
|
||
#include <LibJS/Runtime/BigInt.h>
|
||
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
|
||
#include <LibJS/Runtime/Error.h>
|
||
#include <LibJS/Runtime/FunctionEnvironment.h>
|
||
#include <LibJS/Runtime/GlobalObject.h>
|
||
#include <LibJS/Runtime/IteratorOperations.h>
|
||
#include <LibJS/Runtime/NativeFunction.h>
|
||
#include <LibJS/Runtime/ObjectEnvironment.h>
|
||
#include <LibJS/Runtime/PrimitiveString.h>
|
||
#include <LibJS/Runtime/PromiseCapability.h>
|
||
#include <LibJS/Runtime/PromiseConstructor.h>
|
||
#include <LibJS/Runtime/Reference.h>
|
||
#include <LibJS/Runtime/RegExpObject.h>
|
||
#include <LibJS/Runtime/Shape.h>
|
||
#include <typeinfo>
|
||
|
||
namespace JS {
|
||
|
||
class InterpreterNodeScope {
|
||
AK_MAKE_NONCOPYABLE(InterpreterNodeScope);
|
||
AK_MAKE_NONMOVABLE(InterpreterNodeScope);
|
||
|
||
public:
|
||
InterpreterNodeScope(Interpreter& interpreter, ASTNode const& node)
|
||
: m_interpreter(interpreter)
|
||
, m_chain_node { nullptr, node }
|
||
{
|
||
m_interpreter.vm().running_execution_context().current_node = &node;
|
||
m_interpreter.push_ast_node(m_chain_node);
|
||
}
|
||
|
||
~InterpreterNodeScope()
|
||
{
|
||
m_interpreter.pop_ast_node();
|
||
}
|
||
|
||
private:
|
||
Interpreter& m_interpreter;
|
||
ExecutingASTNodeChain m_chain_node;
|
||
};
|
||
|
||
ASTNode::ASTNode(SourceRange source_range)
|
||
: m_start_offset(source_range.start.offset)
|
||
, m_source_code(source_range.code)
|
||
, m_end_offset(source_range.end.offset)
|
||
{
|
||
}
|
||
|
||
SourceRange ASTNode::source_range() const
|
||
{
|
||
return m_source_code->range_from_offsets(m_start_offset, m_end_offset);
|
||
}
|
||
|
||
DeprecatedString ASTNode::class_name() const
|
||
{
|
||
// NOTE: We strip the "JS::" prefix.
|
||
auto const* typename_ptr = typeid(*this).name();
|
||
return demangle({ typename_ptr, strlen(typename_ptr) }).substring(4);
|
||
}
|
||
|
||
static void print_indent(int indent)
|
||
{
|
||
out("{}", DeprecatedString::repeated(' ', indent * 2));
|
||
}
|
||
|
||
static void update_function_name(Value value, FlyString const& name)
|
||
{
|
||
if (!value.is_function())
|
||
return;
|
||
auto& function = value.as_function();
|
||
if (is<ECMAScriptFunctionObject>(function) && function.name().is_empty())
|
||
static_cast<ECMAScriptFunctionObject&>(function).set_name(name);
|
||
}
|
||
|
||
static ThrowCompletionOr<DeprecatedString> get_function_property_name(PropertyKey key)
|
||
{
|
||
if (key.is_symbol())
|
||
return DeprecatedString::formatted("[{}]", key.as_symbol()->description());
|
||
return key.to_string();
|
||
}
|
||
|
||
// 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
|
||
// StatementList : StatementList StatementListItem
|
||
Completion ScopeNode::evaluate_statements(Interpreter& interpreter) const
|
||
{
|
||
auto completion = normal_completion({});
|
||
for (auto const& node : children()) {
|
||
completion = node.execute(interpreter).update_empty(completion.value());
|
||
if (completion.is_abrupt())
|
||
break;
|
||
}
|
||
return completion;
|
||
}
|
||
|
||
// 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
|
||
// BreakableStatement : IterationStatement
|
||
static Completion labelled_evaluation(Interpreter& interpreter, IterationStatement const& statement, Vector<FlyString> const& label_set)
|
||
{
|
||
// 1. Let stmtResult be Completion(LoopEvaluation of IterationStatement with argument labelSet).
|
||
auto result = statement.loop_evaluation(interpreter, label_set);
|
||
|
||
// 2. If stmtResult.[[Type]] is break, then
|
||
if (result.type() == Completion::Type::Break) {
|
||
// a. If stmtResult.[[Target]] is empty, then
|
||
if (!result.target().has_value()) {
|
||
// i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
|
||
// ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
|
||
result = normal_completion(result.value().value_or(js_undefined()));
|
||
}
|
||
}
|
||
|
||
// 3. Return ? stmtResult.
|
||
return result;
|
||
}
|
||
|
||
// 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
|
||
// BreakableStatement : SwitchStatement
|
||
static Completion labelled_evaluation(Interpreter& interpreter, SwitchStatement const& statement, Vector<FlyString> const&)
|
||
{
|
||
// 1. Let stmtResult be the result of evaluating SwitchStatement.
|
||
auto result = statement.execute_impl(interpreter);
|
||
|
||
// 2. If stmtResult.[[Type]] is break, then
|
||
if (result.type() == Completion::Type::Break) {
|
||
// a. If stmtResult.[[Target]] is empty, then
|
||
if (!result.target().has_value()) {
|
||
// i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
|
||
// ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
|
||
result = normal_completion(result.value().value_or(js_undefined()));
|
||
}
|
||
}
|
||
|
||
// 3. Return ? stmtResult.
|
||
return result;
|
||
}
|
||
|
||
// 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
|
||
// LabelledStatement : LabelIdentifier : LabelledItem
|
||
static Completion labelled_evaluation(Interpreter& interpreter, LabelledStatement const& statement, Vector<FlyString> const& label_set)
|
||
{
|
||
auto const& labelled_item = *statement.labelled_item();
|
||
|
||
// 1. Let label be the StringValue of LabelIdentifier.
|
||
auto const& label = statement.label();
|
||
|
||
// 2. Let newLabelSet be the list-concatenation of labelSet and « label ».
|
||
// Optimization: Avoid vector copy if possible.
|
||
Optional<Vector<FlyString>> new_label_set;
|
||
if (is<IterationStatement>(labelled_item) || is<SwitchStatement>(labelled_item) || is<LabelledStatement>(labelled_item)) {
|
||
new_label_set = label_set;
|
||
new_label_set->append(label);
|
||
}
|
||
|
||
// 3. Let stmtResult be Completion(LabelledEvaluation of LabelledItem with argument newLabelSet).
|
||
Completion result;
|
||
if (is<IterationStatement>(labelled_item))
|
||
result = labelled_evaluation(interpreter, static_cast<IterationStatement const&>(labelled_item), *new_label_set);
|
||
else if (is<SwitchStatement>(labelled_item))
|
||
result = labelled_evaluation(interpreter, static_cast<SwitchStatement const&>(labelled_item), *new_label_set);
|
||
else if (is<LabelledStatement>(labelled_item))
|
||
result = labelled_evaluation(interpreter, static_cast<LabelledStatement const&>(labelled_item), *new_label_set);
|
||
else
|
||
result = labelled_item.execute(interpreter);
|
||
|
||
// 4. If stmtResult.[[Type]] is break and SameValue(stmtResult.[[Target]], label) is true, then
|
||
if (result.type() == Completion::Type::Break && result.target() == label) {
|
||
// a. Set stmtResult to NormalCompletion(stmtResult.[[Value]]).
|
||
result = normal_completion(result.value());
|
||
}
|
||
|
||
// 5. Return ? stmtResult.
|
||
return result;
|
||
}
|
||
|
||
// 14.13.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-labelled-statements-runtime-semantics-evaluation
|
||
Completion LabelledStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Return ? LabelledEvaluation of this LabelledStatement with argument « ».
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
void LabelledStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent + 1);
|
||
outln("(Label)");
|
||
print_indent(indent + 2);
|
||
outln("\"{}\"", m_label);
|
||
|
||
print_indent(indent + 1);
|
||
outln("(Labelled item)");
|
||
m_labelled_item->dump(indent + 2);
|
||
}
|
||
|
||
// 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
|
||
Completion FunctionBody::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// Note: Scoping should have already been set up by whoever is calling this FunctionBody.
|
||
// 1. Return ? EvaluateFunctionBody of FunctionBody with arguments functionObject and argumentsList.
|
||
return evaluate_statements(interpreter);
|
||
}
|
||
|
||
// 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
|
||
Completion BlockStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
auto& vm = interpreter.vm();
|
||
|
||
Environment* old_environment { nullptr };
|
||
ArmedScopeGuard restore_environment = [&] {
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
};
|
||
|
||
// Optimization: We only need a new lexical environment if there are any lexical declarations. :^)
|
||
if (has_lexical_declarations()) {
|
||
old_environment = vm.running_execution_context().lexical_environment;
|
||
auto block_environment = new_declarative_environment(*old_environment);
|
||
block_declaration_instantiation(interpreter, block_environment);
|
||
vm.running_execution_context().lexical_environment = block_environment;
|
||
} else {
|
||
restore_environment.disarm();
|
||
}
|
||
|
||
return evaluate_statements(interpreter);
|
||
}
|
||
|
||
Completion Program::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
return evaluate_statements(interpreter);
|
||
}
|
||
|
||
// 15.2.6 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
|
||
Completion FunctionDeclaration::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
if (m_is_hoisted) {
|
||
// Perform special annexB steps see step 3 of: https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
|
||
|
||
// i. Let genv be the running execution context's VariableEnvironment.
|
||
auto* variable_environment = interpreter.vm().running_execution_context().variable_environment;
|
||
|
||
// ii. Let benv be the running execution context's LexicalEnvironment.
|
||
auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
|
||
|
||
// iii. Let fobj be ! benv.GetBindingValue(F, false).
|
||
auto function_object = MUST(lexical_environment->get_binding_value(vm, name(), false));
|
||
|
||
// iv. Perform ? genv.SetMutableBinding(F, fobj, false).
|
||
TRY(variable_environment->set_mutable_binding(vm, name(), function_object, false));
|
||
|
||
// v. Return unused.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
// 1. Return unused.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
// 15.2.6 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
|
||
Completion FunctionExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Return InstantiateOrdinaryFunctionExpression of FunctionExpression.
|
||
return instantiate_ordinary_function_expression(interpreter, name());
|
||
}
|
||
|
||
// 15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression, https://tc39.es/ecma262/#sec-runtime-semantics-instantiateordinaryfunctionexpression
|
||
Value FunctionExpression::instantiate_ordinary_function_expression(Interpreter& interpreter, FlyString given_name) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
if (given_name.is_empty())
|
||
given_name = "";
|
||
auto has_own_name = !name().is_empty();
|
||
|
||
auto const& used_name = has_own_name ? name() : given_name;
|
||
auto environment = NonnullGCPtr { *interpreter.lexical_environment() };
|
||
if (has_own_name) {
|
||
VERIFY(environment);
|
||
environment = new_declarative_environment(*environment);
|
||
MUST(environment->create_immutable_binding(vm, name(), false));
|
||
}
|
||
|
||
auto* private_environment = vm.running_execution_context().private_environment;
|
||
|
||
auto closure = ECMAScriptFunctionObject::create(realm, used_name, source_text(), body(), parameters(), function_length(), environment, private_environment, kind(), is_strict_mode(), might_need_arguments_object(), contains_direct_call_to_eval(), is_arrow_function());
|
||
|
||
// FIXME: 6. Perform SetFunctionName(closure, name).
|
||
// FIXME: 7. Perform MakeConstructor(closure).
|
||
|
||
if (has_own_name)
|
||
MUST(environment->initialize_binding(vm, name(), closure));
|
||
|
||
return closure;
|
||
}
|
||
|
||
// 14.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-empty-statement-runtime-semantics-evaluation
|
||
Completion EmptyStatement::execute(Interpreter&) const
|
||
{
|
||
// 1. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
// 14.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-expression-statement-runtime-semantics-evaluation
|
||
Completion ExpressionStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let exprRef be the result of evaluating Expression.
|
||
// 2. Return ? GetValue(exprRef).
|
||
return m_expression->execute(interpreter);
|
||
}
|
||
|
||
// TODO: This shouldn't exist. Refactor into EvaluateCall.
|
||
ThrowCompletionOr<CallExpression::ThisAndCallee> CallExpression::compute_this_and_callee(Interpreter& interpreter, Reference const& callee_reference) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
if (callee_reference.is_property_reference()) {
|
||
auto this_value = callee_reference.get_this_value();
|
||
auto callee = TRY(callee_reference.get_value(vm));
|
||
|
||
return ThisAndCallee { this_value, callee };
|
||
}
|
||
|
||
Value this_value = js_undefined();
|
||
if (callee_reference.is_environment_reference()) {
|
||
if (Object* base_object = callee_reference.base_environment().with_base_object(); base_object != nullptr)
|
||
this_value = base_object;
|
||
}
|
||
|
||
// [[Call]] will handle that in non-strict mode the this value becomes the global object
|
||
return ThisAndCallee {
|
||
this_value,
|
||
callee_reference.is_unresolvable()
|
||
? TRY(m_callee->execute(interpreter)).release_value()
|
||
: TRY(callee_reference.get_value(vm))
|
||
};
|
||
}
|
||
|
||
// 13.3.8.1 Runtime Semantics: ArgumentListEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
|
||
static ThrowCompletionOr<void> argument_list_evaluation(Interpreter& interpreter, Span<CallExpression::Argument const> const arguments, MarkedVector<Value>& list)
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
list.ensure_capacity(arguments.size());
|
||
|
||
for (auto& argument : arguments) {
|
||
auto value = TRY(argument.value->execute(interpreter)).release_value();
|
||
if (argument.is_spread) {
|
||
TRY(get_iterator_values(vm, value, [&](Value iterator_value) -> Optional<Completion> {
|
||
list.append(iterator_value);
|
||
return {};
|
||
}));
|
||
} else {
|
||
list.append(value);
|
||
}
|
||
}
|
||
return {};
|
||
}
|
||
|
||
// 13.3.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-new-operator-runtime-semantics-evaluation
|
||
// 13.3.5.1.1 EvaluateNew ( constructExpr, arguments ), https://tc39.es/ecma262/#sec-evaluatenew
|
||
Completion NewExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Let ref be the result of evaluating constructExpr.
|
||
// 2. Let constructor be ? GetValue(ref).
|
||
auto constructor = TRY(m_callee->execute(interpreter)).release_value();
|
||
|
||
// 3. If arguments is empty, let argList be a new empty List.
|
||
// 4. Else,
|
||
// a. Let argList be ? ArgumentListEvaluation of arguments.
|
||
MarkedVector<Value> arg_list(vm.heap());
|
||
TRY(argument_list_evaluation(interpreter, arguments(), arg_list));
|
||
|
||
// 5. If IsConstructor(constructor) is false, throw a TypeError exception.
|
||
if (!constructor.is_constructor())
|
||
return throw_type_error_for_callee(interpreter, constructor, "constructor"sv);
|
||
|
||
// 6. Return ? Construct(constructor, argList).
|
||
return Value { TRY(construct(vm, constructor.as_function(), move(arg_list))) };
|
||
}
|
||
|
||
Optional<DeprecatedString> CallExpression::expression_string() const
|
||
{
|
||
if (is<Identifier>(*m_callee))
|
||
return static_cast<Identifier const&>(*m_callee).string();
|
||
|
||
if (is<MemberExpression>(*m_callee))
|
||
return static_cast<MemberExpression const&>(*m_callee).to_string_approximation();
|
||
|
||
return {};
|
||
}
|
||
|
||
Completion CallExpression::throw_type_error_for_callee(Interpreter& interpreter, Value callee_value, StringView call_type) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
if (auto expression_string = this->expression_string(); expression_string.has_value())
|
||
return vm.throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee_value.to_string_without_side_effects(), call_type, expression_string.release_value());
|
||
|
||
return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee_value.to_string_without_side_effects(), call_type);
|
||
}
|
||
|
||
// 13.3.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-calls-runtime-semantics-evaluation
|
||
Completion CallExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
auto callee_reference = TRY(m_callee->to_reference(interpreter));
|
||
|
||
auto [this_value, callee] = TRY(compute_this_and_callee(interpreter, callee_reference));
|
||
|
||
VERIFY(!callee.is_empty());
|
||
|
||
MarkedVector<Value> arg_list(vm.heap());
|
||
TRY(argument_list_evaluation(interpreter, arguments(), arg_list));
|
||
|
||
if (!callee.is_function())
|
||
return throw_type_error_for_callee(interpreter, callee, "function"sv);
|
||
|
||
auto& function = callee.as_function();
|
||
|
||
if (&function == realm.intrinsics().eval_function()
|
||
&& callee_reference.is_environment_reference()
|
||
&& callee_reference.name().is_string()
|
||
&& callee_reference.name().as_string() == vm.names.eval.as_string()) {
|
||
|
||
auto script_value = arg_list.size() == 0 ? js_undefined() : arg_list[0];
|
||
return perform_eval(vm, script_value, vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct);
|
||
}
|
||
|
||
return call(vm, function, this_value, move(arg_list));
|
||
}
|
||
|
||
// 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
|
||
// SuperCall : super Arguments
|
||
Completion SuperCall::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Let newTarget be GetNewTarget().
|
||
auto new_target = vm.get_new_target();
|
||
|
||
// 2. Assert: Type(newTarget) is Object.
|
||
VERIFY(new_target.is_function());
|
||
|
||
// 3. Let func be GetSuperConstructor().
|
||
auto* func = get_super_constructor(interpreter.vm());
|
||
|
||
// 4. Let argList be ? ArgumentListEvaluation of Arguments.
|
||
MarkedVector<Value> arg_list(vm.heap());
|
||
if (m_is_synthetic == IsPartOfSyntheticConstructor::Yes) {
|
||
// NOTE: This is the case where we have a fake constructor(...args) { super(...args); } which
|
||
// shouldn't call @@iterator of %Array.prototype%.
|
||
VERIFY(m_arguments.size() == 1);
|
||
VERIFY(m_arguments[0].is_spread);
|
||
auto const& argument = m_arguments[0];
|
||
auto value = MUST(argument.value->execute(interpreter)).release_value();
|
||
VERIFY(value.is_object() && is<Array>(value.as_object()));
|
||
|
||
auto& array_value = static_cast<Array const&>(value.as_object());
|
||
auto length = MUST(length_of_array_like(vm, array_value));
|
||
for (size_t i = 0; i < length; ++i)
|
||
arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
|
||
} else {
|
||
TRY(argument_list_evaluation(interpreter, m_arguments, arg_list));
|
||
}
|
||
|
||
// 5. If IsConstructor(func) is false, throw a TypeError exception.
|
||
if (!func || !Value(func).is_constructor())
|
||
return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
|
||
|
||
// 6. Let result be ? Construct(func, argList, newTarget).
|
||
auto result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
|
||
|
||
// 7. Let thisER be GetThisEnvironment().
|
||
auto& this_er = verify_cast<FunctionEnvironment>(*get_this_environment(vm));
|
||
|
||
// 8. Perform ? thisER.BindThisValue(result).
|
||
TRY(this_er.bind_this_value(vm, result));
|
||
|
||
// 9. Let F be thisER.[[FunctionObject]].
|
||
// 10. Assert: F is an ECMAScript function object.
|
||
// NOTE: This is implied by the strong C++ type.
|
||
[[maybe_unused]] auto& f = this_er.function_object();
|
||
|
||
// 11. Perform ? InitializeInstanceElements(result, F).
|
||
TRY(result->initialize_instance_elements(f));
|
||
|
||
// 12. Return result.
|
||
return Value { result };
|
||
}
|
||
|
||
// 15.5.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-generator-function-definitions-runtime-semantics-evaluation
|
||
Completion YieldExpression::execute(Interpreter&) const
|
||
{
|
||
// This should be transformed to a return.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 15.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-async-function-definitions-runtime-semantics-evaluation
|
||
Completion AwaitExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Let exprRef be the result of evaluating UnaryExpression.
|
||
// 2. Let value be ? GetValue(exprRef).
|
||
auto value = TRY(m_argument->execute(interpreter)).release_value();
|
||
|
||
// 3. Return ? Await(value).
|
||
return await(vm, value);
|
||
}
|
||
|
||
// 14.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-return-statement-runtime-semantics-evaluation
|
||
Completion ReturnStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// ReturnStatement : return ;
|
||
if (!m_argument) {
|
||
// 1. Return Completion Record { [[Type]]: return, [[Value]]: undefined, [[Target]]: empty }.
|
||
return { Completion::Type::Return, js_undefined(), {} };
|
||
}
|
||
|
||
// ReturnStatement : return Expression ;
|
||
// 1. Let exprRef be the result of evaluating Expression.
|
||
// 2. Let exprValue be ? GetValue(exprRef).
|
||
auto value = TRY(m_argument->execute(interpreter));
|
||
|
||
// NOTE: Generators are not supported in the AST interpreter
|
||
// 3. If GetGeneratorKind() is async, set exprValue to ? Await(exprValue).
|
||
|
||
// 4. Return Completion Record { [[Type]]: return, [[Value]]: exprValue, [[Target]]: empty }.
|
||
return { Completion::Type::Return, value, {} };
|
||
}
|
||
|
||
// 14.6.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-if-statement-runtime-semantics-evaluation
|
||
Completion IfStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// IfStatement : if ( Expression ) Statement else Statement
|
||
// 1. Let exprRef be the result of evaluating Expression.
|
||
// 2. Let exprValue be ToBoolean(? GetValue(exprRef)).
|
||
auto predicate_result = TRY(m_predicate->execute(interpreter)).release_value();
|
||
|
||
// 3. If exprValue is true, then
|
||
if (predicate_result.to_boolean()) {
|
||
// a. Let stmtCompletion be the result of evaluating the first Statement.
|
||
// 5. Return ? UpdateEmpty(stmtCompletion, undefined).
|
||
return m_consequent->execute(interpreter).update_empty(js_undefined());
|
||
}
|
||
|
||
// 4. Else,
|
||
if (m_alternate) {
|
||
// a. Let stmtCompletion be the result of evaluating the second Statement.
|
||
// 5. Return ? UpdateEmpty(stmtCompletion, undefined).
|
||
return m_alternate->execute(interpreter).update_empty(js_undefined());
|
||
}
|
||
|
||
// IfStatement : if ( Expression ) Statement
|
||
// 3. If exprValue is false, then
|
||
// a. Return undefined.
|
||
return js_undefined();
|
||
}
|
||
|
||
// 14.11.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation
|
||
// WithStatement : with ( Expression ) Statement
|
||
Completion WithStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Let value be the result of evaluating Expression.
|
||
auto value = TRY(m_object->execute(interpreter)).release_value();
|
||
|
||
// 2. Let obj be ? ToObject(? GetValue(value)).
|
||
auto* object = TRY(value.to_object(vm));
|
||
|
||
// 3. Let oldEnv be the running execution context's LexicalEnvironment.
