ladybird/Userland/Libraries/LibJS/SafeFunction.h
Ali Mohammad Pur f96a3c002a Everywhere: Stop shoving things into ::std and mentioning them as such
Note that this still keeps the old behaviour of putting things in std by
default on serenity so the tools can be happy, but if USING_AK_GLOBALLY
is unset, AK behaves like a good citizen and doesn't try to put things
in the ::std namespace.

std::nothrow_t and its friends get to stay because I'm being told that
compilers assume things about them and I can't yeet them into a
different namespace...for now.
2022-12-14 11:44:32 +01:00

267 lines
7.8 KiB
C++

/*
* Copyright (c) 2016 Apple Inc. All rights reserved.
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
* Copyright (c) 2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Function.h>
namespace JS {
void register_safe_function_closure(void*, size_t);
void unregister_safe_function_closure(void*, size_t);
template<typename>
class SafeFunction;
template<typename Out, typename... In>
class SafeFunction<Out(In...)> {
AK_MAKE_NONCOPYABLE(SafeFunction);
public:
SafeFunction() = default;
SafeFunction(nullptr_t)
{
}
~SafeFunction()
{
clear(false);
}
void register_closure()
{
if (!m_size)
return;
if (auto* wrapper = callable_wrapper())
register_safe_function_closure(wrapper, m_size);
}
void unregister_closure()
{
if (!m_size)
return;
if (auto* wrapper = callable_wrapper())
unregister_safe_function_closure(wrapper, m_size);
}
template<typename CallableType>
SafeFunction(CallableType&& callable)
requires((AK::IsFunctionObject<CallableType> && IsCallableWithArguments<CallableType, In...> && !IsSame<RemoveCVReference<CallableType>, SafeFunction>))
{
init_with_callable(forward<CallableType>(callable), CallableKind::FunctionObject);
}
template<typename FunctionType>
SafeFunction(FunctionType f)
requires((AK::IsFunctionPointer<FunctionType> && IsCallableWithArguments<RemovePointer<FunctionType>, In...> && !IsSame<RemoveCVReference<FunctionType>, SafeFunction>))
{
init_with_callable(move(f), CallableKind::FunctionPointer);
}
SafeFunction(SafeFunction&& other)
{
move_from(move(other));
}
// Note: Despite this method being const, a mutable lambda _may_ modify its own captures.
Out operator()(In... in) const
{
auto* wrapper = callable_wrapper();
VERIFY(wrapper);
++m_call_nesting_level;
ScopeGuard guard([this] {
if (--m_call_nesting_level == 0 && m_deferred_clear)
const_cast<SafeFunction*>(this)->clear(false);
});
return wrapper->call(forward<In>(in)...);
}
explicit operator bool() const { return !!callable_wrapper(); }
template<typename CallableType>
SafeFunction& operator=(CallableType&& callable)
requires((AK::IsFunctionObject<CallableType> && IsCallableWithArguments<CallableType, In...>))
{
clear();
init_with_callable(forward<CallableType>(callable));
return *this;
}
template<typename FunctionType>
SafeFunction& operator=(FunctionType f)
requires((AK::IsFunctionPointer<FunctionType> && IsCallableWithArguments<RemovePointer<FunctionType>, In...>))
{
clear();
if (f)
init_with_callable(move(f));
return *this;
}
SafeFunction& operator=(nullptr_t)
{
clear();
return *this;
}
SafeFunction& operator=(SafeFunction&& other)
{
if (this != &other) {
clear();
move_from(move(other));
}
return *this;
}
private:
enum class CallableKind {
FunctionPointer,
FunctionObject,
};
class CallableWrapperBase {
public:
virtual ~CallableWrapperBase() = default;
// Note: This is not const to allow storing mutable lambdas.
virtual Out call(In...) = 0;
