ladybird/Userland/Libraries/LibGfx/Line.h
Hendiadyoin1 ed46d52252 Everywhere: Use AK/Math.h if applicable
AK's version should see better inlining behaviors, than the LibM one.
We avoid mixed usage for now though.

Also clean up some stale math includes and improper floatingpoint usage.
2021-07-19 16:34:21 +04:30

155 lines
4.2 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Optional.h>
#include <AK/StdLibExtras.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Point.h>
#include <LibGfx/Rect.h>
#include <stdlib.h>
namespace Gfx {
template<typename T>
class Line {
public:
Line() { }
Line(Point<T> a, Point<T> b)
: m_a(a)
, m_b(b)
{
}
template<typename U>
Line(U a, U b)
: m_a(a)
, m_b(b)
{
}
template<typename U>
explicit Line(Line<U> const& other)
: m_a(other.a())
, m_b(other.b())
{
}
bool intersects(Line const& other) const
{
return intersected(other).has_value();
}
Optional<Point<T>> intersected(Line const& other) const
{
auto cross_product = [](Point<T> const& p1, Point<T> const& p2) {
return p1.x() * p2.y() - p1.y() * p2.x();
};
auto r = m_b - m_a;
auto s = other.m_b - other.m_a;
auto delta_a = other.m_a - m_a;
auto num = cross_product(delta_a, r);
auto denom = cross_product(r, s);
if (denom == 0) {
if (num == 0) {
// Lines are collinear, check if line ends are touching
if (m_a == other.m_a || m_a == other.m_b)
return m_a;
if (m_b == other.m_a || m_b == other.m_b)
return m_b;
// Check if they're overlapping
if (!(m_b.x() - m_a.x() < 0 && m_b.x() - other.m_a.x() < 0 && other.m_b.x() - m_a.x() && other.m_b.x() - other.m_a.x())) {
// Overlapping
// TODO find center point?
}
if (!(m_b.y() - m_a.y() < 0 && m_b.y() - other.m_a.y() < 0 && other.m_b.y() - m_a.y() && other.m_b.y() - other.m_a.y())) {
// Overlapping
// TODO find center point?
}
return {};
} else {
// Lines are parallel and not intersecting
return {};
}
}
auto u = static_cast<float>(num) / static_cast<float>(denom);
if (u < 0.0f || u > 1.0f) {
// Lines are not parallel and don't intersect
return {};
}
auto t = static_cast<float>(cross_product(delta_a, s)) / static_cast<float>(denom);
if (t < 0.0f || t > 1.0f) {
// Lines are not parallel and don't intersect
return {};
}
// TODO: round if we're dealing with int
return Point<T> { m_a.x() + static_cast<T>(t * r.x()), m_a.y() + static_cast<T>(t * r.y()) };
}
float length() const
{
return m_a.distance_from(m_b);
}
Point<T> closest_to(Point<T> const& point) const
{
if (m_a == m_b)
return m_a;
auto delta_a = point.x() - m_a.x();
auto delta_b = point.y() - m_a.y();
auto delta_c = m_b.x() - m_a.x();
auto delta_d = m_b.y() - m_a.y();
auto len_sq = delta_c * delta_c + delta_d * delta_d;
float param = -1.0;
if (len_sq != 0)
param = static_cast<float>(delta_a * delta_c + delta_b * delta_d) / static_cast<float>(len_sq);
if (param < 0)
return m_a;
if (param > 1)
return m_b;
// TODO: round if we're dealing with int
return { static_cast<T>(m_a.x() + param * delta_c), static_cast<T>(m_a.y() + param * delta_d) };
}
Line<T> shortest_line_to(Point<T> const& point) const
{
return { closest_to(point), point };
}
float distance_to(Point<T> const& point) const
{
return shortest_line_to(point).length();
}
Point<T> const& a() const { return m_a; }
Point<T> const& b() const { return m_b; }
void set_a(Point<T> const& a) { m_a = a; }
void set_b(Point<T> const& b) { m_b = b; }
String to_string() const;
private:
Point<T> m_a;
Point<T> m_b;
};
template<>
inline String IntLine::to_string() const
{
return String::formatted("[{},{} -> {}x{}]", m_a.x(), m_a.y(), m_b.x(), m_b.y());
}
template<>
inline String FloatLine::to_string() const
{
return String::formatted("[{},{} {}x{}]", m_a.x(), m_a.y(), m_b.x(), m_b.y());
}
}