|
||
auto* old_environment = vm.running_execution_context().lexical_environment;
|
||
|
||
// 4. Let newEnv be NewObjectEnvironment(obj, true, oldEnv).
|
||
auto new_environment = new_object_environment(*object, true, old_environment);
|
||
|
||
// 5. Set the running execution context's LexicalEnvironment to newEnv.
|
||
vm.running_execution_context().lexical_environment = new_environment;
|
||
|
||
// 6. Let C be the result of evaluating Statement.
|
||
auto result = m_body->execute(interpreter);
|
||
|
||
// 7. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
|
||
// 8. Return ? UpdateEmpty(C, undefined).
|
||
return result.update_empty(js_undefined());
|
||
}
|
||
|
||
// 14.7.1.1 LoopContinues ( completion, labelSet ), https://tc39.es/ecma262/#sec-loopcontinues
|
||
static bool loop_continues(Completion const& completion, Vector<FlyString> const& label_set)
|
||
{
|
||
// 1. If completion.[[Type]] is normal, return true.
|
||
if (completion.type() == Completion::Type::Normal)
|
||
return true;
|
||
|
||
// 2. If completion.[[Type]] is not continue, return false.
|
||
if (completion.type() != Completion::Type::Continue)
|
||
return false;
|
||
|
||
// 3. If completion.[[Target]] is empty, return true.
|
||
if (!completion.target().has_value())
|
||
return true;
|
||
|
||
// 4. If completion.[[Target]] is an element of labelSet, return true.
|
||
if (label_set.contains_slow(*completion.target()))
|
||
return true;
|
||
|
||
// 5. Return false.
|
||
return false;
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : IterationStatement
|
||
Completion WhileStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// 14.7.3.2 Runtime Semantics: WhileLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-whileloopevaluation
|
||
Completion WhileStatement::loop_evaluation(Interpreter& interpreter, Vector<FlyString> const& label_set) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
// 2. Repeat,
|
||
for (;;) {
|
||
// a. Let exprRef be the result of evaluating Expression.
|
||
// b. Let exprValue be ? GetValue(exprRef).
|
||
auto test_result = TRY(m_test->execute(interpreter)).release_value();
|
||
|
||
// c. If ToBoolean(exprValue) is false, return V.
|
||
if (!test_result.to_boolean())
|
||
return last_value;
|
||
|
||
// d. Let stmtResult be the result of evaluating Statement.
|
||
auto body_result = m_body->execute(interpreter);
|
||
|
||
// e. If LoopContinues(stmtResult, labelSet) is false, return ? UpdateEmpty(stmtResult, V).
|
||
if (!loop_continues(body_result, label_set))
|
||
return body_result.update_empty(last_value);
|
||
|
||
// f. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
|
||
if (body_result.value().has_value())
|
||
last_value = *body_result.value();
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : IterationStatement
|
||
Completion DoWhileStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// 14.7.2.2 Runtime Semantics: DoWhileLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-dowhileloopevaluation
|
||
Completion DoWhileStatement::loop_evaluation(Interpreter& interpreter, Vector<FlyString> const& label_set) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
// 2. Repeat,
|
||
for (;;) {
|
||
// a. Let stmtResult be the result of evaluating Statement.
|
||
auto body_result = m_body->execute(interpreter);
|
||
|
||
// b. If LoopContinues(stmtResult, labelSet) is false, return ? UpdateEmpty(stmtResult, V).
|
||
if (!loop_continues(body_result, label_set))
|
||
return body_result.update_empty(last_value);
|
||
|
||
// c. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
|
||
if (body_result.value().has_value())
|
||
last_value = *body_result.value();
|
||
|
||
// d. Let exprRef be the result of evaluating Expression.
|
||
// e. Let exprValue be ? GetValue(exprRef).
|
||
auto test_result = TRY(m_test->execute(interpreter)).release_value();
|
||
|
||
// f. If ToBoolean(exprValue) is false, return V.
|
||
if (!test_result.to_boolean())
|
||
return last_value;
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : IterationStatement
|
||
Completion ForStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// 14.7.4.2 Runtime Semantics: ForLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forloopevaluation
|
||
Completion ForStatement::loop_evaluation(Interpreter& interpreter, Vector<FlyString> const& label_set) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// Note we don't always set a new environment but to use RAII we must do this here.
|
||
auto* old_environment = interpreter.lexical_environment();
|
||
ScopeGuard restore_old_environment = [&] {
|
||
interpreter.vm().running_execution_context().lexical_environment = old_environment;
|
||
};
|
||
|
||
size_t per_iteration_bindings_size = 0;
|
||
|
||
if (m_init) {
|
||
if (is<VariableDeclaration>(*m_init) && static_cast<VariableDeclaration const&>(*m_init).declaration_kind() != DeclarationKind::Var) {
|
||
auto loop_environment = new_declarative_environment(*old_environment);
|
||
auto& declaration = static_cast<VariableDeclaration const&>(*m_init);
|
||
declaration.for_each_bound_name([&](auto const& name) {
|
||
if (declaration.declaration_kind() == DeclarationKind::Const) {
|
||
MUST(loop_environment->create_immutable_binding(vm, name, true));
|
||
} else {
|
||
MUST(loop_environment->create_mutable_binding(vm, name, false));
|
||
++per_iteration_bindings_size;
|
||
}
|
||
});
|
||
|
||
interpreter.vm().running_execution_context().lexical_environment = loop_environment;
|
||
}
|
||
|
||
(void)TRY(m_init->execute(interpreter));
|
||
}
|
||
|
||
// 14.7.4.4 CreatePerIterationEnvironment ( perIterationBindings ), https://tc39.es/ecma262/#sec-createperiterationenvironment
|
||
// NOTE: Our implementation of this AO is heavily dependent on DeclarativeEnvironment using a Vector with constant indices.
|
||
// For performance, we can take advantage of the fact that the declarations of the initialization statement are created
|
||
// in the same order each time CreatePerIterationEnvironment is invoked.
|
||
auto create_per_iteration_environment = [&]() {
|
||
// 1. If perIterationBindings has any elements, then
|
||
if (per_iteration_bindings_size == 0)
|
||
return;
|
||
|
||
// a. Let lastIterationEnv be the running execution context's LexicalEnvironment.
|
||
auto* last_iteration_env = verify_cast<DeclarativeEnvironment>(interpreter.lexical_environment());
|
||
|
||
// b. Let outer be lastIterationEnv.[[OuterEnv]].
|
||
// c. Assert: outer is not null.
|
||
VERIFY(last_iteration_env->outer_environment());
|
||
|
||
// d. Let thisIterationEnv be NewDeclarativeEnvironment(outer).
|
||
auto this_iteration_env = DeclarativeEnvironment::create_for_per_iteration_bindings({}, *last_iteration_env, per_iteration_bindings_size);
|
||
|
||
// e. For each element bn of perIterationBindings, do
|
||
// i. Perform ! thisIterationEnv.CreateMutableBinding(bn, false).
|
||
// ii. Let lastValue be ? lastIterationEnv.GetBindingValue(bn, true).
|
||
// iii. Perform ! thisIterationEnv.InitializeBinding(bn, lastValue).
|
||
//
|
||
// NOTE: This is handled by DeclarativeEnvironment::create_for_per_iteration_bindings. Step e.ii indicates it may throw,
|
||
// but that is not possible. The potential for throwing was added to accommodate support for do-expressions in the
|
||
// initialization statement, but that idea was dropped: https://github.com/tc39/ecma262/issues/299#issuecomment-172950045
|
||
|
||
// f. Set the running execution context's LexicalEnvironment to thisIterationEnv.
|
||
interpreter.vm().running_execution_context().lexical_environment = this_iteration_env;
|
||
|
||
// 2. Return unused.
|
||
};
|
||
|
||
// 14.7.4.3 ForBodyEvaluation ( test, increment, stmt, perIterationBindings, labelSet ), https://tc39.es/ecma262/#sec-forbodyevaluation
|
||
|
||
// 1. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
// 2. Perform ? CreatePerIterationEnvironment(perIterationBindings).
|
||
create_per_iteration_environment();
|
||
|
||
// 3. Repeat,
|
||
while (true) {
|
||
// a. If test is not [empty], then
|
||
if (m_test) {
|
||
// i. Let testRef be the result of evaluating test.
|
||
// ii. Let testValue be ? GetValue(testRef).
|
||
auto test_value = TRY(m_test->execute(interpreter)).release_value();
|
||
|
||
// iii. If ToBoolean(testValue) is false, return V.
|
||
if (!test_value.to_boolean())
|
||
return last_value;
|
||
}
|
||
|
||
// b. Let result be the result of evaluating stmt.
|
||
auto result = m_body->execute(interpreter);
|
||
|
||
// c. If LoopContinues(result, labelSet) is false, return ? UpdateEmpty(result, V).
|
||
if (!loop_continues(result, label_set))
|
||
return result.update_empty(last_value);
|
||
|
||
// d. If result.[[Value]] is not empty, set V to result.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
// e. Perform ? CreatePerIterationEnvironment(perIterationBindings).
|
||
create_per_iteration_environment();
|
||
|
||
// f. If increment is not [empty], then
|
||
if (m_update) {
|
||
// i. Let incRef be the result of evaluating increment.
|
||
// ii. Perform ? GetValue(incRef).
|
||
(void)TRY(m_update->execute(interpreter));
|
||
}
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
struct ForInOfHeadState {
|
||
explicit ForInOfHeadState(Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs)
|
||
{
|
||
lhs.visit(
|
||
[&](NonnullRefPtr<ASTNode>& ast_node) {
|
||
expression_lhs = ast_node.ptr();
|
||
},
|
||
[&](NonnullRefPtr<BindingPattern>& pattern) {
|
||
pattern_lhs = pattern.ptr();
|
||
destructuring = true;
|
||
lhs_kind = Assignment;
|
||
});
|
||
}
|
||
|
||
ASTNode* expression_lhs = nullptr;
|
||
BindingPattern* pattern_lhs = nullptr;
|
||
enum LhsKind {
|
||
Assignment,
|
||
VarBinding,
|
||
LexicalBinding
|
||
};
|
||
LhsKind lhs_kind = Assignment;
|
||
bool destructuring = false;
|
||
|
||
Value rhs_value;
|
||
|
||
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
|
||
// Note: This is only steps 6.g through 6.j of the method because we currently implement for-in without an iterator so to prevent duplicated code we do this part here.
|
||
ThrowCompletionOr<void> execute_head(Interpreter& interpreter, Value next_value) const
|
||
{
|
||
VERIFY(!next_value.is_empty());
|
||
|
||
auto& vm = interpreter.vm();
|
||
|
||
Optional<Reference> lhs_reference;
|
||
GCPtr<Environment> iteration_environment;
|
||
|
||
// g. If lhsKind is either assignment or varBinding, then
|
||
if (lhs_kind == Assignment || lhs_kind == VarBinding) {
|
||
if (!destructuring) {
|
||
VERIFY(expression_lhs);
|
||
if (is<VariableDeclaration>(*expression_lhs)) {
|
||
auto& declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
|
||
VERIFY(declaration.declarations().first().target().has<NonnullRefPtr<Identifier>>());
|
||
lhs_reference = TRY(declaration.declarations().first().target().get<NonnullRefPtr<Identifier>>()->to_reference(interpreter));
|
||
} else {
|
||
VERIFY(is<Identifier>(*expression_lhs) || is<MemberExpression>(*expression_lhs) || is<CallExpression>(*expression_lhs));
|
||
auto& expression = static_cast<Expression const&>(*expression_lhs);
|
||
lhs_reference = TRY(expression.to_reference(interpreter));
|
||
}
|
||
}
|
||
}
|
||
// h. Else,
|
||
else {
|
||
VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
|
||
iteration_environment = new_declarative_environment(*interpreter.lexical_environment());
|
||
|
||
auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
|
||
|
||
// 14.7.5.4 Runtime Semantics: ForDeclarationBindingInstantiation, https://tc39.es/ecma262/#sec-runtime-semantics-fordeclarationbindinginstantiation
|
||
// 1. For each element name of the BoundNames of ForBinding, do
|
||
for_declaration.for_each_bound_name([&](auto const& name) {
|
||
// a. If IsConstantDeclaration of LetOrConst is true, then
|
||
if (for_declaration.is_constant_declaration()) {
|
||
// i. Perform ! environment.CreateImmutableBinding(name, true).
|
||
MUST(iteration_environment->create_immutable_binding(vm, name, true));
|
||
}
|
||
// b. Else,
|
||
else {
|
||
// i. Perform ! environment.CreateMutableBinding(name, false).
|
||
MUST(iteration_environment->create_mutable_binding(vm, name, false));
|
||
}
|
||
});
|
||
interpreter.vm().running_execution_context().lexical_environment = iteration_environment;
|
||
|
||
if (!destructuring) {
|
||
VERIFY(for_declaration.declarations().first().target().has<NonnullRefPtr<Identifier>>());
|
||
lhs_reference = MUST(interpreter.vm().resolve_binding(for_declaration.declarations().first().target().get<NonnullRefPtr<Identifier>>()->string()));
|
||
}
|
||
}
|
||
|
||
// i. If destructuring is false, then
|
||
if (!destructuring) {
|
||
VERIFY(lhs_reference.has_value());
|
||
if (lhs_kind == LexicalBinding)
|
||
return lhs_reference->initialize_referenced_binding(vm, next_value);
|
||
else
|
||
return lhs_reference->put_value(vm, next_value);
|
||
}
|
||
|
||
// j. Else,
|
||
if (lhs_kind == Assignment) {
|
||
VERIFY(pattern_lhs);
|
||
return interpreter.vm().destructuring_assignment_evaluation(*pattern_lhs, next_value);
|
||
}
|
||
VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
|
||
auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
|
||
auto& binding_pattern = for_declaration.declarations().first().target().get<NonnullRefPtr<BindingPattern>>();
|
||
VERIFY(lhs_kind == VarBinding || iteration_environment);
|
||
|
||
// At this point iteration_environment is undefined if lhs_kind == VarBinding which means this does both
|
||
// branch j.ii and j.iii because ForBindingInitialization is just a forwarding call to BindingInitialization.
|
||
return interpreter.vm().binding_initialization(binding_pattern, next_value, iteration_environment);
|
||
}
|
||
};
|
||
|
||
// 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
|
||
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
|
||
// This method combines ForInOfLoopEvaluation and ForIn/OfHeadEvaluation for similar reason as ForIn/OfBodyEvaluation, to prevent code duplication.
|
||
// For the same reason we also skip step 6 and 7 of ForIn/OfHeadEvaluation as this is done by the appropriate for loop type.
|
||
static ThrowCompletionOr<ForInOfHeadState> for_in_of_head_execute(Interpreter& interpreter, Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs, Expression const& rhs)
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
ForInOfHeadState state(lhs);
|
||
if (auto* ast_ptr = lhs.get_pointer<NonnullRefPtr<ASTNode>>(); ast_ptr && is<VariableDeclaration>(*(*ast_ptr))) {
|
||
// Runtime Semantics: ForInOfLoopEvaluation, for any of:
|
||
// ForInOfStatement : for ( var ForBinding in Expression ) Statement
|
||
// ForInOfStatement : for ( ForDeclaration in Expression ) Statement
|
||
// ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement
|
||
// ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement
|
||
|
||
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
|
||
Environment* new_environment = nullptr;
|
||
|
||
auto& variable_declaration = static_cast<VariableDeclaration const&>(*(*ast_ptr));
|
||
VERIFY(variable_declaration.declarations().size() == 1);
|
||
state.destructuring = variable_declaration.declarations().first().target().has<NonnullRefPtr<BindingPattern>>();
|
||
if (variable_declaration.declaration_kind() == DeclarationKind::Var) {
|
||
state.lhs_kind = ForInOfHeadState::VarBinding;
|
||
auto& variable = variable_declaration.declarations().first();
|
||
// B.3.5 Initializers in ForIn Statement Heads, https://tc39.es/ecma262/#sec-initializers-in-forin-statement-heads
|
||
if (variable.init()) {
|
||
VERIFY(variable.target().has<NonnullRefPtr<Identifier>>());
|
||
auto& binding_id = variable.target().get<NonnullRefPtr<Identifier>>()->string();
|
||
auto reference = TRY(interpreter.vm().resolve_binding(binding_id));
|
||
auto result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(*variable.init(), binding_id));
|
||
TRY(reference.put_value(vm, result));
|
||
}
|
||
} else {
|
||
state.lhs_kind = ForInOfHeadState::LexicalBinding;
|
||
new_environment = new_declarative_environment(*interpreter.lexical_environment());
|
||
variable_declaration.for_each_bound_name([&](auto const& name) {
|
||
MUST(new_environment->create_mutable_binding(vm, name, false));
|
||
});
|
||
}
|
||
|
||
if (new_environment) {
|
||
// 2.d Set the running execution context's LexicalEnvironment to newEnv.
|
||
TemporaryChange<Environment*> scope_change(interpreter.vm().running_execution_context().lexical_environment, new_environment);
|
||
|
||
// 3. Let exprRef be the result of evaluating expr.
|
||
// 5. Let exprValue be ? GetValue(exprRef).
|
||
state.rhs_value = TRY(rhs.execute(interpreter)).release_value();
|
||
|
||
// Note that since a reference stores its environment it doesn't matter we only reset
|
||
// this after step 5. (Also we have no way of separating these steps at this point)
|
||
// 4. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
} else {
|
||
// 3. Let exprRef be the result of evaluating expr.
|
||
// 5. Let exprValue be ? GetValue(exprRef).
|
||
state.rhs_value = TRY(rhs.execute(interpreter)).release_value();
|
||
}
|
||
|
||
return state;
|
||
}
|
||
|
||
// Runtime Semantics: ForInOfLoopEvaluation, for any of:
|
||
// ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement
|
||
// ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement
|
||
|
||
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
|
||
|
||
// We can skip step 1, 2 and 4 here (on top of already skipping step 6 and 7).
|
||
// 3. Let exprRef be the result of evaluating expr.
|
||
// 5. Let exprValue be ? GetValue(exprRef).
|
||
state.rhs_value = TRY(rhs.execute(interpreter)).release_value();
|
||
return state;
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : IterationStatement
|
||
Completion ForInStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
|
||
Completion ForInStatement::loop_evaluation(Interpreter& interpreter, Vector<FlyString> const& label_set) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
auto for_in_head_state = TRY(for_in_of_head_execute(interpreter, m_lhs, *m_rhs));
|
||
|
||
auto rhs_result = for_in_head_state.rhs_value;
|
||
|
||
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
|
||
|
||
// a. If exprValue is undefined or null, then
|
||
if (rhs_result.is_nullish()) {
|
||
// i. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
|
||
return { Completion::Type::Break, {}, {} };
|
||
}
|
||
|
||
// b. Let obj be ! ToObject(exprValue).
|
||
auto* object = MUST(rhs_result.to_object(vm));
|
||
|
||
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
|
||
|
||
// 2. Let oldEnv be the running execution context's LexicalEnvironment.
|
||
Environment* old_environment = interpreter.lexical_environment();
|
||
auto restore_scope = ScopeGuard([&] {
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
});
|
||
|
||
// 3. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
auto result = object->enumerate_object_properties([&](auto value) -> Optional<Completion> {
|
||
TRY(for_in_head_state.execute_head(interpreter, value));
|
||
|
||
// l. Let result be the result of evaluating stmt.
|
||
auto result = m_body->execute(interpreter);
|
||
|
||
// m. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
|
||
// n. If LoopContinues(result, labelSet) is false, then
|
||
if (!loop_continues(result, label_set)) {
|
||
// 1. Return UpdateEmpty(result, V).
|
||
return result.update_empty(last_value);
|
||
}
|
||
|
||
// o. If result.[[Value]] is not empty, set V to result.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
return {};
|
||
});
|
||
|
||
return result.value_or(last_value);
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : IterationStatement
|
||
Completion ForOfStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
|
||
Completion ForOfStatement::loop_evaluation(Interpreter& interpreter, Vector<FlyString> const& label_set) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
auto for_of_head_state = TRY(for_in_of_head_execute(interpreter, m_lhs, m_rhs));
|
||
|
||
auto rhs_result = for_of_head_state.rhs_value;
|
||
|
||
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
|
||
// We use get_iterator_values which behaves like ForIn/OfBodyEvaluation with iteratorKind iterate.
|
||
|
||
// 2. Let oldEnv be the running execution context's LexicalEnvironment.
|
||
Environment* old_environment = interpreter.lexical_environment();
|
||
auto restore_scope = ScopeGuard([&] {
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
});
|
||
|
||
// 3. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
Optional<Completion> status;
|
||
|
||
(void)TRY(get_iterator_values(vm, rhs_result, [&](Value value) -> Optional<Completion> {
|
||
TRY(for_of_head_state.execute_head(interpreter, value));
|
||
|
||
// l. Let result be the result of evaluating stmt.
|
||
auto result = m_body->execute(interpreter);
|
||
|
||
// m. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
|
||
// n. If LoopContinues(result, labelSet) is false, then
|
||
if (!loop_continues(result, label_set)) {
|
||
// 2. Set status to UpdateEmpty(result, V).
|
||
status = result.update_empty(last_value);
|
||
|
||
// 4. Return ? IteratorClose(iteratorRecord, status).
|
||
// NOTE: This is done by returning a completion from the callback.
|
||
return status;
|
||
}
|
||
|
||
// o. If result.[[Value]] is not empty, set V to result.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
return {};
|
||
}));
|
||
|
||
// Return `status` set during step n.2. in the callback, or...
|
||
// e. If done is true, return V.
|
||
return status.value_or(last_value);
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : IterationStatement
|
||
Completion ForAwaitOfStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
|
||
Completion ForAwaitOfStatement::loop_evaluation(Interpreter& interpreter, Vector<FlyString> const& label_set) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
|
||
// Note: Performs only steps 1 through 5.
|
||
auto for_of_head_state = TRY(for_in_of_head_execute(interpreter, m_lhs, m_rhs));
|
||
|
||
auto rhs_result = for_of_head_state.rhs_value;
|
||
|
||
// NOTE: Perform step 7 from ForIn/OfHeadEvaluation. And since this is always async we only have to do step 7.d.
|
||
// d. Return ? GetIterator(exprValue, iteratorHint).
|
||
auto iterator = TRY(get_iterator(vm, rhs_result, IteratorHint::Async));
|
||
|
||
// 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
|
||
// NOTE: Here iteratorKind is always async.
|
||
// 2. Let oldEnv be the running execution context's LexicalEnvironment.
|
||
Environment* old_environment = interpreter.lexical_environment();
|
||
auto restore_scope = ScopeGuard([&] {
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
});
|
||
// 3. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
// NOTE: Step 4 and 5 are just extracting properties from the head which is done already in for_in_of_head_execute.
|
||
// And these are only used in step 6.g through 6.k which is done with for_of_head_state.execute_head.
|
||
|
||
// 6. Repeat,
|
||
while (true) {
|
||
// a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).
|
||
auto next_result = TRY(call(vm, iterator.next_method, iterator.iterator));
|
||
|
||
// b. If iteratorKind is async, set nextResult to ? Await(nextResult).