virtual void destroy() = 0;
virtual void init_and_swap(u8*, size_t) = 0;
};
template<typename CallableType>
class CallableWrapper final : public CallableWrapperBase {
AK_MAKE_NONMOVABLE(CallableWrapper);
AK_MAKE_NONCOPYABLE(CallableWrapper);
public:
explicit CallableWrapper(CallableType&& callable)
: m_callable(move(callable))
{
}
Out call(In... in) final override
{
return m_callable(forward<In>(in)...);
}
void destroy() final override
{
delete this;
}
// NOLINTNEXTLINE(readability-non-const-parameter) False positive; destination is used in a placement new expression
void init_and_swap(u8* destination, size_t size) final override
{
VERIFY(size >= sizeof(CallableWrapper));
new (destination) CallableWrapper { move(m_callable) };
}
private:
CallableType m_callable;
};
enum class FunctionKind {
NullPointer,
Inline,
Outline,
};
CallableWrapperBase* callable_wrapper() const
{
switch (m_kind) {
case FunctionKind::NullPointer:
return nullptr;
case FunctionKind::Inline:
return bit_cast<CallableWrapperBase*>(&m_storage);
case FunctionKind::Outline:
return *bit_cast<CallableWrapperBase**>(&m_storage);
default:
VERIFY_NOT_REACHED();
}
}
void clear(bool may_defer = true)
{
bool called_from_inside_function = m_call_nesting_level > 0;
// NOTE: This VERIFY could fail because a Function is destroyed from within itself.
VERIFY(may_defer || !called_from_inside_function);
if (called_from_inside_function && may_defer) {
m_deferred_clear = true;
return;
}
m_deferred_clear = false;
auto* wrapper = callable_wrapper();
if (m_kind == FunctionKind::Inline) {
VERIFY(wrapper);
wrapper->~CallableWrapperBase();
unregister_closure();
} else if (m_kind == FunctionKind::Outline) {
VERIFY(wrapper);
wrapper->destroy();
unregister_closure();
}
m_kind = FunctionKind::NullPointer;
}
template<typename Callable>
void init_with_callable(Callable&& callable, CallableKind kind)
{
VERIFY(m_call_nesting_level == 0);
VERIFY(m_kind == FunctionKind::NullPointer);
using WrapperType = CallableWrapper<Callable>;
if constexpr (sizeof(WrapperType) > inline_capacity) {
*bit_cast<CallableWrapperBase**>(&m_storage) = new WrapperType(forward<Callable>(callable));
m_kind = FunctionKind::Outline;
} else {
new (m_storage) WrapperType(forward<Callable>(callable));
m_kind = FunctionKind::Inline;
}
if (kind == CallableKind::FunctionObject)
m_size = sizeof(WrapperType);
else
m_size = 0;
register_closure();
}
void move_from(SafeFunction&& other)
{
VERIFY(m_call_nesting_level == 0);
VERIFY(other.m_call_nesting_level == 0);
VERIFY(m_kind == FunctionKind::NullPointer);
auto* other_wrapper = other.callable_wrapper();
m_size = other.m_size;
switch (other.m_kind) {
case FunctionKind::NullPointer:
break;
case FunctionKind::Inline:
other.unregister_closure();
other_wrapper->init_and_swap(m_storage, inline_capacity);
m_kind = FunctionKind::Inline;
register_closure();
break;
case FunctionKind::Outline:
*bit_cast<CallableWrapperBase**>(&m_storage) = other_wrapper;
m_kind = FunctionKind::Outline;
break;
default:
VERIFY_NOT_REACHED();
}
other.m_kind = FunctionKind::NullPointer;
}
FunctionKind m_kind { FunctionKind::NullPointer };
bool m_deferred_clear { false };
mutable Atomic<u16> m_call_nesting_level { 0 };
size_t m_size { 0 };
// Empirically determined to fit most lambdas and functions.
static constexpr size_t inline_capacity = 4 * sizeof(void*);
alignas(max(alignof(CallableWrapperBase), alignof(CallableWrapperBase*))) u8 m_storage[inline_capacity];
};
}