|
||
next_result = TRY(await(vm, next_result));
|
||
|
||
// c. If Type(nextResult) is not Object, throw a TypeError exception.
|
||
if (!next_result.is_object())
|
||
return vm.throw_completion<TypeError>(ErrorType::IterableNextBadReturn);
|
||
|
||
// d. Let done be ? IteratorComplete(nextResult).
|
||
auto done = TRY(iterator_complete(vm, next_result.as_object()));
|
||
|
||
// e. If done is true, return V.
|
||
if (done)
|
||
return last_value;
|
||
|
||
// f. Let nextValue be ? IteratorValue(nextResult).
|
||
auto next_value = TRY(iterator_value(vm, next_result.as_object()));
|
||
|
||
// NOTE: This performs steps g. through to k.
|
||
TRY(for_of_head_state.execute_head(interpreter, next_value));
|
||
|
||
// l. Let result be the result of evaluating stmt.
|
||
auto result = m_body->execute(interpreter);
|
||
|
||
// m. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
interpreter.vm().running_execution_context().lexical_environment = old_environment;
|
||
|
||
// n. If LoopContinues(result, labelSet) is false, then
|
||
if (!loop_continues(result, label_set)) {
|
||
// 2. Set status to UpdateEmpty(result, V).
|
||
auto status = result.update_empty(last_value);
|
||
|
||
// 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
|
||
return async_iterator_close(vm, iterator, move(status));
|
||
}
|
||
|
||
// o. If result.[[Value]] is not empty, set V to result.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 13.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-exp-operator-runtime-semantics-evaluation
|
||
// 13.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-multiplicative-operators-runtime-semantics-evaluation
|
||
// 13.8.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-addition-operator-plus-runtime-semantics-evaluation
|
||
// 13.8.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-subtraction-operator-minus-runtime-semantics-evaluation
|
||
// 13.9.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-left-shift-operator-runtime-semantics-evaluation
|
||
// 13.9.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-signed-right-shift-operator-runtime-semantics-evaluation
|
||
// 13.9.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unsigned-right-shift-operator-runtime-semantics-evaluation
|
||
// 13.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
|
||
// 13.11.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-equality-operators-runtime-semantics-evaluation
|
||
Completion BinaryExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// Special case in which we cannot execute the lhs. RelationalExpression : PrivateIdentifier in ShiftExpression
|
||
// RelationalExpression : PrivateIdentifier in ShiftExpression, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
|
||
if (m_op == BinaryOp::In && is<PrivateIdentifier>(*m_lhs)) {
|
||
auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_lhs).string();
|
||
|
||
auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
|
||
if (!rhs_result.is_object())
|
||
return interpreter.vm().throw_completion<TypeError>(ErrorType::InOperatorWithObject);
|
||
auto* private_environment = interpreter.vm().running_execution_context().private_environment;
|
||
VERIFY(private_environment);
|
||
auto private_name = private_environment->resolve_private_identifier(private_identifier);
|
||
return Value(rhs_result.as_object().private_element_find(private_name) != nullptr);
|
||
}
|
||
|
||
auto lhs_result = TRY(m_lhs->execute(interpreter)).release_value();
|
||
auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
|
||
|
||
switch (m_op) {
|
||
case BinaryOp::Addition:
|
||
return TRY(add(vm, lhs_result, rhs_result));
|
||
case BinaryOp::Subtraction:
|
||
return TRY(sub(vm, lhs_result, rhs_result));
|
||
case BinaryOp::Multiplication:
|
||
return TRY(mul(vm, lhs_result, rhs_result));
|
||
case BinaryOp::Division:
|
||
return TRY(div(vm, lhs_result, rhs_result));
|
||
case BinaryOp::Modulo:
|
||
return TRY(mod(vm, lhs_result, rhs_result));
|
||
case BinaryOp::Exponentiation:
|
||
return TRY(exp(vm, lhs_result, rhs_result));
|
||
case BinaryOp::StrictlyEquals:
|
||
return Value(is_strictly_equal(lhs_result, rhs_result));
|
||
case BinaryOp::StrictlyInequals:
|
||
return Value(!is_strictly_equal(lhs_result, rhs_result));
|
||
case BinaryOp::LooselyEquals:
|
||
return Value(TRY(is_loosely_equal(vm, lhs_result, rhs_result)));
|
||
case BinaryOp::LooselyInequals:
|
||
return Value(!TRY(is_loosely_equal(vm, lhs_result, rhs_result)));
|
||
case BinaryOp::GreaterThan:
|
||
return TRY(greater_than(vm, lhs_result, rhs_result));
|
||
case BinaryOp::GreaterThanEquals:
|
||
return TRY(greater_than_equals(vm, lhs_result, rhs_result));
|
||
case BinaryOp::LessThan:
|
||
return TRY(less_than(vm, lhs_result, rhs_result));
|
||
case BinaryOp::LessThanEquals:
|
||
return TRY(less_than_equals(vm, lhs_result, rhs_result));
|
||
case BinaryOp::BitwiseAnd:
|
||
return TRY(bitwise_and(vm, lhs_result, rhs_result));
|
||
case BinaryOp::BitwiseOr:
|
||
return TRY(bitwise_or(vm, lhs_result, rhs_result));
|
||
case BinaryOp::BitwiseXor:
|
||
return TRY(bitwise_xor(vm, lhs_result, rhs_result));
|
||
case BinaryOp::LeftShift:
|
||
return TRY(left_shift(vm, lhs_result, rhs_result));
|
||
case BinaryOp::RightShift:
|
||
return TRY(right_shift(vm, lhs_result, rhs_result));
|
||
case BinaryOp::UnsignedRightShift:
|
||
return TRY(unsigned_right_shift(vm, lhs_result, rhs_result));
|
||
case BinaryOp::In:
|
||
return TRY(in(vm, lhs_result, rhs_result));
|
||
case BinaryOp::InstanceOf:
|
||
return TRY(instance_of(vm, lhs_result, rhs_result));
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 13.13.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-binary-logical-operators-runtime-semantics-evaluation
|
||
Completion LogicalExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let lref be the result of evaluating <Expression>.
|
||
// 2. Let lval be ? GetValue(lref).
|
||
auto lhs_result = TRY(m_lhs->execute(interpreter)).release_value();
|
||
|
||
switch (m_op) {
|
||
// LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
|
||
case LogicalOp::And:
|
||
// 3. Let lbool be ToBoolean(lval).
|
||
// 4. If lbool is false, return lval.
|
||
if (!lhs_result.to_boolean())
|
||
return lhs_result;
|
||
|
||
// 5. Let rref be the result of evaluating BitwiseORExpression.
|
||
// 6. Return ? GetValue(rref).
|
||
return m_rhs->execute(interpreter);
|
||
|
||
// LogicalORExpression : LogicalORExpression || LogicalANDExpression
|
||
case LogicalOp::Or:
|
||
// 3. Let lbool be ToBoolean(lval).
|
||
// 4. If lbool is true, return lval.
|
||
if (lhs_result.to_boolean())
|
||
return lhs_result;
|
||
|
||
// 5. Let rref be the result of evaluating LogicalANDExpression.
|
||
// 6. Return ? GetValue(rref).
|
||
return m_rhs->execute(interpreter);
|
||
|
||
// CoalesceExpression : CoalesceExpressionHead ?? BitwiseORExpression
|
||
case LogicalOp::NullishCoalescing:
|
||
// 3. If lval is undefined or null, then
|
||
if (lhs_result.is_nullish()) {
|
||
// a. Let rref be the result of evaluating BitwiseORExpression.
|
||
// b. Return ? GetValue(rref).
|
||
return m_rhs->execute(interpreter);
|
||
}
|
||
|
||
// 4. Otherwise, return lval.
|
||
return lhs_result;
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
ThrowCompletionOr<Reference> Expression::to_reference(Interpreter&) const
|
||
{
|
||
return Reference {};
|
||
}
|
||
|
||
ThrowCompletionOr<Reference> Identifier::to_reference(Interpreter& interpreter) const
|
||
{
|
||
if (m_cached_environment_coordinate.is_valid()) {
|
||
Environment* environment = nullptr;
|
||
if (m_cached_environment_coordinate.index == EnvironmentCoordinate::global_marker) {
|
||
environment = &interpreter.vm().current_realm()->global_environment();
|
||
} else {
|
||
environment = interpreter.vm().running_execution_context().lexical_environment;
|
||
for (size_t i = 0; i < m_cached_environment_coordinate.hops; ++i)
|
||
environment = environment->outer_environment();
|
||
VERIFY(environment);
|
||
VERIFY(environment->is_declarative_environment());
|
||
}
|
||
if (!environment->is_permanently_screwed_by_eval()) {
|
||
return Reference { *environment, string(), interpreter.vm().in_strict_mode(), m_cached_environment_coordinate };
|
||
}
|
||
m_cached_environment_coordinate = {};
|
||
}
|
||
|
||
auto reference = TRY(interpreter.vm().resolve_binding(string()));
|
||
if (reference.environment_coordinate().has_value())
|
||
m_cached_environment_coordinate = reference.environment_coordinate().value();
|
||
return reference;
|
||
}
|
||
|
||
ThrowCompletionOr<Reference> MemberExpression::to_reference(Interpreter& interpreter) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 13.3.7.1 Runtime Semantics: Evaluation
|
||
// SuperProperty : super [ Expression ]
|
||
// SuperProperty : super . IdentifierName
|
||
// https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
|
||
if (is<SuperExpression>(object())) {
|
||
// 1. Let env be GetThisEnvironment().
|
||
auto environment = get_this_environment(vm);
|
||
|
||
// 2. Let actualThis be ? env.GetThisBinding().
|
||
auto actual_this = TRY(environment->get_this_binding(vm));
|
||
|
||
PropertyKey property_key;
|
||
|
||
if (is_computed()) {
|
||
// SuperProperty : super [ Expression ]
|
||
|
||
// 3. Let propertyNameReference be the result of evaluating Expression.
|
||
// 4. Let propertyNameValue be ? GetValue(propertyNameReference).
|
||
auto property_name_value = TRY(m_property->execute(interpreter)).release_value();
|
||
|
||
// 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
|
||
property_key = TRY(property_name_value.to_property_key(vm));
|
||
} else {
|
||
// SuperProperty : super . IdentifierName
|
||
|
||
// 3. Let propertyKey be StringValue of IdentifierName.
|
||
VERIFY(is<Identifier>(property()));
|
||
property_key = static_cast<Identifier const&>(property()).string();
|
||
}
|
||
|
||
// 6. If the source text matched by this SuperProperty is strict mode code, let strict be true; else let strict be false.
|
||
bool strict = interpreter.vm().in_strict_mode();
|
||
|
||
// 7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
|
||
return TRY(make_super_property_reference(vm, actual_this, property_key, strict));
|
||
}
|
||
|
||
auto base_reference = TRY(m_object->to_reference(interpreter));
|
||
|
||
Value base_value;
|
||
|
||
if (base_reference.is_valid_reference())
|
||
base_value = TRY(base_reference.get_value(vm));
|
||
else
|
||
base_value = TRY(m_object->execute(interpreter)).release_value();
|
||
|
||
VERIFY(!base_value.is_empty());
|
||
|
||
// From here on equivalent to
|
||
// 13.3.4 EvaluatePropertyAccessWithIdentifierKey ( baseValue, identifierName, strict ), https://tc39.es/ecma262/#sec-evaluate-property-access-with-identifier-key
|
||
PropertyKey property_key;
|
||
if (is_computed()) {
|
||
// Weird order which I can't quite find from the specs.
|
||
auto value = TRY(m_property->execute(interpreter)).release_value();
|
||
VERIFY(!value.is_empty());
|
||
|
||
TRY(require_object_coercible(vm, base_value));
|
||
|
||
property_key = TRY(value.to_property_key(vm));
|
||
} else if (is<PrivateIdentifier>(*m_property)) {
|
||
auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_property);
|
||
return make_private_reference(interpreter.vm(), base_value, private_identifier.string());
|
||
} else {
|
||
property_key = verify_cast<Identifier>(*m_property).string();
|
||
TRY(require_object_coercible(vm, base_value));
|
||
}
|
||
if (!property_key.is_valid())
|
||
return Reference {};
|
||
|
||
auto strict = interpreter.vm().in_strict_mode();
|
||
return Reference { base_value, move(property_key), {}, strict };
|
||
}
|
||
|
||
// 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
|
||
// 13.5.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-void-operator-runtime-semantics-evaluation
|
||
// 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
|
||
// 13.5.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unary-plus-operator-runtime-semantics-evaluation
|
||
// 13.5.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unary-minus-operator-runtime-semantics-evaluation
|
||
// 13.5.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-bitwise-not-operator-runtime-semantics-evaluation
|
||
// 13.5.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-logical-not-operator-runtime-semantics-evaluation
|
||
Completion UnaryExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
if (m_op == UnaryOp::Delete) {
|
||
auto reference = TRY(m_lhs->to_reference(interpreter));
|
||
return Value(TRY(reference.delete_(vm)));
|
||
}
|
||
|
||
Value lhs_result;
|
||
if (m_op == UnaryOp::Typeof && is<Identifier>(*m_lhs)) {
|
||
auto reference = TRY(m_lhs->to_reference(interpreter));
|
||
|
||
if (reference.is_unresolvable())
|
||
lhs_result = js_undefined();
|
||
else
|
||
lhs_result = TRY(reference.get_value(vm));
|
||
VERIFY(!lhs_result.is_empty());
|
||
} else {
|
||
// 1. Let expr be the result of evaluating UnaryExpression.
|
||
lhs_result = TRY(m_lhs->execute(interpreter)).release_value();
|
||
}
|
||
|
||
switch (m_op) {
|
||
case UnaryOp::BitwiseNot:
|
||
return TRY(bitwise_not(vm, lhs_result));
|
||
case UnaryOp::Not:
|
||
return Value(!lhs_result.to_boolean());
|
||
case UnaryOp::Plus:
|
||
return TRY(unary_plus(vm, lhs_result));
|
||
case UnaryOp::Minus:
|
||
return TRY(unary_minus(vm, lhs_result));
|
||
case UnaryOp::Typeof:
|
||
return Value { PrimitiveString::create(vm, lhs_result.typeof()) };
|
||
case UnaryOp::Void:
|
||
return js_undefined();
|
||
case UnaryOp::Delete:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
Completion SuperExpression::execute(Interpreter&) const
|
||
{
|
||
// The semantics for SuperExpression are handled in CallExpression and SuperCall.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
Completion ClassElement::execute(Interpreter&) const
|
||
{
|
||
// Note: The semantics of class element are handled in class_element_evaluation
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
static ThrowCompletionOr<ClassElementName> class_key_to_property_name(Interpreter& interpreter, Expression const& key)
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
if (is<PrivateIdentifier>(key)) {
|
||
auto& private_identifier = static_cast<PrivateIdentifier const&>(key);
|
||
auto* private_environment = interpreter.vm().running_execution_context().private_environment;
|
||
VERIFY(private_environment);
|
||
return ClassElementName { private_environment->resolve_private_identifier(private_identifier.string()) };
|
||
}
|
||
|
||
auto prop_key = TRY(key.execute(interpreter)).release_value();
|
||
|
||
if (prop_key.is_object())
|
||
prop_key = TRY(prop_key.to_primitive(vm, Value::PreferredType::String));
|
||
|
||
auto property_key = TRY(PropertyKey::from_value(vm, prop_key));
|
||
return ClassElementName { property_key };
|
||
}
|
||
|
||
// 15.4.5 Runtime Semantics: MethodDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-methoddefinitionevaluation
|
||
ThrowCompletionOr<ClassElement::ClassValue> ClassMethod::class_element_evaluation(Interpreter& interpreter, Object& target) const
|
||
{
|
||
auto property_key_or_private_name = TRY(class_key_to_property_name(interpreter, *m_key));
|
||
|
||
auto method_value = TRY(m_function->execute(interpreter)).release_value();
|
||
|
||
auto function_handle = make_handle(&method_value.as_function());
|
||
|
||
auto& method_function = static_cast<ECMAScriptFunctionObject&>(method_value.as_function());
|
||
method_function.make_method(target);
|
||
|
||
auto set_function_name = [&](DeprecatedString prefix = "") {
|
||
auto name = property_key_or_private_name.visit(
|
||
[&](PropertyKey const& property_key) -> DeprecatedString {
|
||
if (property_key.is_symbol()) {
|
||
auto description = property_key.as_symbol()->description();
|
||
if (description.is_empty())
|
||
return "";
|
||
return DeprecatedString::formatted("[{}]", description);
|
||
} else {
|
||
return property_key.to_string();
|
||
}
|
||
},
|
||
[&](PrivateName const& private_name) -> DeprecatedString {
|
||
return private_name.description;
|
||
});
|
||
|
||
update_function_name(method_value, DeprecatedString::formatted("{}{}{}", prefix, prefix.is_empty() ? "" : " ", name));
|
||
};
|
||
|
||
if (property_key_or_private_name.has<PropertyKey>()) {
|
||
auto& property_key = property_key_or_private_name.get<PropertyKey>();
|
||
switch (kind()) {
|
||
case ClassMethod::Kind::Method:
|
||
set_function_name();
|
||
TRY(target.define_property_or_throw(property_key, { .value = method_value, .writable = true, .enumerable = false, .configurable = true }));
|
||
break;
|
||
case ClassMethod::Kind::Getter:
|
||
set_function_name("get");
|
||
TRY(target.define_property_or_throw(property_key, { .get = &method_function, .enumerable = true, .configurable = true }));
|
||
break;
|
||
case ClassMethod::Kind::Setter:
|
||
set_function_name("set");
|
||
TRY(target.define_property_or_throw(property_key, { .set = &method_function, .enumerable = true, .configurable = true }));
|
||
break;
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
return ClassValue { normal_completion({}) };
|
||
} else {
|
||
auto& private_name = property_key_or_private_name.get<PrivateName>();
|
||
switch (kind()) {
|
||
case Kind::Method:
|
||
set_function_name();
|
||
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Method, method_value } };
|
||
case Kind::Getter:
|
||
set_function_name("get");
|
||
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), &method_function, nullptr) } };
|
||
case Kind::Setter:
|
||
set_function_name("set");
|
||
return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), nullptr, &method_function) } };
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
}
|
||
}
|
||
|
||
// We use this class to mimic Initializer : = AssignmentExpression of
|
||
// 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
|
||
class ClassFieldInitializerStatement : public Statement {
|
||
public:
|
||
ClassFieldInitializerStatement(SourceRange source_range, NonnullRefPtr<Expression> expression, FlyString field_name)
|
||
: Statement(source_range)
|
||
, m_expression(move(expression))
|
||
, m_class_field_identifier_name(move(field_name))
|
||
{
|
||
}
|
||
|
||
Completion execute(Interpreter& interpreter) const override
|
||
{
|
||
// 1. Assert: argumentsList is empty.
|
||
VERIFY(interpreter.vm().argument_count() == 0);
|
||
|
||
// 2. Assert: functionObject.[[ClassFieldInitializerName]] is not empty.
|
||
VERIFY(!m_class_field_identifier_name.is_empty());
|
||
|
||
// 3. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
|
||
// a. Let value be ? NamedEvaluation of Initializer with argument functionObject.[[ClassFieldInitializerName]].
|
||
// 4. Else,
|
||
// a. Let rhs be the result of evaluating AssignmentExpression.
|
||
// b. Let value be ? GetValue(rhs).
|
||
auto value = TRY(interpreter.vm().named_evaluation_if_anonymous_function(m_expression, m_class_field_identifier_name));
|
||
|
||
// 5. Return Completion Record { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.
|
||
return { Completion::Type::Return, value, {} };
|
||
}
|
||
|
||
void dump(int) const override
|
||
{
|
||
// This should not be dumped as it is never part of an actual AST.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
private:
|
||
NonnullRefPtr<Expression> m_expression;
|
||
FlyString m_class_field_identifier_name; // [[ClassFieldIdentifierName]]
|
||
};
|
||
|
||
// 15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classfielddefinitionevaluation
|
||
ThrowCompletionOr<ClassElement::ClassValue> ClassField::class_element_evaluation(Interpreter& interpreter, Object& target) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
auto property_key_or_private_name = TRY(class_key_to_property_name(interpreter, *m_key));
|
||
Handle<ECMAScriptFunctionObject> initializer {};
|
||
if (m_initializer) {
|
||
auto copy_initializer = m_initializer;
|
||
auto name = property_key_or_private_name.visit(
|
||
[&](PropertyKey const& property_key) -> DeprecatedString {
|
||
return property_key.is_number() ? property_key.to_string() : property_key.to_string_or_symbol().to_display_string();
|
||
},
|
||
[&](PrivateName const& private_name) -> DeprecatedString {
|
||
return private_name.description;
|
||
});
|
||
|
||
// FIXME: A potential optimization is not creating the functions here since these are never directly accessible.
|
||
auto function_code = create_ast_node<ClassFieldInitializerStatement>(m_initializer->source_range(), copy_initializer.release_nonnull(), name);
|
||
initializer = make_handle(*ECMAScriptFunctionObject::create(realm, DeprecatedString::empty(), DeprecatedString::empty(), *function_code, {}, 0, interpreter.lexical_environment(), interpreter.vm().running_execution_context().private_environment, FunctionKind::Normal, true, false, m_contains_direct_call_to_eval, false, property_key_or_private_name));
|
||
initializer->make_method(target);
|
||
}
|
||
|
||
return ClassValue {
|
||
ClassFieldDefinition {
|
||
move(property_key_or_private_name),
|
||
move(initializer),
|
||
}
|
||
};
|
||
}
|
||
|
||
static Optional<FlyString> nullopt_or_private_identifier_description(Expression const& expression)
|
||
{
|
||
if (is<PrivateIdentifier>(expression))
|
||
return static_cast<PrivateIdentifier const&>(expression).string();
|
||
return {};
|
||
}
|
||
|
||
Optional<FlyString> ClassField::private_bound_identifier() const
|
||
{
|
||
return nullopt_or_private_identifier_description(*m_key);
|
||
}
|
||
|
||
Optional<FlyString> ClassMethod::private_bound_identifier() const
|
||
{
|
||
return nullopt_or_private_identifier_description(*m_key);
|
||
}
|
||
|
||
// 15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classstaticblockdefinitionevaluation
|
||
ThrowCompletionOr<ClassElement::ClassValue> StaticInitializer::class_element_evaluation(Interpreter& interpreter, Object& home_object) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 1. Let lex be the running execution context's LexicalEnvironment.
|
||
auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
|
||
|
||
// 2. Let privateEnv be the running execution context's PrivateEnvironment.
|
||
auto* private_environment = interpreter.vm().running_execution_context().private_environment;
|
||
|
||
// 3. Let sourceText be the empty sequence of Unicode code points.
|
||
// 4. Let formalParameters be an instance of the production FormalParameters : [empty] .
|
||
// 5. Let bodyFunction be OrdinaryFunctionCreate(%Function.prototype%, sourceText, formalParameters, ClassStaticBlockBody, non-lexical-this, lex, privateEnv).
|
||
// Note: The function bodyFunction is never directly accessible to ECMAScript code.
|
||
auto body_function = ECMAScriptFunctionObject::create(realm, DeprecatedString::empty(), DeprecatedString::empty(), *m_function_body, {}, 0, lexical_environment, private_environment, FunctionKind::Normal, true, false, m_contains_direct_call_to_eval, false);
|
||
|
||
// 6. Perform MakeMethod(bodyFunction, homeObject).
|
||
body_function->make_method(home_object);
|
||
|
||
// 7. Return the ClassStaticBlockDefinition Record { [[BodyFunction]]: bodyFunction }.
|
||
return ClassValue { normal_completion(body_function) };
|
||
}
|
||
|
||
// 15.7.16 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-class-definitions-runtime-semantics-evaluation
|
||
// ClassExpression : class BindingIdentifier ClassTail
|
||
Completion ClassExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let className be StringValue of BindingIdentifier.
|
||
// 2. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments className and className.
|
||
auto* value = TRY(class_definition_evaluation(interpreter, m_name, m_name.is_null() ? "" : m_name));
|
||
|
||
// 3. Set value.[[SourceText]] to the source text matched by ClassExpression.
|
||
value->set_source_text(m_source_text);
|
||
|
||
// 4. Return value.
|
||
return Value { value };
|
||
}
|
||
|
||
// 15.7.15 Runtime Semantics: BindingClassDeclarationEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-bindingclassdeclarationevaluation
|
||
static ThrowCompletionOr<Value> binding_class_declaration_evaluation(Interpreter& interpreter, ClassExpression const& class_expression)
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
// ClassDeclaration : class ClassTail
|
||
if (!class_expression.has_name()) {
|
||
// 1. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments undefined and "default".
|
||
auto value = TRY(class_expression.class_definition_evaluation(interpreter, {}, "default"));
|
||
|
||
// 2. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
|
||
value->set_source_text(class_expression.source_text());
|
||
|
||
// 3. Return value.
|
||
return value;
|
||
}
|
||
|
||
// ClassDeclaration : class BindingIdentifier ClassTail
|
||
|
||
// 1. Let className be StringValue of BindingIdentifier.
|
||
auto class_name = class_expression.name();
|
||
VERIFY(!class_name.is_empty());
|
||
|
||
// 2. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments className and className.
|
||
auto value = TRY(class_expression.class_definition_evaluation(interpreter, class_name, class_name));
|
||
|
||
// 3. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
|
||
value->set_source_text(class_expression.source_text());
|
||
|
||
// 4. Let env be the running execution context's LexicalEnvironment.
|
||
auto* env = interpreter.lexical_environment();
|
||
|
||
// 5. Perform ? InitializeBoundName(className, value, env).
|
||
TRY(initialize_bound_name(vm, class_name, value, env));
|
||
|
||
// 6. Return value.
|
||
return value;
|
||
}
|
||
|
||
// 15.7.16 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-class-definitions-runtime-semantics-evaluation
|
||
// ClassDeclaration : class BindingIdentifier ClassTail
|
||
Completion ClassDeclaration::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Perform ? BindingClassDeclarationEvaluation of this ClassDeclaration.
|
||
(void)TRY(binding_class_declaration_evaluation(interpreter, m_class_expression));
|
||
|
||
// 2. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
// 15.7.14 Runtime Semantics: ClassDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
|
||
ThrowCompletionOr<ECMAScriptFunctionObject*> ClassExpression::class_definition_evaluation(Interpreter& interpreter, FlyString const& binding_name, FlyString const& class_name) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
auto* environment = vm.lexical_environment();
|
||
VERIFY(environment);
|
||
auto class_environment = new_declarative_environment(*environment);
|
||
|
||
// We might not set the lexical environment but we always want to restore it eventually.
|
||
ArmedScopeGuard restore_environment = [&] {
|
||
vm.running_execution_context().lexical_environment = environment;
|
||
};
|
||
|
||
if (!binding_name.is_null())
|
||
MUST(class_environment->create_immutable_binding(vm, binding_name, true));
|
||
|
||
auto* outer_private_environment = vm.running_execution_context().private_environment;
|
||
auto class_private_environment = new_private_environment(vm, outer_private_environment);
|
||
|
||
for (auto const& element : m_elements) {
|
||
auto opt_private_name = element.private_bound_identifier();
|
||
if (opt_private_name.has_value())
|
||
class_private_environment->add_private_name({}, opt_private_name.release_value());
|
||
}
|
||
|
||
auto* proto_parent = realm.intrinsics().object_prototype();
|
||
auto* constructor_parent = realm.intrinsics().function_prototype();
|
||
|
||
if (!m_super_class.is_null()) {
|
||
vm.running_execution_context().lexical_environment = class_environment;
|
||
|
||
// Note: Since our execute does evaluation and GetValue in once we must check for a valid reference first
|
||
|
||
Value super_class;
|
||
|
||
auto reference = TRY(m_super_class->to_reference(interpreter));
|
||
if (reference.is_valid_reference()) {
|
||
super_class = TRY(reference.get_value(vm));
|
||
} else {
|
||
super_class = TRY(m_super_class->execute(interpreter)).release_value();
|
||
}
|
||
vm.running_execution_context().lexical_environment = environment;
|
||
|
||
if (super_class.is_null()) {
|
||
proto_parent = nullptr;
|
||
} else if (!super_class.is_constructor()) {
|
||
return vm.throw_completion<TypeError>(ErrorType::ClassExtendsValueNotAConstructorOrNull, super_class.to_string_without_side_effects());
|
||
} else {
|
||
auto super_class_prototype = TRY(super_class.get(vm, vm.names.prototype));
|
||
if (!super_class_prototype.is_null() && !super_class_prototype.is_object())
|
||
return vm.throw_completion<TypeError>(ErrorType::ClassExtendsValueInvalidPrototype, super_class_prototype.to_string_without_side_effects());
|
||
|
||
if (super_class_prototype.is_null())
|
||
proto_parent = nullptr;
|
||
else
|
||
proto_parent = &super_class_prototype.as_object();
|
||
|
||
constructor_parent = &super_class.as_object();
|
||
}
|
||
}
|
||
|
||
auto prototype = Object::create(realm, proto_parent);
|
||
VERIFY(prototype);
|
||
|
||
vm.running_execution_context().lexical_environment = class_environment;
|
||
vm.running_execution_context().private_environment = class_private_environment;
|
||
ScopeGuard restore_private_environment = [&] {
|
||
vm.running_execution_context().private_environment = outer_private_environment;
|
||
};
|
||
|
||
// FIXME: Step 14.a is done in the parser. By using a synthetic super(...args) which does not call @@iterator of %Array.prototype%
|
||
auto class_constructor_value = TRY(m_constructor->execute(interpreter)).release_value();
|
||
|
||
update_function_name(class_constructor_value, class_name);
|
||
|
||
VERIFY(class_constructor_value.is_function() && is<ECMAScriptFunctionObject>(class_constructor_value.as_function()));
|
||
auto* class_constructor = static_cast<ECMAScriptFunctionObject*>(&class_constructor_value.as_function());
|
||
class_constructor->set_home_object(prototype);
|
||
class_constructor->set_is_class_constructor();
|
||
class_constructor->define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
|
||
TRY(class_constructor->internal_set_prototype_of(constructor_parent));
|
||
|
||
if (!m_super_class.is_null())
|
||
class_constructor->set_constructor_kind(ECMAScriptFunctionObject::ConstructorKind::Derived);
|
||
|
||
prototype->define_direct_property(vm.names.constructor, class_constructor, Attribute::Writable | Attribute::Configurable);
|
||
|
||
using StaticElement = Variant<ClassFieldDefinition, Handle<ECMAScriptFunctionObject>>;
|
||
|
||
Vector<PrivateElement> static_private_methods;
|
||
Vector<PrivateElement> instance_private_methods;
|
||
Vector<ClassFieldDefinition> instance_fields;
|
||
Vector<StaticElement> static_elements;
|
||
|
||
for (auto const& element : m_elements) {
|
||
// Note: All ClassElementEvaluation start with evaluating the name (or we fake it).
|
||
auto element_value = TRY(element.class_element_evaluation(interpreter, element.is_static() ? *class_constructor : *prototype));
|
||
|
||
if (element_value.has<PrivateElement>()) {
|
||
auto& container = element.is_static() ? static_private_methods : instance_private_methods;
|
||
|
||
auto& private_element = element_value.get<PrivateElement>();
|
||
|
||
auto added_to_existing = false;
|
||
// FIXME: We can skip this loop in most cases.
|
||
for (auto& existing : container) {
|
||
if (existing.key == private_element.key) {
|
||
VERIFY(existing.kind == PrivateElement::Kind::Accessor);
|
||
VERIFY(private_element.kind == PrivateElement::Kind::Accessor);
|
||
auto& accessor = private_element.value.as_accessor();
|
||
if (!accessor.getter())
|
||
existing.value.as_accessor().set_setter(accessor.setter());
|
||
else
|
||
existing.value.as_accessor().set_getter(accessor.getter());
|
||
added_to_existing = true;
|
||
}
|
||
}
|
||
|
||
if (!added_to_existing)
|
||
container.append(move(element_value.get<PrivateElement>()));
|
||
} else if (auto* class_field_definition_ptr = element_value.get_pointer<ClassFieldDefinition>()) {
|
||
if (element.is_static())
|
||
static_elements.append(move(*class_field_definition_ptr));
|
||
else
|
||
instance_fields.append(move(*class_field_definition_ptr));
|
||
} else if (element.class_element_kind() == ClassElement::ElementKind::StaticInitializer) {
|
||
// We use Completion to hold the ClassStaticBlockDefinition Record.
|
||
VERIFY(element_value.has<Completion>() && element_value.get<Completion>().value().has_value());
|
||
auto& element_object = element_value.get<Completion>().value()->as_object();
|
||
VERIFY(is<ECMAScriptFunctionObject>(element_object));
|
||
static_elements.append(make_handle(static_cast<ECMAScriptFunctionObject*>(&element_object)));
|
||
}
|
||
}
|
||
|
||
vm.running_execution_context().lexical_environment = environment;
|
||
restore_environment.disarm();
|
||
|
||
if (!binding_name.is_null())
|
||
MUST(class_environment->initialize_binding(vm, binding_name, class_constructor));
|
||
|
||
for (auto& field : instance_fields)
|
||
class_constructor->add_field(field);
|
||
|
||
for (auto& private_method : instance_private_methods)
|
||
class_constructor->add_private_method(private_method);
|
||
|
||
for (auto& method : static_private_methods)
|
||
class_constructor->private_method_or_accessor_add(move(method));
|
||
|
||
for (auto& element : static_elements) {
|
||
TRY(element.visit(
|
||
[&](ClassFieldDefinition& field) -> ThrowCompletionOr<void> {
|
||
return TRY(class_constructor->define_field(field));
|
||
},
|
||
[&](Handle<ECMAScriptFunctionObject> static_block_function) -> ThrowCompletionOr<void> {
|
||
VERIFY(!static_block_function.is_null());
|
||
// We discard any value returned here.
|
||
TRY(call(vm, *static_block_function.cell(), class_constructor_value));
|
||
return {};
|
||
}));
|
||
}
|
||
|
||
return class_constructor;
|
||
}
|
||
|
||
void ASTNode::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("{}", class_name());
|
||
}
|
||
|
||
void ScopeNode::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
if (!m_lexical_declarations.is_empty()) {
|
||
print_indent(indent + 1);
|
||
outln("(Lexical declarations)");
|
||
for (auto& declaration : m_lexical_declarations)
|
||
declaration.dump(indent + 2);
|
||
}
|
||
|
||
if (!m_var_declarations.is_empty()) {
|
||
print_indent(indent + 1);
|
||
outln("(Variable declarations)");
|
||
for (auto& declaration : m_var_declarations)
|
||
declaration.dump(indent + 2);
|
||
}
|
||
|
||
if (!m_functions_hoistable_with_annexB_extension.is_empty()) {
|
||
print_indent(indent + 1);
|
||
outln("(Hoisted functions via annexB extension)");
|
||
for (auto& declaration : m_functions_hoistable_with_annexB_extension)
|
||
declaration.dump(indent + 2);
|
||
}
|
||
|
||
if (!m_children.is_empty()) {
|
||
print_indent(indent + 1);
|
||
outln("(Children)");
|
||
for (auto& child : children())
|
||
child.dump(indent + 2);
|
||
}
|
||
}
|
||
|
||
void BinaryExpression::dump(int indent) const
|
||
{
|
||
char const* op_string = nullptr;
|
||
switch (m_op) {
|
||
case BinaryOp::Addition:
|
||
op_string = "+";
|
||
break;
|
||
case BinaryOp::Subtraction:
|
||
op_string = "-";
|
||
break;
|
||
case BinaryOp::Multiplication:
|
||
op_string = "*";
|
||
break;
|
||
case BinaryOp::Division:
|
||
op_string = "/";
|
||
break;
|
||
case BinaryOp::Modulo:
|
||
op_string = "%";
|
||
break;
|
||
case BinaryOp::Exponentiation:
|
||
op_string = "**";
|
||
break;
|
||
case BinaryOp::StrictlyEquals:
|
||
op_string = "===";
|
||
break;
|
||
case BinaryOp::StrictlyInequals:
|
||
op_string = "!==";
|
||
break;
|
||
case BinaryOp::LooselyEquals:
|
||
op_string = "==";
|
||
break;
|
||
case BinaryOp::LooselyInequals:
|
||
op_string = "!=";
|
||
break;
|
||
case BinaryOp::GreaterThan:
|
||
op_string = ">";
|
||
break;
|
||
case BinaryOp::GreaterThanEquals:
|
||
op_string = ">=";
|
||
break;
|
||
case BinaryOp::LessThan:
|
||
op_string = "<";
|
||
break;
|
||
case BinaryOp::LessThanEquals:
|
||
op_string = "<=";
|
||
break;
|
||
case BinaryOp::BitwiseAnd:
|
||
op_string = "&";
|
||
break;
|
||
case BinaryOp::BitwiseOr:
|
||
op_string = "|";
|
||
break;
|
||
case BinaryOp::BitwiseXor:
|
||
op_string = "^";
|
||
break;
|
||
case BinaryOp::LeftShift:
|
||
op_string = "<<";
|
||
break;
|
||
case BinaryOp::RightShift:
|
||
op_string = ">>";
|
||
break;
|
||
case BinaryOp::UnsignedRightShift:
|
||
op_string = ">>>";
|
||
break;
|
||
case BinaryOp::In:
|
||
op_string = "in";
|
||
break;
|
||
case BinaryOp::InstanceOf:
|
||
op_string = "instanceof";
|
||
break;
|
||
}
|
||
|
||
print_indent(indent);
|
||
outln("{}", class_name());
|
||
m_lhs->dump(indent + 1);
|
||
print_indent(indent + 1);
|
||
outln("{}", op_string);
|
||
m_rhs->dump(indent + 1);
|
||
}
|
||
|
||
void LogicalExpression::dump(int indent) const
|
||
{
|
||
char const* op_string = nullptr;
|
||
switch (m_op) {
|
||
case LogicalOp::And:
|
||
op_string = "&&";
|
||
break;
|
||
case LogicalOp::Or:
|
||
op_string = "||";
|
||
break;
|
||
case LogicalOp::NullishCoalescing:
|
||
op_string = "??";
|
||
break;
|
||
}
|
||
|
||
print_indent(indent);
|
||
outln("{}", class_name());
|
||
m_lhs->dump(indent + 1);
|
||
print_indent(indent + 1);
|
||
outln("{}", op_string);
|
||
m_rhs->dump(indent + 1);
|
||
}
|
||
|
||
void UnaryExpression::dump(int indent) const
|
||
{
|
||
char const* op_string = nullptr;
|
||
switch (m_op) {
|
||
case UnaryOp::BitwiseNot:
|
||
op_string = "~";
|
||
break;
|
||
case UnaryOp::Not:
|
||
op_string = "!";
|
||
break;
|
||
case UnaryOp::Plus:
|
||
op_string = "+";
|
||
break;
|
||
case UnaryOp::Minus:
|
||
op_string = "-";
|
||
break;
|
||
case UnaryOp::Typeof:
|
||
op_string = "typeof ";
|
||
break;
|
||
case UnaryOp::Void:
|
||
op_string = "void ";
|
||
break;
|
||
case UnaryOp::Delete:
|
||
op_string = "delete ";
|
||
break;
|
||
}
|
||
|
||
print_indent(indent);
|
||
outln("{}", class_name());
|
||
print_indent(indent + 1);
|
||
outln("{}", op_string);
|
||
m_lhs->dump(indent + 1);
|
||
}
|
||
|
||
void CallExpression::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
if (is<NewExpression>(*this))
|
||
outln("CallExpression [new]");
|
||
else
|
||
outln("CallExpression");
|
||
m_callee->dump(indent + 1);
|
||
for (auto& argument : arguments())
|
||
argument.value->dump(indent + 1);
|
||
}
|
||
|
||
void SuperCall::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("SuperCall");
|
||
for (auto& argument : m_arguments)
|
||
argument.value->dump(indent + 1);
|
||
}
|
||
|
||
void ClassDeclaration::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_class_expression->dump(indent + 1);
|
||
}
|
||
|
||
ThrowCompletionOr<void> ClassDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<FlyString const&>&& callback) const
|
||
{
|
||
if (m_class_expression->name().is_empty())
|
||
return {};
|
||
|
||
return callback(m_class_expression->name());
|
||
}
|
||
|
||
void ClassExpression::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("ClassExpression: \"{}\"", m_name);
|
||
|
||
print_indent(indent);
|
||
outln("(Constructor)");
|
||
m_constructor->dump(indent + 1);
|
||
|
||
if (!m_super_class.is_null()) {
|
||
print_indent(indent);
|
||
outln("(Super Class)");
|
||
m_super_class->dump(indent + 1);
|
||
}
|
||
|
||
print_indent(indent);
|
||
outln("(Elements)");
|
||
for (auto& method : m_elements)
|
||
method.dump(indent + 1);
|
||
}
|
||
|
||
void ClassMethod::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("(Key)");
|
||
m_key->dump(indent + 1);
|
||
|
||
char const* kind_string = nullptr;
|
||
switch (m_kind) {
|
||
case Kind::Method:
|
||
kind_string = "Method";
|
||
break;
|
||
case Kind::Getter:
|
||
kind_string = "Getter";
|
||
break;
|
||
case Kind::Setter:
|
||
kind_string = "Setter";
|
||
break;
|
||
}
|
||
print_indent(indent);
|
||
outln("Kind: {}", kind_string);
|
||
|
||
print_indent(indent);
|
||
outln("Static: {}", is_static());
|
||
|
||
print_indent(indent);
|
||
outln("(Function)");
|
||
m_function->dump(indent + 1);
|
||
}
|
||
|
||
void ClassField::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent);
|
||
outln("(Key)");
|
||
m_key->dump(indent + 1);
|
||
|
||
print_indent(indent);
|
||
outln("Static: {}", is_static());
|
||
|
||
if (m_initializer) {
|
||
print_indent(indent);
|
||
outln("(Initializer)");
|
||
m_initializer->dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
void StaticInitializer::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_function_body->dump(indent + 1);
|
||
}
|
||
|
||
void StringLiteral::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("StringLiteral \"{}\"", m_value);
|
||
}
|
||
|
||
void SuperExpression::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("super");
|
||
}
|
||
|
||
void NumericLiteral::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("NumericLiteral {}", m_value);
|
||
}
|
||
|
||
void BigIntLiteral::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("BigIntLiteral {}", m_value);
|
||
}
|
||
|
||
void BooleanLiteral::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("BooleanLiteral {}", m_value);
|
||
}
|
||
|
||
void NullLiteral::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("null");
|
||
}
|
||
|
||
bool BindingPattern::contains_expression() const
|
||
{
|
||
for (auto& entry : entries) {
|
||
if (entry.initializer)
|
||
return true;
|
||
if (auto binding_ptr = entry.alias.get_pointer<NonnullRefPtr<BindingPattern>>(); binding_ptr && (*binding_ptr)->contains_expression())
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
ThrowCompletionOr<void> BindingPattern::for_each_bound_name(ThrowCompletionOrVoidCallback<FlyString const&>&& callback) const
|
||
{
|
||
for (auto const& entry : entries) {
|
||
auto const& alias = entry.alias;
|
||
if (alias.has<NonnullRefPtr<Identifier>>()) {
|
||
TRY(callback(alias.get<NonnullRefPtr<Identifier>>()->string()));
|
||
} else if (alias.has<NonnullRefPtr<BindingPattern>>()) {
|
||
TRY(alias.get<NonnullRefPtr<BindingPattern>>()->for_each_bound_name(forward<decltype(callback)>(callback)));
|
||
} else {
|
||
auto const& name = entry.name;
|
||
if (name.has<NonnullRefPtr<Identifier>>())
|
||
TRY(callback(name.get<NonnullRefPtr<Identifier>>()->string()));
|
||
}
|
||
}
|
||
return {};
|
||
}
|
||
|
||
void BindingPattern::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("BindingPattern {}", kind == Kind::Array ? "Array" : "Object");
|
||
|
||
for (auto& entry : entries) {
|
||
print_indent(indent + 1);
|
||
outln("(Property)");
|
||
|
||
if (kind == Kind::Object) {
|
||
print_indent(indent + 2);
|
||
outln("(Identifier)");
|
||
if (entry.name.has<NonnullRefPtr<Identifier>>()) {
|
||
entry.name.get<NonnullRefPtr<Identifier>>()->dump(indent + 3);
|
||
} else {
|
||
entry.name.get<NonnullRefPtr<Expression>>()->dump(indent + 3);
|
||
}
|
||
} else if (entry.is_elision()) {
|
||
print_indent(indent + 2);
|
||
outln("(Elision)");
|
||
continue;
|
||
}
|
||
|
||
print_indent(indent + 2);
|
||
outln("(Pattern{})", entry.is_rest ? " rest=true" : "");
|
||
if (entry.alias.has<NonnullRefPtr<Identifier>>()) {
|
||
entry.alias.get<NonnullRefPtr<Identifier>>()->dump(indent + 3);
|
||
} else if (entry.alias.has<NonnullRefPtr<BindingPattern>>()) {
|
||
entry.alias.get<NonnullRefPtr<BindingPattern>>()->dump(indent + 3);
|
||
} else if (entry.alias.has<NonnullRefPtr<MemberExpression>>()) {
|
||
entry.alias.get<NonnullRefPtr<MemberExpression>>()->dump(indent + 3);
|
||
} else {
|
||
print_indent(indent + 3);
|
||
outln("<empty>");
|
||
}
|
||
|
||
if (entry.initializer) {
|
||
print_indent(indent + 2);
|
||
outln("(Initializer)");
|
||
entry.initializer->dump(indent + 3);
|
||
}
|
||
}
|
||
}
|
||
|
||
void FunctionNode::dump(int indent, DeprecatedString const& class_name) const
|
||
{
|
||
print_indent(indent);
|
||
auto is_async = m_kind == FunctionKind::Async || m_kind == FunctionKind::AsyncGenerator;
|
||
auto is_generator = m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator;
|
||
outln("{}{}{} '{}'", class_name, is_async ? " async" : "", is_generator ? "*" : "", name());
|
||
if (m_contains_direct_call_to_eval) {
|
||
print_indent(indent + 1);
|
||
outln("\033[31;1m(direct eval)\033[0m");
|
||
}
|
||
if (!m_parameters.is_empty()) {
|
||
print_indent(indent + 1);
|
||
outln("(Parameters)");
|
||
|
||
for (auto& parameter : m_parameters) {
|
||
print_indent(indent + 2);
|
||
if (parameter.is_rest)
|
||
out("...");
|
||
parameter.binding.visit(
|
||
[&](FlyString const& name) {
|
||
outln("{}", name);
|
||
},
|
||
[&](BindingPattern const& pattern) {
|
||
pattern.dump(indent + 2);
|
||
});
|
||
if (parameter.default_value)
|
||
parameter.default_value->dump(indent + 3);
|
||
}
|
||
}
|
||
print_indent(indent + 1);
|
||
outln("(Body)");
|
||
body().dump(indent + 2);
|
||
}
|
||
|
||
void FunctionDeclaration::dump(int indent) const
|
||
{
|
||
FunctionNode::dump(indent, class_name());
|
||
}
|
||
|
||
ThrowCompletionOr<void> FunctionDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<FlyString const&>&& callback) const
|
||
{
|
||
if (name().is_empty())
|
||
return {};
|
||
return callback(name());
|
||
}
|
||
|
||
void FunctionExpression::dump(int indent) const
|
||
{
|
||
FunctionNode::dump(indent, class_name());
|
||
}
|
||
|
||
void YieldExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
if (argument())
|
||
argument()->dump(indent + 1);
|
||
}
|
||
|
||
void AwaitExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_argument->dump(indent + 1);
|
||
}
|
||
|
||
void ReturnStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
if (argument())
|
||
argument()->dump(indent + 1);
|
||
}
|
||
|
||
void IfStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("If");
|
||
predicate().dump(indent + 1);
|
||
consequent().dump(indent + 1);
|
||
if (alternate()) {
|
||
print_indent(indent);
|
||
outln("Else");
|
||
alternate()->dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
void WhileStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("While");
|
||
test().dump(indent + 1);
|
||
body().dump(indent + 1);
|
||
}
|
||
|
||
void WithStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent + 1);
|
||
outln("Object");
|
||
object().dump(indent + 2);
|
||
print_indent(indent + 1);
|
||
outln("Body");
|
||
body().dump(indent + 2);
|
||
}
|
||
|
||
void DoWhileStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("DoWhile");
|
||
test().dump(indent + 1);
|
||
body().dump(indent + 1);
|
||
}
|
||
|
||
void ForStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("For");
|
||
if (init())
|
||
init()->dump(indent + 1);
|
||
if (test())
|
||
test()->dump(indent + 1);
|
||
if (update())
|
||
update()->dump(indent + 1);
|
||
body().dump(indent + 1);
|
||
}
|
||
|
||
void ForInStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("ForIn");
|
||
lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
|
||
rhs().dump(indent + 1);
|
||
body().dump(indent + 1);
|
||
}
|
||
|
||
void ForOfStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("ForOf");
|
||
lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
|
||
rhs().dump(indent + 1);
|
||
body().dump(indent + 1);
|
||
}
|
||
|
||
void ForAwaitOfStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
print_indent(indent);
|
||
outln("ForAwaitOf");
|
||
m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
|
||
m_rhs->dump(indent + 1);
|
||
m_body->dump(indent + 1);
|
||
}
|
||
|
||
// 13.1.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-identifiers-runtime-semantics-evaluation
|
||
Completion Identifier::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Return ? ResolveBinding(StringValue of Identifier).
|
||
// OPTIMIZATION: We call Identifier::to_reference() here, which acts as a caching layer around ResolveBinding.
|
||
auto reference = TRY(to_reference(interpreter));
|
||
|
||
// NOTE: The spec wants us to return the reference directly; this is not possible with ASTNode::execute() (short of letting it return a variant).
|
||
// So, instead of calling GetValue at the call site, we do it here.
|
||
return TRY(reference.get_value(vm));
|
||
}
|
||
|
||
void Identifier::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("Identifier \"{}\"", m_string);
|
||
}
|
||
|
||
Completion PrivateIdentifier::execute(Interpreter&) const
|
||
{
|
||
// Note: This should be handled by either the member expression this is part of
|
||
// or the binary expression in the case of `#foo in bar`.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
void PrivateIdentifier::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("PrivateIdentifier \"{}\"", m_string);
|
||
}
|
||
|
||
void SpreadExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_target->dump(indent + 1);
|
||
}
|
||
|
||
Completion SpreadExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
return m_target->execute(interpreter);
|
||
}
|
||
|
||
// 13.2.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-this-keyword-runtime-semantics-evaluation
|
||
Completion ThisExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Return ? ResolveThisBinding().
|
||
return vm.resolve_this_binding();
|
||
}
|
||
|
||
void ThisExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
}
|
||
|
||
// 13.15.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-assignment-operators-runtime-semantics-evaluation
|
||
Completion AssignmentExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
if (m_op == AssignmentOp::Assignment) {
|
||
// AssignmentExpression : LeftHandSideExpression = AssignmentExpression
|
||
return m_lhs.visit(
|
||
// 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
|
||
[&](NonnullRefPtr<Expression> const& lhs) -> ThrowCompletionOr<Value> {
|
||
// a. Let lref be the result of evaluating LeftHandSideExpression.
|
||
// b. ReturnIfAbrupt(lref).
|
||
auto reference = TRY(lhs->to_reference(interpreter));
|
||
|
||
Value rhs_result;
|
||
|
||
// c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression are both true, then
|
||
if (lhs->is_identifier()) {
|
||
// i. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
|
||
auto& identifier_name = static_cast<Identifier const&>(*lhs).string();
|
||
rhs_result = TRY(vm.named_evaluation_if_anonymous_function(m_rhs, identifier_name));
|
||
}
|
||
// d. Else,
|
||
else {
|
||
// i. Let rref be the result of evaluating AssignmentExpression.
|
||
// ii. Let rval be ? GetValue(rref).
|
||
rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
|
||
}
|
||
|
||
// e. Perform ? PutValue(lref, rval).
|
||
TRY(reference.put_value(vm, rhs_result));
|
||
|
||
// f. Return rval.
|
||
return rhs_result;
|
||
},
|
||
// 2. Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
|
||
[&](NonnullRefPtr<BindingPattern> const& pattern) -> ThrowCompletionOr<Value> {
|
||
// 3. Let rref be the result of evaluating AssignmentExpression.
|
||
// 4. Let rval be ? GetValue(rref).
|
||
auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
|
||
|
||
// 5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern with argument rval.
|
||
TRY(vm.destructuring_assignment_evaluation(pattern, rhs_result));
|
||
|
||
// 6. Return rval.
|
||
return rhs_result;
|
||
});
|
||
}
|
||
VERIFY(m_lhs.has<NonnullRefPtr<Expression>>());
|
||
|
||
// 1. Let lref be the result of evaluating LeftHandSideExpression.
|
||
auto& lhs_expression = *m_lhs.get<NonnullRefPtr<Expression>>();
|
||
auto reference = TRY(lhs_expression.to_reference(interpreter));
|
||
|
||
// 2. Let lval be ? GetValue(lref).
|
||
auto lhs_result = TRY(reference.get_value(vm));
|
||
|
||
// AssignmentExpression : LeftHandSideExpression {&&=, ||=, ??=} AssignmentExpression
|
||
if (m_op == AssignmentOp::AndAssignment || m_op == AssignmentOp::OrAssignment || m_op == AssignmentOp::NullishAssignment) {
|
||
switch (m_op) {
|
||
// AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression
|
||
case AssignmentOp::AndAssignment:
|
||
// 3. Let lbool be ToBoolean(lval).
|
||
// 4. If lbool is false, return lval.
|
||
if (!lhs_result.to_boolean())
|
||
return lhs_result;
|
||
break;
|
||
|
||
// AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression
|
||
case AssignmentOp::OrAssignment:
|
||
// 3. Let lbool be ToBoolean(lval).
|
||
// 4. If lbool is true, return lval.
|
||
if (lhs_result.to_boolean())
|
||
return lhs_result;
|
||
break;
|
||
|
||
// AssignmentExpression : LeftHandSideExpression ??= AssignmentExpression
|
||
case AssignmentOp::NullishAssignment:
|
||
// 3. If lval is neither undefined nor null, return lval.
|
||
if (!lhs_result.is_nullish())
|
||
return lhs_result;
|
||
break;
|
||
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
Value rhs_result;
|
||
|
||
// 5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true, then
|
||
if (lhs_expression.is_identifier()) {
|
||
// a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
|
||
auto& identifier_name = static_cast<Identifier const&>(lhs_expression).string();
|
||
rhs_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(m_rhs, identifier_name));
|
||
}
|
||
// 6. Else,
|
||
else {
|
||
// a. Let rref be the result of evaluating AssignmentExpression.
|
||
// b. Let rval be ? GetValue(rref).
|
||
rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
|
||
}
|
||
|
||
// 7. Perform ? PutValue(lref, rval).
|
||
TRY(reference.put_value(vm, rhs_result));
|
||
|
||
// 8. Return rval.
|
||
return rhs_result;
|
||
}
|
||
|
||
// AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression
|
||
|
||
// 3. Let rref be the result of evaluating AssignmentExpression.
|
||
// 4. Let rval be ? GetValue(rref).
|
||
auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
|
||
|
||
// 5. Let assignmentOpText be the source text matched by AssignmentOperator.
|
||
// 6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:
|
||
// 7. Let r be ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).
|
||
switch (m_op) {
|
||
case AssignmentOp::AdditionAssignment:
|
||
rhs_result = TRY(add(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::SubtractionAssignment:
|
||
rhs_result = TRY(sub(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::MultiplicationAssignment:
|
||
rhs_result = TRY(mul(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::DivisionAssignment:
|
||
rhs_result = TRY(div(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::ModuloAssignment:
|
||
rhs_result = TRY(mod(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::ExponentiationAssignment:
|
||
rhs_result = TRY(exp(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::BitwiseAndAssignment:
|
||
rhs_result = TRY(bitwise_and(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::BitwiseOrAssignment:
|
||
rhs_result = TRY(bitwise_or(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::BitwiseXorAssignment:
|
||
rhs_result = TRY(bitwise_xor(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::LeftShiftAssignment:
|
||
rhs_result = TRY(left_shift(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::RightShiftAssignment:
|
||
rhs_result = TRY(right_shift(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::UnsignedRightShiftAssignment:
|
||
rhs_result = TRY(unsigned_right_shift(vm, lhs_result, rhs_result));
|
||
break;
|
||
case AssignmentOp::Assignment:
|
||
case AssignmentOp::AndAssignment:
|
||
case AssignmentOp::OrAssignment:
|
||
case AssignmentOp::NullishAssignment:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 8. Perform ? PutValue(lref, r).
|
||
TRY(reference.put_value(vm, rhs_result));
|
||
|
||
// 9. Return r.
|
||
return rhs_result;
|
||
}
|
||
|
||
// 13.4.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-postfix-increment-operator-runtime-semantics-evaluation
|
||
// 13.4.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-postfix-decrement-operator-runtime-semantics-evaluation
|
||
// 13.4.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-prefix-increment-operator-runtime-semantics-evaluation
|
||
// 13.4.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-prefix-decrement-operator-runtime-semantics-evaluation
|
||
Completion UpdateExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Let expr be the result of evaluating <Expression>.
|
||
auto reference = TRY(m_argument->to_reference(interpreter));
|
||
|
||
// 2. Let oldValue be ? ToNumeric(? GetValue(expr)).
|
||
auto old_value = TRY(reference.get_value(vm));
|
||
old_value = TRY(old_value.to_numeric(vm));
|
||
|
||
Value new_value;
|
||
switch (m_op) {
|
||
case UpdateOp::Increment:
|
||
// 3. If Type(oldValue) is Number, then
|
||
if (old_value.is_number()) {
|
||
// a. Let newValue be Number::add(oldValue, 1𝔽).
|
||
new_value = Value(old_value.as_double() + 1);
|
||
}
|
||
// 4. Else,
|
||
else {
|
||
// a. Assert: Type(oldValue) is BigInt.
|
||
// b. Let newValue be BigInt::add(oldValue, 1ℤ).
|
||
new_value = BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
|
||
}
|
||
break;
|
||
case UpdateOp::Decrement:
|
||
// 3. If Type(oldValue) is Number, then
|
||
if (old_value.is_number()) {
|
||
// a. Let newValue be Number::subtract(oldValue, 1𝔽).
|
||
new_value = Value(old_value.as_double() - 1);
|
||
}
|
||
// 4. Else,
|
||
else {
|
||
// a. Assert: Type(oldValue) is BigInt.
|
||
// b. Let newValue be BigInt::subtract(oldValue, 1ℤ).
|
||
new_value = BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
|
||
}
|
||
break;
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 5. Perform ? PutValue(expr, newValue).
|
||
TRY(reference.put_value(vm, new_value));
|
||
|
||
// 6. Return newValue.
|
||
// 6. Return oldValue.
|
||
return m_prefixed ? new_value : old_value;
|
||
}
|
||
|
||
void AssignmentExpression::dump(int indent) const
|
||
{
|
||
char const* op_string = nullptr;
|
||
switch (m_op) {
|
||
case AssignmentOp::Assignment:
|
||
op_string = "=";
|
||
break;
|
||
case AssignmentOp::AdditionAssignment:
|
||
op_string = "+=";
|
||
break;
|
||
case AssignmentOp::SubtractionAssignment:
|
||
op_string = "-=";
|
||
break;
|
||
case AssignmentOp::MultiplicationAssignment:
|
||
op_string = "*=";
|
||
break;
|
||
case AssignmentOp::DivisionAssignment:
|
||
op_string = "/=";
|
||
break;
|
||
case AssignmentOp::ModuloAssignment:
|
||
op_string = "%=";
|
||
break;
|
||
case AssignmentOp::ExponentiationAssignment:
|
||
op_string = "**=";
|
||
break;
|
||
case AssignmentOp::BitwiseAndAssignment:
|
||
op_string = "&=";
|
||
break;
|
||
case AssignmentOp::BitwiseOrAssignment:
|
||
op_string = "|=";
|
||
break;
|
||
case AssignmentOp::BitwiseXorAssignment:
|
||
op_string = "^=";
|
||
break;
|
||
case AssignmentOp::LeftShiftAssignment:
|
||
op_string = "<<=";
|
||
break;
|
||
case AssignmentOp::RightShiftAssignment:
|
||
op_string = ">>=";
|
||
break;
|
||
case AssignmentOp::UnsignedRightShiftAssignment:
|
||
op_string = ">>>=";
|
||
break;
|
||
case AssignmentOp::AndAssignment:
|
||
op_string = "&&=";
|
||
break;
|
||
case AssignmentOp::OrAssignment:
|
||
op_string = "||=";
|
||
break;
|
||
case AssignmentOp::NullishAssignment:
|
||
op_string = "\?\?=";
|
||
break;
|
||
}
|
||
|
||
ASTNode::dump(indent);
|
||
print_indent(indent + 1);
|
||
outln("{}", op_string);
|
||
m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
|
||
m_rhs->dump(indent + 1);
|
||
}
|
||
|
||
void UpdateExpression::dump(int indent) const
|
||
{
|
||
char const* op_string = nullptr;
|
||
switch (m_op) {
|
||
case UpdateOp::Increment:
|
||
op_string = "++";
|
||
break;
|
||
case UpdateOp::Decrement:
|
||
op_string = "--";
|
||
break;
|
||
}
|
||
|
||
ASTNode::dump(indent);
|
||
if (m_prefixed) {
|
||
print_indent(indent + 1);
|
||
outln("{}", op_string);
|
||
}
|
||
m_argument->dump(indent + 1);
|
||
if (!m_prefixed) {
|
||
print_indent(indent + 1);
|
||
outln("{}", op_string);
|
||
}
|
||
}
|
||
|
||
// 14.3.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-let-and-const-declarations-runtime-semantics-evaluation
|
||
// 14.3.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-variable-statement-runtime-semantics-evaluation
|
||
Completion VariableDeclaration::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
for (auto& declarator : m_declarations) {
|
||
if (auto* init = declarator.init()) {
|
||
TRY(declarator.target().visit(
|
||
[&](NonnullRefPtr<Identifier> const& id) -> ThrowCompletionOr<void> {
|
||
auto reference = TRY(id->to_reference(interpreter));
|
||
auto initializer_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(*init, id->string()));
|
||
VERIFY(!initializer_result.is_empty());
|
||
|
||
if (m_declaration_kind == DeclarationKind::Var)
|
||
return reference.put_value(vm, initializer_result);
|
||
else
|
||
return reference.initialize_referenced_binding(vm, initializer_result);
|
||
},
|
||
[&](NonnullRefPtr<BindingPattern> const& pattern) -> ThrowCompletionOr<void> {
|
||
auto initializer_result = TRY(init->execute(interpreter)).release_value();
|
||
|
||
Environment* environment = m_declaration_kind == DeclarationKind::Var ? nullptr : interpreter.lexical_environment();
|
||
|
||
return vm.binding_initialization(pattern, initializer_result, environment);
|
||
}));
|
||
} else if (m_declaration_kind != DeclarationKind::Var) {
|
||
VERIFY(declarator.target().has<NonnullRefPtr<Identifier>>());
|
||
auto& identifier = declarator.target().get<NonnullRefPtr<Identifier>>();
|
||
auto reference = TRY(identifier->to_reference(interpreter));
|
||
TRY(reference.initialize_referenced_binding(vm, js_undefined()));
|
||
}
|
||
}
|
||
return normal_completion({});
|
||
}
|
||
|
||
Completion VariableDeclarator::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// NOTE: VariableDeclarator execution is handled by VariableDeclaration.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
ThrowCompletionOr<void> VariableDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<FlyString const&>&& callback) const
|
||
{
|
||
for (auto const& entry : declarations()) {
|
||
TRY(entry.target().visit(
|
||
[&](NonnullRefPtr<Identifier> const& id) {
|
||
return callback(id->string());
|
||
},
|
||
[&](NonnullRefPtr<BindingPattern> const& binding) {
|
||
return binding->for_each_bound_name([&](auto const& name) {
|
||
return callback(name);
|
||
});
|
||
}));
|
||
}
|
||
|
||
return {};
|
||
}
|
||
|
||
void VariableDeclaration::dump(int indent) const
|
||
{
|
||
char const* declaration_kind_string = nullptr;
|
||
switch (m_declaration_kind) {
|
||
case DeclarationKind::Let:
|
||
declaration_kind_string = "Let";
|
||
break;
|
||
case DeclarationKind::Var:
|
||
declaration_kind_string = "Var";
|
||
break;
|
||
case DeclarationKind::Const:
|
||
declaration_kind_string = "Const";
|
||
break;
|
||
}
|
||
|
||
ASTNode::dump(indent);
|
||
print_indent(indent + 1);
|
||
outln("{}", declaration_kind_string);
|
||
|
||
for (auto& declarator : m_declarations)
|
||
declarator.dump(indent + 1);
|
||
}
|
||
|
||
void VariableDeclarator::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_target.visit([indent](auto const& value) { value->dump(indent + 1); });
|
||
if (m_init)
|
||
m_init->dump(indent + 1);
|
||
}
|
||
|
||
void ObjectProperty::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
|
||
if (m_property_type == Type::Spread) {
|
||
print_indent(indent + 1);
|
||
outln("...Spreading");
|
||
m_key->dump(indent + 1);
|
||
} else {
|
||
m_key->dump(indent + 1);
|
||
m_value->dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
void ObjectExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
for (auto& property : m_properties) {
|
||
property.dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
void ExpressionStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_expression->dump(indent + 1);
|
||
}
|
||
|
||
Completion ObjectProperty::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// NOTE: ObjectProperty execution is handled by ObjectExpression.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
// 13.2.5.4 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-object-initializer-runtime-semantics-evaluation
|
||
Completion ObjectExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 1. Let obj be OrdinaryObjectCreate(%Object.prototype%).
|
||
auto object = Object::create(realm, realm.intrinsics().object_prototype());
|
||
|
||
// 2. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with argument obj.
|
||
for (auto& property : m_properties) {
|
||
auto key = TRY(property.key().execute(interpreter)).release_value();
|
||
|
||
// PropertyDefinition : ... AssignmentExpression
|
||
if (property.type() == ObjectProperty::Type::Spread) {
|
||
// 4. Perform ? CopyDataProperties(object, fromValue, excludedNames).
|
||
TRY(object->copy_data_properties(vm, key, {}));
|
||
|
||
// 5. Return unused.
|
||
continue;
|
||
}
|
||
|
||
auto value = TRY(property.value().execute(interpreter)).release_value();
|
||
|
||
// 8. If isProtoSetter is true, then
|
||
if (property.type() == ObjectProperty::Type::ProtoSetter) {
|
||
// a. If Type(propValue) is either Object or Null, then
|
||
if (value.is_object() || value.is_null()) {
|
||
// i. Perform ! object.[[SetPrototypeOf]](propValue).
|
||
MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
|
||
}
|
||
// b. Return unused.
|
||
continue;
|
||
}
|
||
|
||
auto property_key = TRY(PropertyKey::from_value(vm, key));
|
||
|
||
if (property.is_method()) {
|
||
VERIFY(value.is_function());
|
||
static_cast<ECMAScriptFunctionObject&>(value.as_function()).set_home_object(object);
|
||
|
||
auto name = MUST(get_function_property_name(property_key));
|
||
if (property.type() == ObjectProperty::Type::Getter) {
|
||
name = DeprecatedString::formatted("get {}", name);
|
||
} else if (property.type() == ObjectProperty::Type::Setter) {
|
||
name = DeprecatedString::formatted("set {}", name);
|
||
}
|
||
|
||
update_function_name(value, name);
|
||
}
|
||
|
||
switch (property.type()) {
|
||
case ObjectProperty::Type::Getter:
|
||
VERIFY(value.is_function());
|
||
object->define_direct_accessor(property_key, &value.as_function(), nullptr, Attribute::Configurable | Attribute::Enumerable);
|
||
break;
|
||
case ObjectProperty::Type::Setter:
|
||
VERIFY(value.is_function());
|
||
object->define_direct_accessor(property_key, nullptr, &value.as_function(), Attribute::Configurable | Attribute::Enumerable);
|
||
break;
|
||
case ObjectProperty::Type::KeyValue:
|
||
object->define_direct_property(property_key, value, default_attributes);
|
||
break;
|
||
case ObjectProperty::Type::Spread:
|
||
default:
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
// 3. Return obj.
|
||
return Value { object };
|
||
}
|
||
|
||
void MemberExpression::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("{}(computed={})", class_name(), is_computed());
|
||
m_object->dump(indent + 1);
|
||
m_property->dump(indent + 1);
|
||
}
|
||
|
||
DeprecatedString MemberExpression::to_string_approximation() const
|
||
{
|
||
DeprecatedString object_string = "<object>";
|
||
if (is<Identifier>(*m_object))
|
||
object_string = static_cast<Identifier const&>(*m_object).string();
|
||
if (is_computed())
|
||
return DeprecatedString::formatted("{}[<computed>]", object_string);
|
||
return DeprecatedString::formatted("{}.{}", object_string, verify_cast<Identifier>(*m_property).string());
|
||
}
|
||
|
||
// 13.3.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-property-accessors-runtime-semantics-evaluation
|
||
Completion MemberExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
auto reference = TRY(to_reference(interpreter));
|
||
return TRY(reference.get_value(vm));
|
||
}
|
||
|
||
bool MemberExpression::ends_in_private_name() const
|
||
{
|
||
if (is_computed())
|
||
return false;
|
||
if (is<PrivateIdentifier>(*m_property))
|
||
return true;
|
||
if (is<MemberExpression>(*m_property))
|
||
return static_cast<MemberExpression const&>(*m_property).ends_in_private_name();
|
||
return false;
|
||
}
|
||
|
||
void OptionalChain::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("{}", class_name());
|
||
m_base->dump(indent + 1);
|
||
for (auto& reference : m_references) {
|
||
reference.visit(
|
||
[&](Call const& call) {
|
||
print_indent(indent + 1);
|
||
outln("Call({})", call.mode == Mode::Optional ? "Optional" : "Not Optional");
|
||
for (auto& argument : call.arguments)
|
||
argument.value->dump(indent + 2);
|
||
},
|
||
[&](ComputedReference const& ref) {
|
||
print_indent(indent + 1);
|
||
outln("ComputedReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
|
||
ref.expression->dump(indent + 2);
|
||
},
|
||
[&](MemberReference const& ref) {
|
||
print_indent(indent + 1);
|
||
outln("MemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
|
||
ref.identifier->dump(indent + 2);
|
||
},
|
||
[&](PrivateMemberReference const& ref) {
|
||
print_indent(indent + 1);
|
||
outln("PrivateMemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
|
||
ref.private_identifier->dump(indent + 2);
|
||
});
|
||
}
|
||
}
|
||
|
||
ThrowCompletionOr<OptionalChain::ReferenceAndValue> OptionalChain::to_reference_and_value(Interpreter& interpreter) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
auto base_reference = TRY(m_base->to_reference(interpreter));
|
||
auto base = base_reference.is_unresolvable()
|
||
? TRY(m_base->execute(interpreter)).release_value()
|
||
: TRY(base_reference.get_value(vm));
|
||
|
||
for (auto& reference : m_references) {
|
||
auto is_optional = reference.visit([](auto& ref) { return ref.mode; }) == Mode::Optional;
|
||
if (is_optional && base.is_nullish())
|
||
return ReferenceAndValue { {}, js_undefined() };
|
||
|
||
auto expression = reference.visit(
|
||
[&](Call const& call) -> NonnullRefPtr<Expression> {
|
||
return CallExpression::create(source_range(),
|
||
create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
|
||
call.arguments);
|
||
},
|
||
[&](ComputedReference const& ref) -> NonnullRefPtr<Expression> {
|
||
return create_ast_node<MemberExpression>(source_range(),
|
||
create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
|
||
ref.expression,
|
||
true);
|
||
},
|
||
[&](MemberReference const& ref) -> NonnullRefPtr<Expression> {
|
||
return create_ast_node<MemberExpression>(source_range(),
|
||
create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
|
||
ref.identifier,
|
||
false);
|
||
},
|
||
[&](PrivateMemberReference const& ref) -> NonnullRefPtr<Expression> {
|
||
return create_ast_node<MemberExpression>(source_range(),
|
||
create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
|
||
ref.private_identifier,
|
||
false);
|
||
});
|
||
if (is<CallExpression>(*expression)) {
|
||
base_reference = JS::Reference {};
|
||
base = TRY(expression->execute(interpreter)).release_value();
|
||
} else {
|
||
base_reference = TRY(expression->to_reference(interpreter));
|
||
base = TRY(base_reference.get_value(vm));
|
||
}
|
||
}
|
||
|
||
return ReferenceAndValue { move(base_reference), base };
|
||
}
|
||
|
||
// 13.3.9.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-optional-chaining-evaluation
|
||
Completion OptionalChain::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
return TRY(to_reference_and_value(interpreter)).value;
|
||
}
|
||
|
||
ThrowCompletionOr<JS::Reference> OptionalChain::to_reference(Interpreter& interpreter) const
|
||
{
|
||
return TRY(to_reference_and_value(interpreter)).reference;
|
||
}
|
||
|
||
void MetaProperty::dump(int indent) const
|
||
{
|
||
DeprecatedString name;
|
||
if (m_type == MetaProperty::Type::NewTarget)
|
||
name = "new.target";
|
||
else if (m_type == MetaProperty::Type::ImportMeta)
|
||
name = "import.meta";
|
||
else
|
||
VERIFY_NOT_REACHED();
|
||
print_indent(indent);
|
||
outln("{} {}", class_name(), name);
|
||
}
|
||
|
||
// 13.3.12.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-meta-properties-runtime-semantics-evaluation
|
||
Completion MetaProperty::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// NewTarget : new . target
|
||
if (m_type == MetaProperty::Type::NewTarget) {
|
||
// 1. Return GetNewTarget().
|
||
return interpreter.vm().get_new_target();
|
||
}
|
||
|
||
// ImportMeta : import . meta
|
||
if (m_type == MetaProperty::Type::ImportMeta) {
|
||
// 1. Let module be GetActiveScriptOrModule().
|
||
auto script_or_module = interpreter.vm().get_active_script_or_module();
|
||
|
||
// 2. Assert: module is a Source Text Module Record.
|
||
VERIFY(script_or_module.has<NonnullGCPtr<Module>>());
|
||
VERIFY(script_or_module.get<NonnullGCPtr<Module>>());
|
||
VERIFY(is<SourceTextModule>(*script_or_module.get<NonnullGCPtr<Module>>()));
|
||
auto& module = static_cast<SourceTextModule&>(*script_or_module.get<NonnullGCPtr<Module>>());
|
||
|
||
// 3. Let importMeta be module.[[ImportMeta]].
|
||
auto* import_meta = module.import_meta();
|
||
|
||
// 4. If importMeta is empty, then
|
||
if (import_meta == nullptr) {
|
||
// a. Set importMeta to OrdinaryObjectCreate(null).
|
||
import_meta = Object::create(realm, nullptr);
|
||
|
||
// b. Let importMetaValues be HostGetImportMetaProperties(module).
|
||
auto import_meta_values = interpreter.vm().host_get_import_meta_properties(module);
|
||
|
||
// c. For each Record { [[Key]], [[Value]] } p of importMetaValues, do
|
||
for (auto& entry : import_meta_values) {
|
||
// i. Perform ! CreateDataPropertyOrThrow(importMeta, p.[[Key]], p.[[Value]]).
|
||
MUST(import_meta->create_data_property_or_throw(entry.key, entry.value));
|
||
}
|
||
|
||
// d. Perform HostFinalizeImportMeta(importMeta, module).
|
||
interpreter.vm().host_finalize_import_meta(import_meta, module);
|
||
|
||
// e. Set module.[[ImportMeta]] to importMeta.
|
||
module.set_import_meta({}, import_meta);
|
||
|
||
// f. Return importMeta.
|
||
return Value { import_meta };
|
||
}
|
||
// 5. Else,
|
||
else {
|
||
// a. Assert: Type(importMeta) is Object.
|
||
// Note: This is always true by the type.
|
||
|
||
// b. Return importMeta.
|
||
return Value { import_meta };
|
||
}
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
|
||
void ImportCall::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent);
|
||
outln("(Specifier)");
|
||
m_specifier->dump(indent + 1);
|
||
if (m_options) {
|
||
outln("(Options)");
|
||
m_options->dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
// 13.3.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-import-call-runtime-semantics-evaluation
|
||
// Also includes assertions from proposal: https://tc39.es/proposal-import-assertions/#sec-import-call-runtime-semantics-evaluation
|
||
Completion ImportCall::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 2.1.1.1 EvaluateImportCall ( specifierExpression [ , optionsExpression ] ), https://tc39.es/proposal-import-assertions/#sec-evaluate-import-call
|
||
// 1. Let referencingScriptOrModule be GetActiveScriptOrModule().
|
||
auto referencing_script_or_module = vm.get_active_script_or_module();
|
||
|
||
// 2. Let specifierRef be the result of evaluating specifierExpression.
|
||
// 3. Let specifier be ? GetValue(specifierRef).
|
||
auto specifier = TRY(m_specifier->execute(interpreter));
|
||
|
||
auto options_value = js_undefined();
|
||
// 4. If optionsExpression is present, then
|
||
if (m_options) {
|
||
// a. Let optionsRef be the result of evaluating optionsExpression.
|
||
// b. Let options be ? GetValue(optionsRef).
|
||
options_value = TRY(m_options->execute(interpreter)).release_value();
|
||
}
|
||
// 5. Else,
|
||
// a. Let options be undefined.
|
||
// Note: options_value is undefined by default.
|
||
|
||
// 6. Let promiseCapability be ! NewPromiseCapability(%Promise%).
|
||
auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor()));
|
||
|
||
// 7. Let specifierString be Completion(ToString(specifier)).
|
||
// 8. IfAbruptRejectPromise(specifierString, promiseCapability).
|
||
auto specifier_string = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, specifier->to_string(vm));
|
||
|
||
// 9. Let assertions be a new empty List.
|
||
Vector<ModuleRequest::Assertion> assertions;
|
||
|
||
// 10. If options is not undefined, then
|
||
if (!options_value.is_undefined()) {
|
||
// a. If Type(options) is not Object,
|
||
if (!options_value.is_object()) {
|
||
auto error = TypeError::create(realm, DeprecatedString::formatted(ErrorType::NotAnObject.message(), "ImportOptions"));
|
||
// i. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
|
||
MUST(call(vm, *promise_capability->reject(), js_undefined(), error));
|
||
|
||
// ii. Return promiseCapability.[[Promise]].
|
||
return Value { promise_capability->promise() };
|
||
}
|
||
|
||
// b. Let assertionsObj be Get(options, "assert").
|
||
// c. IfAbruptRejectPromise(assertionsObj, promiseCapability).
|
||
auto assertion_object = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, options_value.get(vm, vm.names.assert));
|
||
|
||
// d. If assertionsObj is not undefined,
|
||
if (!assertion_object.is_undefined()) {
|
||
// i. If Type(assertionsObj) is not Object,
|
||
if (!assertion_object.is_object()) {
|
||
auto error = TypeError::create(realm, DeprecatedString::formatted(ErrorType::NotAnObject.message(), "ImportOptionsAssertions"));
|
||
// 1. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
|
||
MUST(call(vm, *promise_capability->reject(), js_undefined(), error));
|
||
|
||
// 2. Return promiseCapability.[[Promise]].
|
||
return Value { promise_capability->promise() };
|
||
}
|
||
|
||
// ii. Let keys be EnumerableOwnPropertyNames(assertionsObj, key).
|
||
// iii. IfAbruptRejectPromise(keys, promiseCapability).
|
||
auto keys = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, assertion_object.as_object().enumerable_own_property_names(Object::PropertyKind::Key));
|
||
|
||
// iv. Let supportedAssertions be ! HostGetSupportedImportAssertions().
|
||
auto supported_assertions = vm.host_get_supported_import_assertions();
|
||
|
||
// v. For each String key of keys,
|
||
for (auto const& key : keys) {
|
||
auto property_key = MUST(key.to_property_key(vm));
|
||
|
||
// 1. Let value be Get(assertionsObj, key).
|
||
// 2. IfAbruptRejectPromise(value, promiseCapability).
|
||
auto value = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, assertion_object.get(vm, property_key));
|
||
|
||
// 3. If Type(value) is not String, then
|
||
if (!value.is_string()) {
|
||
auto error = TypeError::create(realm, DeprecatedString::formatted(ErrorType::NotAString.message(), "Import Assertion option value"));
|
||
// a. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
|
||
MUST(call(vm, *promise_capability->reject(), js_undefined(), error));
|
||
|
||
// b. Return promiseCapability.[[Promise]].
|
||
return Value { promise_capability->promise() };
|
||
}
|
||
|
||
// 4. If supportedAssertions contains key, then
|
||
if (supported_assertions.contains_slow(property_key.to_string())) {
|
||
// a. Append { [[Key]]: key, [[Value]]: value } to assertions.
|
||
assertions.empend(property_key.to_string(), value.as_string().deprecated_string());
|
||
}
|
||
}
|
||
}
|
||
// e. Sort assertions by the code point order of the [[Key]] of each element. NOTE: This sorting is observable only in that hosts are prohibited from distinguishing among assertions by the order they occur in.
|
||
// Note: This is done when constructing the ModuleRequest.
|
||
}
|
||
|
||
// 11. Let moduleRequest be a new ModuleRequest Record { [[Specifier]]: specifierString, [[Assertions]]: assertions }.
|
||
ModuleRequest request { specifier_string, assertions };
|
||
|
||
// 12. Perform HostImportModuleDynamically(referencingScriptOrModule, moduleRequest, promiseCapability).
|
||
interpreter.vm().host_import_module_dynamically(referencing_script_or_module, move(request), promise_capability);
|
||
|
||
// 13. Return promiseCapability.[[Promise]].
|
||
return Value { promise_capability->promise() };
|
||
}
|
||
|
||
// 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
|
||
Completion StringLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Return the SV of StringLiteral as defined in 12.8.4.2.
|
||
return Value { PrimitiveString::create(vm, m_value) };
|
||
}
|
||
|
||
// 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
|
||
Completion NumericLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
|
||
return Value(m_value);
|
||
}
|
||
|
||
// 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
|
||
Completion BigIntLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
|
||
Crypto::SignedBigInteger integer;
|
||
if (m_value[0] == '0' && m_value.length() >= 3) {
|
||
if (m_value[1] == 'x' || m_value[1] == 'X') {
|
||
return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(16, m_value.substring(2, m_value.length() - 3))) };
|
||
} else if (m_value[1] == 'o' || m_value[1] == 'O') {
|
||
return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(8, m_value.substring(2, m_value.length() - 3))) };
|
||
} else if (m_value[1] == 'b' || m_value[1] == 'B') {
|
||
return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(2, m_value.substring(2, m_value.length() - 3))) };
|
||
}
|
||
}
|
||
return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(10, m_value.substring(0, m_value.length() - 1))) };
|
||
}
|
||
|
||
// 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
|
||
Completion BooleanLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. If BooleanLiteral is the token false, return false.
|
||
// 2. If BooleanLiteral is the token true, return true.
|
||
return Value(m_value);
|
||
}
|
||
|
||
// 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
|
||
Completion NullLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Return null.
|
||
return js_null();
|
||
}
|
||
|
||
void RegExpLiteral::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
outln("{} (/{}/{})", class_name(), pattern(), flags());
|
||
}
|
||
|
||
// 13.2.7.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation
|
||
Completion RegExpLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 1. Let pattern be CodePointsToString(BodyText of RegularExpressionLiteral).
|
||
auto pattern = this->pattern();
|
||
|
||
// 2. Let flags be CodePointsToString(FlagText of RegularExpressionLiteral).
|
||
auto flags = this->flags();
|
||
|
||
// 3. Return ! RegExpCreate(pattern, flags).
|
||
Regex<ECMA262> regex(parsed_regex(), parsed_pattern(), parsed_flags());
|
||
// NOTE: We bypass RegExpCreate and subsequently RegExpAlloc as an optimization to use the already parsed values.
|
||
auto regexp_object = RegExpObject::create(realm, move(regex), move(pattern), move(flags));
|
||
// RegExpAlloc has these two steps from the 'Legacy RegExp features' proposal.
|
||
regexp_object->set_realm(*vm.current_realm());
|
||
// We don't need to check 'If SameValue(newTarget, thisRealm.[[Intrinsics]].[[%RegExp%]]) is true'
|
||
// here as we know RegExpCreate calls RegExpAlloc with %RegExp% for newTarget.
|
||
regexp_object->set_legacy_features_enabled(true);
|
||
return Value { regexp_object };
|
||
}
|
||
|
||
void ArrayExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
for (auto& element : m_elements) {
|
||
if (element) {
|
||
element->dump(indent + 1);
|
||
} else {
|
||
print_indent(indent + 1);
|
||
outln("<empty>");
|
||
}
|
||
}
|
||
}
|
||
|
||
// 13.2.4.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-array-initializer-runtime-semantics-evaluation
|
||
Completion ArrayExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 1. Let array be ! ArrayCreate(0).
|
||
auto array = MUST(Array::create(realm, 0));
|
||
|
||
// 2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
|
||
|
||
array->indexed_properties();
|
||
size_t index = 0;
|
||
for (auto& element : m_elements) {
|
||
auto value = Value();
|
||
if (element) {
|
||
value = TRY(element->execute(interpreter)).release_value();
|
||
|
||
if (is<SpreadExpression>(*element)) {
|
||
(void)TRY(get_iterator_values(vm, value, [&](Value iterator_value) -> Optional<Completion> {
|
||
array->indexed_properties().put(index++, iterator_value, default_attributes);
|
||
return {};
|
||
}));
|
||
continue;
|
||
}
|
||
}
|
||
array->indexed_properties().put(index++, value, default_attributes);
|
||
}
|
||
|
||
// 3. Return array.
|
||
return Value { array };
|
||
}
|
||
|
||
void TemplateLiteral::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
for (auto& expression : m_expressions)
|
||
expression.dump(indent + 1);
|
||
}
|
||
|
||
// 13.2.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-template-literals-runtime-semantics-evaluation
|
||
Completion TemplateLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
StringBuilder string_builder;
|
||
|
||
for (auto& expression : m_expressions) {
|
||
// 1. Let head be the TV of TemplateHead as defined in 12.8.6.
|
||
|
||
// 2. Let subRef be the result of evaluating Expression.
|
||
// 3. Let sub be ? GetValue(subRef).
|
||
auto sub = TRY(expression.execute(interpreter)).release_value();
|
||
|
||
// 4. Let middle be ? ToString(sub).
|
||
auto string = TRY(sub.to_string(vm));
|
||
string_builder.append(string);
|
||
|
||
// 5. Let tail be the result of evaluating TemplateSpans.
|
||
// 6. ReturnIfAbrupt(tail).
|
||
}
|
||
|
||
// 7. Return the string-concatenation of head, middle, and tail.
|
||
return Value { PrimitiveString::create(vm, string_builder.build()) };
|
||
}
|
||
|
||
void TaggedTemplateLiteral::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent + 1);
|
||
outln("(Tag)");
|
||
m_tag->dump(indent + 2);
|
||
print_indent(indent + 1);
|
||
outln("(Template Literal)");
|
||
m_template_literal->dump(indent + 2);
|
||
}
|
||
|
||
// 13.3.11.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-tagged-templates-runtime-semantics-evaluation
|
||
Completion TaggedTemplateLiteral::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// NOTE: This is both
|
||
// MemberExpression : MemberExpression TemplateLiteral
|
||
// CallExpression : CallExpression TemplateLiteral
|
||
|
||
// 1. Let tagRef be ? Evaluation of MemberExpression.
|
||
// 1. Let tagRef be ? Evaluation of CallExpression.
|
||
// 2. Let tagFunc be ? GetValue(tagRef).
|
||
// NOTE: This is much more complicated than the spec because we have to
|
||
// handle every type of reference. If we handle evaluation closer
|
||
// to the spec this could be improved.
|
||
Value tag_this_value;
|
||
Value tag;
|
||
if (auto tag_reference = TRY(m_tag->to_reference(interpreter)); tag_reference.is_valid_reference()) {
|
||
tag = TRY(tag_reference.get_value(vm));
|
||
if (tag_reference.is_environment_reference()) {
|
||
auto& environment = tag_reference.base_environment();
|
||
if (environment.has_this_binding())
|
||
tag_this_value = TRY(environment.get_this_binding(vm));
|
||
else
|
||
tag_this_value = js_undefined();
|
||
} else {
|
||
tag_this_value = tag_reference.get_this_value();
|
||
}
|
||
} else {
|
||
auto result = TRY(m_tag->execute(interpreter));
|
||
VERIFY(result.has_value());
|
||
tag = result.release_value();
|
||
tag_this_value = js_undefined();
|
||
}
|
||
|
||
// 3. Let thisCall be this CallExpression.
|
||
// 3. Let thisCall be this MemberExpression.
|
||
// FIXME: 4. Let tailCall be IsInTailPosition(thisCall).
|
||
|
||
// NOTE: A tagged template is a function call where the arguments of the call are derived from a
|
||
// TemplateLiteral (13.2.8). The actual arguments include a template object (13.2.8.3)
|
||
// and the values produced by evaluating the expressions embedded within the TemplateLiteral.
|
||
auto template_ = TRY(get_template_object(interpreter));
|
||
MarkedVector<Value> arguments(interpreter.vm().heap());
|
||
arguments.append(template_);
|
||
|
||
auto& expressions = m_template_literal->expressions();
|
||
|
||
// tag`${foo}` -> "", foo, "" -> tag(["", ""], foo)
|
||
// tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
|
||
// So we want all the odd expressions
|
||
for (size_t i = 1; i < expressions.size(); i += 2)
|
||
arguments.append(TRY(expressions[i].execute(interpreter)).release_value());
|
||
|
||
// 5. Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).
|
||
return call(vm, tag, tag_this_value, move(arguments));
|
||
}
|
||
|
||
// 13.2.8.3 GetTemplateObject ( templateLiteral ), https://tc39.es/ecma262/#sec-gettemplateobject
|
||
ThrowCompletionOr<Value> TaggedTemplateLiteral::get_template_object(Interpreter& interpreter) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 1. Let realm be the current Realm Record.
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 2. Let templateRegistry be realm.[[TemplateMap]].
|
||
// 3. For each element e of templateRegistry, do
|
||
// a. If e.[[Site]] is the same Parse Node as templateLiteral, then
|
||
// i. Return e.[[Array]].
|
||
// NOTE: Instead of caching on the realm we cache on the Parse Node side as
|
||
// this makes it easier to track whether it is the same parse node.
|
||
if (auto cached_value_or_end = m_cached_values.find(&realm); cached_value_or_end != m_cached_values.end())
|
||
return Value { cached_value_or_end->value.cell() };
|
||
|
||
// 4. Let rawStrings be TemplateStrings of templateLiteral with argument true.
|
||
auto& raw_strings = m_template_literal->raw_strings();
|
||
|
||
// 5. Let cookedStrings be TemplateStrings of templateLiteral with argument false.
|
||
auto& expressions = m_template_literal->expressions();
|
||
|
||
// 6. Let count be the number of elements in the List cookedStrings.
|
||
// NOTE: Only the even expression in expression are the cooked strings
|
||
// so we use rawStrings for the size here
|
||
VERIFY(raw_strings.size() == (expressions.size() + 1) / 2);
|
||
auto count = raw_strings.size();
|
||
|
||
// 7. Assert: count ≤ 2^32 - 1.
|
||
VERIFY(count <= 0xffffffff);
|
||
|
||
// 8. Let template be ! ArrayCreate(count).
|
||
// NOTE: We don't set count since we push the values using append which
|
||
// would then append after count. Same for 9.
|
||
auto template_ = MUST(Array::create(realm, 0));
|
||
|
||
// 9. Let rawObj be ! ArrayCreate(count).
|
||
auto raw_obj = MUST(Array::create(realm, 0));
|
||
|
||
// 10. Let index be 0.
|
||
// 11. Repeat, while index < count,
|
||
for (size_t i = 0; i < count; ++i) {
|
||
auto cooked_string_index = i * 2;
|
||
// a. Let prop be ! ToString(𝔽(index)).
|
||
// b. Let cookedValue be cookedStrings[index].
|
||
auto cooked_value = TRY(expressions[cooked_string_index].execute(interpreter)).release_value();
|
||
|
||
// NOTE: If the string contains invalid escapes we get a null expression here,
|
||
// which we then convert to the expected `undefined` TV. See
|
||
// 12.9.6.1 Static Semantics: TV, https://tc39.es/ecma262/#sec-static-semantics-tv
|
||
if (cooked_value.is_null())
|
||
cooked_value = js_undefined();
|
||
|
||
// c. Perform ! DefinePropertyOrThrow(template, prop, PropertyDescriptor { [[Value]]: cookedValue, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }).
|
||
template_->indexed_properties().append(cooked_value);
|
||
|
||
// d. Let rawValue be the String value rawStrings[index].
|
||
// e. Perform ! DefinePropertyOrThrow(rawObj, prop, PropertyDescriptor { [[Value]]: rawValue, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }).
|
||
raw_obj->indexed_properties().append(TRY(raw_strings[i].execute(interpreter)).release_value());
|
||
|
||
// f. Set index to index + 1.
|
||
}
|
||
|
||
// 12. Perform ! SetIntegrityLevel(rawObj, frozen).
|
||
MUST(raw_obj->set_integrity_level(Object::IntegrityLevel::Frozen));
|
||
|
||
// 13. Perform ! DefinePropertyOrThrow(template, "raw", PropertyDescriptor { [[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }).
|
||
template_->define_direct_property(interpreter.vm().names.raw, raw_obj, 0);
|
||
|
||
// 14. Perform ! SetIntegrityLevel(template, frozen).
|
||
MUST(template_->set_integrity_level(Object::IntegrityLevel::Frozen));
|
||
|
||
// 15. Append the Record { [[Site]]: templateLiteral, [[Array]]: template } to templateRegistry.
|
||
m_cached_values.set(&realm, make_handle(template_));
|
||
|
||
// 16. Return template.
|
||
return template_;
|
||
}
|
||
|
||
void TryStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent);
|
||
outln("(Block)");
|
||
block().dump(indent + 1);
|
||
|
||
if (handler()) {
|
||
print_indent(indent);
|
||
outln("(Handler)");
|
||
handler()->dump(indent + 1);
|
||
}
|
||
|
||
if (finalizer()) {
|
||
print_indent(indent);
|
||
outln("(Finalizer)");
|
||
finalizer()->dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
void CatchClause::dump(int indent) const
|
||
{
|
||
print_indent(indent);
|
||
m_parameter.visit(
|
||
[&](FlyString const& parameter) {
|
||
if (parameter.is_null())
|
||
outln("CatchClause");
|
||
else
|
||
outln("CatchClause ({})", parameter);
|
||
},
|
||
[&](NonnullRefPtr<BindingPattern> const& pattern) {
|
||
outln("CatchClause");
|
||
print_indent(indent);
|
||
outln("(Parameter)");
|
||
pattern->dump(indent + 2);
|
||
});
|
||
|
||
body().dump(indent + 1);
|
||
}
|
||
|
||
void ThrowStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
argument().dump(indent + 1);
|
||
}
|
||
|
||
// 14.15.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-try-statement-runtime-semantics-evaluation
|
||
Completion TryStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 14.15.2 Runtime Semantics: CatchClauseEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-catchclauseevaluation
|
||
auto catch_clause_evaluation = [&](Value thrown_value) {
|
||
// 1. Let oldEnv be the running execution context's LexicalEnvironment.
|
||
auto* old_environment = vm.running_execution_context().lexical_environment;
|
||
|
||
// 2. Let catchEnv be NewDeclarativeEnvironment(oldEnv).
|
||
auto catch_environment = new_declarative_environment(*old_environment);
|
||
|
||
m_handler->parameter().visit(
|
||
[&](FlyString const& parameter) {
|
||
// 3. For each element argName of the BoundNames of CatchParameter, do
|
||
// a. Perform ! catchEnv.CreateMutableBinding(argName, false).
|
||
MUST(catch_environment->create_mutable_binding(vm, parameter, false));
|
||
},
|
||
[&](NonnullRefPtr<BindingPattern> const& pattern) {
|
||
// 3. For each element argName of the BoundNames of CatchParameter, do
|
||
pattern->for_each_bound_name([&](auto& name) {
|
||
// a. Perform ! catchEnv.CreateMutableBinding(argName, false).
|
||
MUST(catch_environment->create_mutable_binding(vm, name, false));
|
||
});
|
||
});
|
||
|
||
// 4. Set the running execution context's LexicalEnvironment to catchEnv.
|
||
vm.running_execution_context().lexical_environment = catch_environment;
|
||
|
||
// 5. Let status be Completion(BindingInitialization of CatchParameter with arguments thrownValue and catchEnv).
|
||
auto status = m_handler->parameter().visit(
|
||
[&](FlyString const& parameter) {
|
||
return catch_environment->initialize_binding(vm, parameter, thrown_value);
|
||
},
|
||
[&](NonnullRefPtr<BindingPattern> const& pattern) {
|
||
return vm.binding_initialization(pattern, thrown_value, catch_environment);
|
||
});
|
||
|
||
// 6. If status is an abrupt completion, then
|
||
if (status.is_error()) {
|
||
// a. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
|
||
// b. Return ? status.
|
||
return status.release_error();
|
||
}
|
||
|
||
// 7. Let B be the result of evaluating Block.
|
||
auto handler_result = m_handler->body().execute(interpreter);
|
||
|
||
// 8. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
|
||
// 9. Return ? B.
|
||
return handler_result;
|
||
};
|
||
|
||
Completion result;
|
||
|
||
// 1. Let B be the result of evaluating Block.
|
||
auto block_result = m_block->execute(interpreter);
|
||
|
||
// TryStatement : try Block Catch
|
||
// TryStatement : try Block Catch Finally
|
||
if (m_handler) {
|
||
// 2. If B.[[Type]] is throw, let C be Completion(CatchClauseEvaluation of Catch with argument B.[[Value]]).
|
||
if (block_result.type() == Completion::Type::Throw)
|
||
result = catch_clause_evaluation(*block_result.value());
|
||
// 3. Else, let C be B.
|
||
else
|
||
result = move(block_result);
|
||
} else {
|
||
// TryStatement : try Block Finally
|
||
// This variant doesn't have C & uses B in the finalizer step.
|
||
result = move(block_result);
|
||
}
|
||
|
||
// TryStatement : try Block Finally
|
||
// TryStatement : try Block Catch Finally
|
||
if (m_finalizer) {
|
||
// 4. Let F be the result of evaluating Finally.
|
||
auto finalizer_result = m_finalizer->execute(interpreter);
|
||
|
||
// 5. If F.[[Type]] is normal, set F to C.
|
||
if (finalizer_result.type() == Completion::Type::Normal)
|
||
finalizer_result = move(result);
|
||
|
||
// 6. Return ? UpdateEmpty(F, undefined).
|
||
return finalizer_result.update_empty(js_undefined());
|
||
}
|
||
|
||
// 4. Return ? UpdateEmpty(C, undefined).
|
||
return result.update_empty(js_undefined());
|
||
}
|
||
|
||
Completion CatchClause::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// NOTE: CatchClause execution is handled by TryStatement.
|
||
VERIFY_NOT_REACHED();
|
||
return {};
|
||
}
|
||
|
||
// 14.14.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-throw-statement-runtime-semantics-evaluation
|
||
Completion ThrowStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let exprRef be the result of evaluating Expression.
|
||
// 2. Let exprValue be ? GetValue(exprRef).
|
||
auto value = TRY(m_argument->execute(interpreter)).release_value();
|
||
|
||
// 3. Return ThrowCompletion(exprValue).
|
||
return throw_completion(value);
|
||
}
|
||
|
||
// 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
|
||
// BreakableStatement : SwitchStatement
|
||
Completion SwitchStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
// 1. Let newLabelSet be a new empty List.
|
||
// 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
|
||
return labelled_evaluation(interpreter, *this, {});
|
||
}
|
||
|
||
// NOTE: Since we don't have the 'BreakableStatement' from the spec as a separate ASTNode that wraps IterationStatement / SwitchStatement,
|
||
// execute() needs to take care of LabelledEvaluation, which in turn calls execute_impl().
|
||
// 14.12.4 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-switch-statement-runtime-semantics-evaluation
|
||
Completion SwitchStatement::execute_impl(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
auto& vm = interpreter.vm();
|
||
|
||
// 14.12.3 CaseClauseIsSelected ( C, input ), https://tc39.es/ecma262/#sec-runtime-semantics-caseclauseisselected
|
||
auto case_clause_is_selected = [&](auto const& case_clause, auto input) -> ThrowCompletionOr<bool> {
|
||
// 1. Assert: C is an instance of the production CaseClause : case Expression : StatementList[opt] .
|
||
VERIFY(case_clause.test());
|
||
|
||
// 2. Let exprRef be the result of evaluating the Expression of C.
|
||
// 3. Let clauseSelector be ? GetValue(exprRef).
|
||
auto clause_selector = TRY(case_clause.test()->execute(interpreter)).release_value();
|
||
|
||
// 4. Return IsStrictlyEqual(input, clauseSelector).
|
||
return is_strictly_equal(input, clause_selector);
|
||
};
|
||
|
||
// 14.12.2 Runtime Semantics: CaseBlockEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-caseblockevaluation
|
||
auto case_block_evaluation = [&](auto input) -> Completion {
|
||
// CaseBlock : { }
|
||
if (m_cases.is_empty()) {
|
||
// 1. Return undefined.
|
||
return js_undefined();
|
||
}
|
||
|
||
NonnullRefPtrVector<SwitchCase> case_clauses_1;
|
||
NonnullRefPtrVector<SwitchCase> case_clauses_2;
|
||
RefPtr<SwitchCase> default_clause;
|
||
for (auto const& switch_case : m_cases) {
|
||
if (!switch_case.test())
|
||
default_clause = switch_case;
|
||
else if (!default_clause)
|
||
case_clauses_1.append(switch_case);
|
||
else
|
||
case_clauses_2.append(switch_case);
|
||
}
|
||
|
||
// CaseBlock : { CaseClauses }
|
||
if (!default_clause) {
|
||
VERIFY(!case_clauses_1.is_empty());
|
||
VERIFY(case_clauses_2.is_empty());
|
||
|
||
// 1. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
// 2. Let A be the List of CaseClause items in CaseClauses, in source text order.
|
||
// NOTE: A is case_clauses_1.
|
||
|
||
// 3. Let found be false.
|
||
auto found = false;
|
||
|
||
// 4. For each CaseClause C of A, do
|
||
for (auto const& case_clause : case_clauses_1) {
|
||
// a. If found is false, then
|
||
if (!found) {
|
||
// i. Set found to ? CaseClauseIsSelected(C, input).
|
||
found = TRY(case_clause_is_selected(case_clause, input));
|
||
}
|
||
|
||
// b. If found is true, then
|
||
if (found) {
|
||
// i. Let R be the result of evaluating C.
|
||
auto result = case_clause.evaluate_statements(interpreter);
|
||
|
||
// ii. If R.[[Value]] is not empty, set V to R.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
// iii. If R is an abrupt completion, return ? UpdateEmpty(R, V).
|
||
if (result.is_abrupt())
|
||
return result.update_empty(last_value);
|
||
}
|
||
}
|
||
|
||
// 5. Return V.
|
||
return last_value;
|
||
}
|
||
// CaseBlock : { CaseClauses[opt] DefaultClause CaseClauses[opt] }
|
||
else {
|
||
// 1. Let V be undefined.
|
||
auto last_value = js_undefined();
|
||
|
||
// 2. If the first CaseClauses is present, then
|
||
// a. Let A be the List of CaseClause items in the first CaseClauses, in source text order.
|
||
// 3. Else,
|
||
// a. Let A be a new empty List.
|
||
// NOTE: A is case_clauses_1.
|
||
|
||
// 4. Let found be false.
|
||
auto found = false;
|
||
|
||
// 5. For each CaseClause C of A, do
|
||
for (auto const& case_clause : case_clauses_1) {
|
||
// a. If found is false, then
|
||
if (!found) {
|
||
// i. Set found to ? CaseClauseIsSelected(C, input).
|
||
found = TRY(case_clause_is_selected(case_clause, input));
|
||
}
|
||
|
||
// b. If found is true, then
|
||
if (found) {
|
||
// i. Let R be the result of evaluating C.
|
||
auto result = case_clause.evaluate_statements(interpreter);
|
||
|
||
// ii. If R.[[Value]] is not empty, set V to R.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
// iii. If R is an abrupt completion, return ? UpdateEmpty(R, V).
|
||
if (result.is_abrupt())
|
||
return result.update_empty(last_value);
|
||
}
|
||
}
|
||
|
||
// 6. Let foundInB be false.
|
||
auto found_in_b = false;
|
||
|
||
// 7. If the second CaseClauses is present, then
|
||
// a. Let B be the List of CaseClause items in the second CaseClauses, in source text order.
|
||
// 8. Else,
|
||
// a. Let B be a new empty List.
|
||
// NOTE: B is case_clauses_2.
|
||
|
||
// 9. If found is false, then
|
||
if (!found) {
|
||
// a. For each CaseClause C of B, do
|
||
for (auto const& case_clause : case_clauses_2) {
|
||
// i. If foundInB is false, then
|
||
if (!found_in_b) {
|
||
// 1. Set foundInB to ? CaseClauseIsSelected(C, input).
|
||
found_in_b = TRY(case_clause_is_selected(case_clause, input));
|
||
}
|
||
|
||
// ii. If foundInB is true, then
|
||
if (found_in_b) {
|
||
// 1. Let R be the result of evaluating CaseClause C.
|
||
auto result = case_clause.evaluate_statements(interpreter);
|
||
|
||
// 2. If R.[[Value]] is not empty, set V to R.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
// 3. If R is an abrupt completion, return ? UpdateEmpty(R, V).
|
||
if (result.is_abrupt())
|
||
return result.update_empty(last_value);
|
||
}
|
||
}
|
||
}
|
||
|
||
// 10. If foundInB is true, return V.
|
||
if (found_in_b)
|
||
return last_value;
|
||
|
||
// 11. Let R be the result of evaluating DefaultClause.
|
||
auto result = default_clause->evaluate_statements(interpreter);
|
||
|
||
// 12. If R.[[Value]] is not empty, set V to R.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
// 13. If R is an abrupt completion, return ? UpdateEmpty(R, V).
|
||
if (result.is_abrupt())
|
||
return result.update_empty(last_value);
|
||
|
||
// 14. NOTE: The following is another complete iteration of the second CaseClauses.
|
||
// 15. For each CaseClause C of B, do
|
||
for (auto const& case_clause : case_clauses_2) {
|
||
// a. Let R be the result of evaluating CaseClause C.
|
||
result = case_clause.evaluate_statements(interpreter);
|
||
|
||
// b. If R.[[Value]] is not empty, set V to R.[[Value]].
|
||
if (result.value().has_value())
|
||
last_value = *result.value();
|
||
|
||
// c. If R is an abrupt completion, return ? UpdateEmpty(R, V).
|
||
if (result.is_abrupt())
|
||
return result.update_empty(last_value);
|
||
}
|
||
|
||
// 16. Return V.
|
||
return last_value;
|
||
}
|
||
|
||
VERIFY_NOT_REACHED();
|
||
};
|
||
|
||
// SwitchStatement : switch ( Expression ) CaseBlock
|
||
// 1. Let exprRef be the result of evaluating Expression.
|
||
// 2. Let switchValue be ? GetValue(exprRef).
|
||
auto switch_value = TRY(m_discriminant->execute(interpreter)).release_value();
|
||
|
||
// 3. Let oldEnv be the running execution context's LexicalEnvironment.
|
||
auto* old_environment = interpreter.lexical_environment();
|
||
|
||
// Optimization: Avoid creating a lexical environment if there are no lexical declarations.
|
||
if (has_lexical_declarations()) {
|
||
// 4. Let blockEnv be NewDeclarativeEnvironment(oldEnv).
|
||
auto block_environment = new_declarative_environment(*old_environment);
|
||
|
||
// 5. Perform BlockDeclarationInstantiation(CaseBlock, blockEnv).
|
||
block_declaration_instantiation(interpreter, block_environment);
|
||
|
||
// 6. Set the running execution context's LexicalEnvironment to blockEnv.
|
||
vm.running_execution_context().lexical_environment = block_environment;
|
||
}
|
||
|
||
// 7. Let R be Completion(CaseBlockEvaluation of CaseBlock with argument switchValue).
|
||
auto result = case_block_evaluation(switch_value);
|
||
|
||
// 8. Set the running execution context's LexicalEnvironment to oldEnv.
|
||
vm.running_execution_context().lexical_environment = old_environment;
|
||
|
||
// 9. Return R.
|
||
return result;
|
||
}
|
||
|
||
Completion SwitchCase::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// NOTE: SwitchCase execution is handled by SwitchStatement.
|
||
VERIFY_NOT_REACHED();
|
||
return {};
|
||
}
|
||
|
||
// 14.9.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-break-statement-runtime-semantics-evaluation
|
||
Completion BreakStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// BreakStatement : break ;
|
||
if (m_target_label.is_null()) {
|
||
// 1. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
|
||
return { Completion::Type::Break, {}, {} };
|
||
}
|
||
|
||
// BreakStatement : break LabelIdentifier ;
|
||
// 1. Let label be the StringValue of LabelIdentifier.
|
||
// 2. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: label }.
|
||
return { Completion::Type::Break, {}, m_target_label };
|
||
}
|
||
|
||
// 14.8.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-continue-statement-runtime-semantics-evaluation
|
||
Completion ContinueStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// ContinueStatement : continue ;
|
||
if (m_target_label.is_null()) {
|
||
// 1. Return Completion Record { [[Type]]: continue, [[Value]]: empty, [[Target]]: empty }.
|
||
return { Completion::Type::Continue, {}, {} };
|
||
}
|
||
|
||
// ContinueStatement : continue LabelIdentifier ;
|
||
// 1. Let label be the StringValue of LabelIdentifier.
|
||
// 2. Return Completion Record { [[Type]]: continue, [[Value]]: empty, [[Target]]: label }.
|
||
return { Completion::Type::Continue, {}, m_target_label };
|
||
}
|
||
|
||
void SwitchStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
m_discriminant->dump(indent + 1);
|
||
for (auto& switch_case : m_cases) {
|
||
switch_case.dump(indent + 1);
|
||
}
|
||
}
|
||
|
||
void SwitchCase::dump(int indent) const
|
||
{
|
||
print_indent(indent + 1);
|
||
if (m_test) {
|
||
outln("(Test)");
|
||
m_test->dump(indent + 2);
|
||
} else {
|
||
outln("(Default)");
|
||
}
|
||
print_indent(indent + 1);
|
||
outln("(Consequent)");
|
||
ScopeNode::dump(indent + 2);
|
||
}
|
||
|
||
// 13.14.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-conditional-operator-runtime-semantics-evaluation
|
||
Completion ConditionalExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Let lref be the result of evaluating ShortCircuitExpression.
|
||
// 2. Let lval be ToBoolean(? GetValue(lref)).
|
||
auto test_result = TRY(m_test->execute(interpreter)).release_value();
|
||
|
||
// 3. If lval is true, then
|
||
if (test_result.to_boolean()) {
|
||
// a. Let trueRef be the result of evaluating the first AssignmentExpression.
|
||
// b. Return ? GetValue(trueRef).
|
||
return m_consequent->execute(interpreter);
|
||
}
|
||
// 4. Else,
|
||
else {
|
||
// a. Let falseRef be the result of evaluating the second AssignmentExpression.
|
||
// b. Return ? GetValue(falseRef).
|
||
return m_alternate->execute(interpreter);
|
||
}
|
||
}
|
||
|
||
void ConditionalExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent + 1);
|
||
outln("(Test)");
|
||
m_test->dump(indent + 2);
|
||
print_indent(indent + 1);
|
||
outln("(Consequent)");
|
||
m_consequent->dump(indent + 2);
|
||
print_indent(indent + 1);
|
||
outln("(Alternate)");
|
||
m_alternate->dump(indent + 2);
|
||
}
|
||
|
||
void SequenceExpression::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
for (auto& expression : m_expressions)
|
||
expression.dump(indent + 1);
|
||
}
|
||
|
||
// 13.16.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-comma-operator-runtime-semantics-evaluation
|
||
Completion SequenceExpression::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// NOTE: Not sure why the last node is an AssignmentExpression in the spec :yakfused:
|
||
// 1. Let lref be the result of evaluating Expression.
|
||
// 2. Perform ? GetValue(lref).
|
||
// 3. Let rref be the result of evaluating AssignmentExpression.
|
||
// 4. Return ? GetValue(rref).
|
||
Value last_value;
|
||
for (auto const& expression : m_expressions)
|
||
last_value = TRY(expression.execute(interpreter)).release_value();
|
||
return { move(last_value) };
|
||
}
|
||
|
||
// 14.16.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-debugger-statement-runtime-semantics-evaluation
|
||
Completion DebuggerStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
Completion result;
|
||
|
||
// 1. If an implementation-defined debugging facility is available and enabled, then
|
||
if (false) {
|
||
// a. Perform an implementation-defined debugging action.
|
||
// b. Return a new implementation-defined Completion Record.
|
||
VERIFY_NOT_REACHED();
|
||
}
|
||
// 2. Else,
|
||
else {
|
||
// a. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
}
|
||
|
||
ThrowCompletionOr<void> ScopeNode::for_each_lexically_scoped_declaration(ThrowCompletionOrVoidCallback<Declaration const&>&& callback) const
|
||
{
|
||
for (auto& declaration : m_lexical_declarations)
|
||
TRY(callback(declaration));
|
||
|
||
return {};
|
||
}
|
||
|
||
ThrowCompletionOr<void> ScopeNode::for_each_lexically_declared_name(ThrowCompletionOrVoidCallback<FlyString const&>&& callback) const
|
||
{
|
||
for (auto const& declaration : m_lexical_declarations) {
|
||
TRY(declaration.for_each_bound_name([&](auto const& name) {
|
||
return callback(name);
|
||
}));
|
||
}
|
||
return {};
|
||
}
|
||
|
||
ThrowCompletionOr<void> ScopeNode::for_each_var_declared_name(ThrowCompletionOrVoidCallback<FlyString const&>&& callback) const
|
||
{
|
||
for (auto& declaration : m_var_declarations) {
|
||
TRY(declaration.for_each_bound_name([&](auto const& name) {
|
||
return callback(name);
|
||
}));
|
||
}
|
||
return {};
|
||
}
|
||
|
||
ThrowCompletionOr<void> ScopeNode::for_each_var_function_declaration_in_reverse_order(ThrowCompletionOrVoidCallback<FunctionDeclaration const&>&& callback) const
|
||
{
|
||
for (ssize_t i = m_var_declarations.size() - 1; i >= 0; i--) {
|
||
auto& declaration = m_var_declarations[i];
|
||
if (is<FunctionDeclaration>(declaration))
|
||
TRY(callback(static_cast<FunctionDeclaration const&>(declaration)));
|
||
}
|
||
return {};
|
||
}
|
||
|
||
ThrowCompletionOr<void> ScopeNode::for_each_var_scoped_variable_declaration(ThrowCompletionOrVoidCallback<VariableDeclaration const&>&& callback) const
|
||
{
|
||
for (auto& declaration : m_var_declarations) {
|
||
if (!is<FunctionDeclaration>(declaration)) {
|
||
VERIFY(is<VariableDeclaration>(declaration));
|
||
TRY(callback(static_cast<VariableDeclaration const&>(declaration)));
|
||
}
|
||
}
|
||
return {};
|
||
}
|
||
|
||
ThrowCompletionOr<void> ScopeNode::for_each_function_hoistable_with_annexB_extension(ThrowCompletionOrVoidCallback<FunctionDeclaration&>&& callback) const
|
||
{
|
||
for (auto& function : m_functions_hoistable_with_annexB_extension) {
|
||
// We need const_cast here since it might have to set a property on function declaration.
|
||
TRY(callback(const_cast<FunctionDeclaration&>(function)));
|
||
}
|
||
return {};
|
||
}
|
||
|
||
void ScopeNode::add_lexical_declaration(NonnullRefPtr<Declaration> declaration)
|
||
{
|
||
m_lexical_declarations.append(move(declaration));
|
||
}
|
||
|
||
void ScopeNode::add_var_scoped_declaration(NonnullRefPtr<Declaration> declaration)
|
||
{
|
||
m_var_declarations.append(move(declaration));
|
||
}
|
||
|
||
void ScopeNode::add_hoisted_function(NonnullRefPtr<FunctionDeclaration> declaration)
|
||
{
|
||
m_functions_hoistable_with_annexB_extension.append(move(declaration));
|
||
}
|
||
|
||
// 16.2.1.11 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-module-semantics-runtime-semantics-evaluation
|
||
Completion ImportStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
|
||
// 1. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
FlyString ExportStatement::local_name_for_default = "*default*";
|
||
|
||
// 16.2.3.7 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-exports-runtime-semantics-evaluation
|
||
Completion ExportStatement::execute(Interpreter& interpreter) const
|
||
{
|
||
InterpreterNodeScope node_scope { interpreter, *this };
|
||
auto& vm = interpreter.vm();
|
||
|
||
if (!is_default_export()) {
|
||
if (m_statement) {
|
||
// 1. Return the result of evaluating <Thing>.
|
||
return m_statement->execute(interpreter);
|
||
}
|
||
|
||
// 1. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
VERIFY(m_statement);
|
||
|
||
// ExportDeclaration : export default HoistableDeclaration
|
||
if (is<FunctionDeclaration>(*m_statement)) {
|
||
// 1. Return the result of evaluating HoistableDeclaration.
|
||
return m_statement->execute(interpreter);
|
||
}
|
||
|
||
// ExportDeclaration : export default ClassDeclaration
|
||
// ClassDeclaration: class BindingIdentifier[?Yield, ?Await] ClassTail[?Yield, ?Await]
|
||
if (is<ClassDeclaration>(*m_statement)) {
|
||
auto const& class_declaration = static_cast<ClassDeclaration const&>(*m_statement);
|
||
|
||
// 1. Let value be ? BindingClassDeclarationEvaluation of ClassDeclaration.
|
||
auto value = TRY(binding_class_declaration_evaluation(interpreter, class_declaration.m_class_expression));
|
||
|
||
// 2. Let className be the sole element of BoundNames of ClassDeclaration.
|
||
// 3. If className is "*default*", then
|
||
// Note: We never go into step 3. since a ClassDeclaration always has a name and "*default*" is not a class name.
|
||
(void)value;
|
||
|
||
// 4. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
// ExportDeclaration : export default ClassDeclaration
|
||
// ClassDeclaration: [+Default] class ClassTail [?Yield, ?Await]
|
||
if (is<ClassExpression>(*m_statement)) {
|
||
auto& class_expression = static_cast<ClassExpression const&>(*m_statement);
|
||
|
||
// 1. Let value be ? BindingClassDeclarationEvaluation of ClassDeclaration.
|
||
auto value = TRY(binding_class_declaration_evaluation(interpreter, class_expression));
|
||
|
||
// 2. Let className be the sole element of BoundNames of ClassDeclaration.
|
||
// 3. If className is "*default*", then
|
||
if (!class_expression.has_name()) {
|
||
// Note: This can only occur if the class does not have a name since "*default*" is normally not valid.
|
||
|
||
// a. Let env be the running execution context's LexicalEnvironment.
|
||
auto* env = interpreter.lexical_environment();
|
||
|
||
// b. Perform ? InitializeBoundName("*default*", value, env).
|
||
TRY(initialize_bound_name(vm, ExportStatement::local_name_for_default, value, env));
|
||
}
|
||
|
||
// 4. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
// ExportDeclaration : export default AssignmentExpression ;
|
||
|
||
// 1. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
|
||
// a. Let value be ? NamedEvaluation of AssignmentExpression with argument "default".
|
||
// 2. Else,
|
||
// a. Let rhs be the result of evaluating AssignmentExpression.
|
||
// b. Let value be ? GetValue(rhs).
|
||
auto value = TRY(vm.named_evaluation_if_anonymous_function(*m_statement, "default"));
|
||
|
||
// 3. Let env be the running execution context's LexicalEnvironment.
|
||
auto* env = interpreter.lexical_environment();
|
||
|
||
// 4. Perform ? InitializeBoundName("*default*", value, env).
|
||
TRY(initialize_bound_name(vm, ExportStatement::local_name_for_default, value, env));
|
||
|
||
// 5. Return empty.
|
||
return Optional<Value> {};
|
||
}
|
||
|
||
static void dump_assert_clauses(ModuleRequest const& request)
|
||
{
|
||
if (!request.assertions.is_empty()) {
|
||
out("[ ");
|
||
for (auto& assertion : request.assertions)
|
||
out("{}: {}, ", assertion.key, assertion.value);
|
||
out(" ]");
|
||
}
|
||
}
|
||
|
||
void ExportStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent + 1);
|
||
outln("(ExportEntries)");
|
||
|
||
auto string_or_null = [](DeprecatedString const& string) -> DeprecatedString {
|
||
if (string.is_empty()) {
|
||
return "null";
|
||
}
|
||
return DeprecatedString::formatted("\"{}\"", string);
|
||
};
|
||
|
||
for (auto& entry : m_entries) {
|
||
print_indent(indent + 2);
|
||
out("ExportName: {}, ImportName: {}, LocalName: {}, ModuleRequest: ",
|
||
string_or_null(entry.export_name),
|
||
entry.is_module_request() ? string_or_null(entry.local_or_import_name) : "null",
|
||
entry.is_module_request() ? "null" : string_or_null(entry.local_or_import_name));
|
||
if (entry.is_module_request()) {
|
||
out("{}", entry.m_module_request->module_specifier);
|
||
dump_assert_clauses(*entry.m_module_request);
|
||
outln();
|
||
} else {
|
||
outln("null");
|
||
}
|
||
}
|
||
|
||
if (m_statement) {
|
||
print_indent(indent + 1);
|
||
outln("(Statement)");
|
||
m_statement->dump(indent + 2);
|
||
}
|
||
}
|
||
|
||
void ImportStatement::dump(int indent) const
|
||
{
|
||
ASTNode::dump(indent);
|
||
print_indent(indent + 1);
|
||
if (m_entries.is_empty()) {
|
||
// direct from "module" import
|
||
outln("Entire module '{}'", m_module_request.module_specifier);
|
||
dump_assert_clauses(m_module_request);
|
||
} else {
|
||
outln("(ExportEntries) from {}", m_module_request.module_specifier);
|
||
dump_assert_clauses(m_module_request);
|
||
|
||
for (auto& entry : m_entries) {
|
||
print_indent(indent + 2);
|
||
outln("ImportName: {}, LocalName: {}", entry.import_name, entry.local_name);
|
||
}
|
||
}
|
||
}
|
||
|
||
bool ExportStatement::has_export(FlyString const& export_name) const
|
||
{
|
||
return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
|
||
// Make sure that empty exported names does not overlap with anything
|
||
if (entry.kind != ExportEntry::Kind::NamedExport)
|
||
return false;
|
||
return entry.export_name == export_name;
|
||
});
|
||
}
|
||
|
||
bool ImportStatement::has_bound_name(FlyString const& name) const
|
||
{
|
||
return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
|
||
return entry.local_name == name;
|
||
});
|
||
}
|
||
|
||
// 14.2.3 BlockDeclarationInstantiation ( code, env ), https://tc39.es/ecma262/#sec-blockdeclarationinstantiation
|
||
void ScopeNode::block_declaration_instantiation(Interpreter& interpreter, Environment* environment) const
|
||
{
|
||
// See also B.3.2.6 Changes to BlockDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-blockdeclarationinstantiation
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
VERIFY(environment);
|
||
auto* private_environment = vm.running_execution_context().private_environment;
|
||
// Note: All the calls here are ! and thus we do not need to TRY this callback.
|
||
for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
|
||
auto is_constant_declaration = declaration.is_constant_declaration();
|
||
declaration.for_each_bound_name([&](auto const& name) {
|
||
if (is_constant_declaration) {
|
||
MUST(environment->create_immutable_binding(vm, name, true));
|
||
} else {
|
||
if (!MUST(environment->has_binding(name)))
|
||
MUST(environment->create_mutable_binding(vm, name, false));
|
||
}
|
||
});
|
||
|
||
if (is<FunctionDeclaration>(declaration)) {
|
||
auto& function_declaration = static_cast<FunctionDeclaration const&>(declaration);
|
||
auto function = ECMAScriptFunctionObject::create(realm, function_declaration.name(), function_declaration.source_text(), function_declaration.body(), function_declaration.parameters(), function_declaration.function_length(), environment, private_environment, function_declaration.kind(), function_declaration.is_strict_mode(), function_declaration.might_need_arguments_object(), function_declaration.contains_direct_call_to_eval());
|
||
VERIFY(is<DeclarativeEnvironment>(*environment));
|
||
static_cast<DeclarativeEnvironment&>(*environment).initialize_or_set_mutable_binding({}, vm, function_declaration.name(), function);
|
||
}
|
||
});
|
||
}
|
||
|
||
// 16.1.7 GlobalDeclarationInstantiation ( script, env ), https://tc39.es/ecma262/#sec-globaldeclarationinstantiation
|
||
ThrowCompletionOr<void> Program::global_declaration_instantiation(Interpreter& interpreter, GlobalEnvironment& global_environment) const
|
||
{
|
||
auto& vm = interpreter.vm();
|
||
auto& realm = *vm.current_realm();
|
||
|
||
// 1. Let lexNames be the LexicallyDeclaredNames of script.
|
||
// 2. Let varNames be the VarDeclaredNames of script.
|
||
// 3. For each element name of lexNames, do
|
||
TRY(for_each_lexically_declared_name([&](FlyString const& name) -> ThrowCompletionOr<void> {
|
||
// a. If env.HasVarDeclaration(name) is true, throw a SyntaxError exception.
|
||
if (global_environment.has_var_declaration(name))
|
||
return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
|
||
|
||
// b. If env.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
|
||
if (global_environment.has_lexical_declaration(name))
|
||
return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
|
||
|
||
// c. Let hasRestrictedGlobal be ? env.HasRestrictedGlobalProperty(name).
|
||
auto has_restricted_global = TRY(global_environment.has_restricted_global_property(name));
|
||
|
||
// d. If hasRestrictedGlobal is true, throw a SyntaxError exception.
|
||
if (has_restricted_global)
|
||
return vm.throw_completion<SyntaxError>(ErrorType::RestrictedGlobalProperty, name);
|
||
|
||
return {};
|
||
}));
|
||
|
||
// 4. For each element name of varNames, do
|
||
TRY(for_each_var_declared_name([&](auto const& name) -> ThrowCompletionOr<void> {
|
||
// a. If env.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
|
||
if (global_environment.has_lexical_declaration(name))
|
||
return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
|
||
|
||
return {};
|
||
}));
|
||
|
||
// 5. Let varDeclarations be the VarScopedDeclarations of script.
|
||
// 6. Let functionsToInitialize be a new empty List.
|
||
Vector<FunctionDeclaration const&> functions_to_initialize;
|
||
|
||
// 7. Let declaredFunctionNames be a new empty List.
|
||
HashTable<FlyString> declared_function_names;
|
||
|
||
// 8. For each element d of varDeclarations, in reverse List order, do
|
||
|
||
TRY(for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) -> ThrowCompletionOr<void> {
|
||
// a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then
|
||
// i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an AsyncGeneratorDeclaration.
|
||
// Note: This is checked in for_each_var_function_declaration_in_reverse_order.
|
||
|
||
// ii. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
|
||
|
||
// iii. Let fn be the sole element of the BoundNames of d.
|
||
|
||
// iv. If fn is not an element of declaredFunctionNames, then
|
||
if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry)
|
||
return {};
|
||
|
||
// 1. Let fnDefinable be ? env.CanDeclareGlobalFunction(fn).
|
||
auto function_definable = TRY(global_environment.can_declare_global_function(function.name()));
|
||
|
||
// 2. If fnDefinable is false, throw a TypeError exception.
|
||
if (!function_definable)
|
||
return vm.throw_completion<TypeError>(ErrorType::CannotDeclareGlobalFunction, function.name());
|
||
|
||
// 3. Append fn to declaredFunctionNames.
|
||
// Note: Already done in step iv. above.
|
||
|
||
// 4. Insert d as the first element of functionsToInitialize.
|
||
// NOTE: Since prepending is much slower, we just append
|
||
// and iterate in reverse order in step 16 below.
|
||
functions_to_initialize.append(function);
|
||
return {};
|
||
}));
|
||
|
||
// 9. Let declaredVarNames be a new empty List.
|
||
HashTable<FlyString> declared_var_names;
|
||
|
||
// 10. For each element d of varDeclarations, do
|
||
TRY(for_each_var_scoped_variable_declaration([&](Declaration const& declaration) {
|
||
// a. If d is a VariableDeclaration, a ForBinding, or a BindingIdentifier, then
|
||
// Note: This is done in for_each_var_scoped_variable_declaration.
|
||
|
||
// i. For each String vn of the BoundNames of d, do
|
||
return declaration.for_each_bound_name([&](auto const& name) -> ThrowCompletionOr<void> {
|
||
// 1. If vn is not an element of declaredFunctionNames, then
|
||
if (declared_function_names.contains(name))
|
||
return {};
|
||
|
||
// a. Let vnDefinable be ? env.CanDeclareGlobalVar(vn).
|
||
auto var_definable = TRY(global_environment.can_declare_global_var(name));
|
||
|
||
// b. If vnDefinable is false, throw a TypeError exception.
|
||
if (!var_definable)
|
||
return vm.throw_completion<TypeError>(ErrorType::CannotDeclareGlobalVariable, name);
|
||
|
||
// c. If vn is not an element of declaredVarNames, then
|
||
// i. Append vn to declaredVarNames.
|
||
declared_var_names.set(name);
|
||
return {};
|
||
});
|
||
}));
|
||
|
||
// 11. NOTE: No abnormal terminations occur after this algorithm step if the global object is an ordinary object. However, if the global object is a Proxy exotic object it may exhibit behaviours that cause abnormal terminations in some of the following steps.
|
||
// 12. NOTE: Annex B.3.2.2 adds additional steps at this point.
|
||
|
||
// 12. Let strict be IsStrict of script.
|
||
// 13. If strict is false, then
|
||
if (!m_is_strict_mode) {
|
||
// a. Let declaredFunctionOrVarNames be the list-concatenation of declaredFunctionNames and declaredVarNames.
|
||
// b. For each FunctionDeclaration f that is directly contained in the StatementList of a Block, CaseClause, or DefaultClause Contained within script, do
|
||
TRY(for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) -> ThrowCompletionOr<void> {
|
||
// i. Let F be StringValue of the BindingIdentifier of f.
|
||
auto& function_name = function_declaration.name();
|
||
|
||
// ii. If replacing the FunctionDeclaration f with a VariableStatement that has F as a BindingIdentifier would not produce any Early Errors for script, then
|
||
// Note: This step is already performed during parsing and for_each_function_hoistable_with_annexB_extension so this always passes here.
|
||
|
||
// 1. If env.HasLexicalDeclaration(F) is false, then
|
||
if (global_environment.has_lexical_declaration(function_name))
|
||
return {};
|
||
|
||
// a. Let fnDefinable be ? env.CanDeclareGlobalVar(F).
|
||
auto function_definable = TRY(global_environment.can_declare_global_function(function_name));
|
||
// b. If fnDefinable is true, then
|
||
|
||
if (!function_definable)
|
||
return {};
|
||
|
||
// i. NOTE: A var binding for F is only instantiated here if it is neither a VarDeclaredName nor the name of another FunctionDeclaration.
|
||
|
||
// ii. If declaredFunctionOrVarNames does not contain F, then
|
||
|
||
if (!declared_function_names.contains(function_name) && !declared_var_names.contains(function_name)) {
|
||
// i. Perform ? env.CreateGlobalVarBinding(F, false).
|
||
TRY(global_environment.create_global_var_binding(function_name, false));
|
||
|
||
// ii. Append F to declaredFunctionOrVarNames.
|
||
declared_function_names.set(function_name);
|
||
}
|
||
|
||
// iii. When the FunctionDeclaration f is evaluated, perform the following steps in place of the FunctionDeclaration Evaluation algorithm provided in 15.2.6:
|
||
// i. Let genv be the running execution context's VariableEnvironment.
|
||
// ii. Let benv be the running execution context's LexicalEnvironment.
|
||
// iii. Let fobj be ! benv.GetBindingValue(F, false).
|
||
// iv. Perform ? genv.SetMutableBinding(F, fobj, false).
|
||
// v. Return unused.
|
||
function_declaration.set_should_do_additional_annexB_steps();
|
||
|
||
return {};
|
||
}));
|
||
|
||
// We should not use declared function names below here anymore since these functions are not in there in the spec.
|
||
declared_function_names.clear();
|
||
}
|
||
|
||
// 13. Let lexDeclarations be the LexicallyScopedDeclarations of script.
|
||
// 14. Let privateEnv be null.
|
||
PrivateEnvironment* private_environment = nullptr;
|
||
|
||
// 15. For each element d of lexDeclarations, do
|
||
TRY(for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
|
||
// a. NOTE: Lexically declared names are only instantiated here but not initialized.
|
||
// b. For each element dn of the BoundNames of d, do
|
||
return declaration.for_each_bound_name([&](auto const& name) -> ThrowCompletionOr<void> {
|
||
// i. If IsConstantDeclaration of d is true, then
|
||
if (declaration.is_constant_declaration()) {
|
||
// 1. Perform ? env.CreateImmutableBinding(dn, true).
|
||
TRY(global_environment.create_immutable_binding(vm, name, true));
|
||
}
|
||
// ii. Else,
|
||
else {
|
||
// 1. Perform ? env.CreateMutableBinding(dn, false).
|
||
TRY(global_environment.create_mutable_binding(vm, name, false));
|
||
}
|
||
|
||
return {};
|
||
});
|
||
}));
|
||
|
||
// 16. For each Parse Node f of functionsToInitialize, do
|
||
// NOTE: We iterate in reverse order since we appended the functions
|
||
// instead of prepending. We append because prepending is much slower
|
||
// and we only use the created vector here.
|
||
for (auto& declaration : functions_to_initialize.in_reverse()) {
|
||
// a. Let fn be the sole element of the BoundNames of f.
|
||
// b. Let fo be InstantiateFunctionObject of f with arguments env and privateEnv.
|
||
auto function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), &global_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
|
||
|
||
// c. Perform ? env.CreateGlobalFunctionBinding(fn, fo, false).
|
||
TRY(global_environment.create_global_function_binding(declaration.name(), function, false));
|
||
}
|
||
|
||
// 17. For each String vn of declaredVarNames, do
|
||
for (auto& var_name : declared_var_names) {
|
||
// a. Perform ? env.CreateGlobalVarBinding(vn, false).
|
||
TRY(global_environment.create_global_var_binding(var_name, false));
|
||
}
|
||
|
||
// 18. Return unused.
|
||
return {};
|
||
}
|
||
|
||
ModuleRequest::ModuleRequest(FlyString module_specifier_, Vector<Assertion> assertions_)
|
||
: module_specifier(move(module_specifier_))
|
||
, assertions(move(assertions_))
|
||
{
|
||
// Perform step 10.e. from EvaluateImportCall, https://tc39.es/proposal-import-assertions/#sec-evaluate-import-call
|
||
// or step 2. from 2.7 Static Semantics: AssertClauseToAssertions, https://tc39.es/proposal-import-assertions/#sec-assert-clause-to-assertions
|
||
// e. / 2. Sort assertions by the code point order of the [[Key]] of each element.
|
||
// NOTE: This sorting is observable only in that hosts are prohibited from distinguishing among assertions by the order they occur in.
|
||
quick_sort(assertions, [](Assertion const& lhs, Assertion const& rhs) {
|
||
return lhs.key < rhs.key;
|
||
});
|
||
}
|
||
|
||
DeprecatedString const& SourceRange::filename() const
|
||
{
|
||
return code->filename();
|
||
}
|
||
|
||
NonnullRefPtr<CallExpression> CallExpression::create(SourceRange source_range, NonnullRefPtr<Expression> callee, Span<Argument const> arguments)
|
||
{
|
||
return ASTNodeWithTailArray::create<CallExpression>(arguments.size(), move(source_range), move(callee), arguments);
|
||
}
|
||
|
||
NonnullRefPtr<NewExpression> NewExpression::create(SourceRange source_range, NonnullRefPtr<Expression> callee, Span<Argument const> arguments)
|
||
{
|
||
return ASTNodeWithTailArray::create<NewExpression>(arguments.size(), move(source_range), move(callee), arguments);
|
||
}
|
||
|
||
}
|