ladybird/Userland/Libraries/LibRegex/RegexByteCode.cpp
Ali Mohammad Pur f364fcec5d LibRegex+Everywhere: Make LibRegex more unicode-aware
This commit makes LibRegex (mostly) capable of operating on any of
the three main string views:
- StringView for raw strings
- Utf8View for utf-8 encoded strings
- Utf32View for raw unicode strings

As a result, regexps with unicode strings should be able to properly
handle utf-8 and not stop in the middle of a code point.
A future commit will update LibJS to use the correct type of string
depending on the flags.
2021-07-18 21:10:55 +04:30

771 lines
28 KiB
C++

/*
* Copyright (c) 2020, Emanuel Sprung <emanuel.sprung@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "RegexByteCode.h"
#include "AK/StringBuilder.h"
#include "RegexDebug.h"
#include <AK/CharacterTypes.h>
#include <AK/Debug.h>
namespace regex {
const char* OpCode::name(OpCodeId opcode_id)
{
switch (opcode_id) {
#define __ENUMERATE_OPCODE(x) \
case OpCodeId::x: \
return #x;
ENUMERATE_OPCODES
#undef __ENUMERATE_OPCODE
default:
VERIFY_NOT_REACHED();
return "<Unknown>";
}
}
const char* OpCode::name() const
{
return name(opcode_id());
}
const char* execution_result_name(ExecutionResult result)
{
switch (result) {
#define __ENUMERATE_EXECUTION_RESULT(x) \
case ExecutionResult::x: \
return #x;
ENUMERATE_EXECUTION_RESULTS
#undef __ENUMERATE_EXECUTION_RESULT
default:
VERIFY_NOT_REACHED();
return "<Unknown>";
}
}
const char* boundary_check_type_name(BoundaryCheckType ty)
{
switch (ty) {
#define __ENUMERATE_BOUNDARY_CHECK_TYPE(x) \
case BoundaryCheckType::x: \
return #x;
ENUMERATE_BOUNDARY_CHECK_TYPES
#undef __ENUMERATE_BOUNDARY_CHECK_TYPE
default:
VERIFY_NOT_REACHED();
return "<Unknown>";
}
}
const char* character_compare_type_name(CharacterCompareType ch_compare_type)
{
switch (ch_compare_type) {
#define __ENUMERATE_CHARACTER_COMPARE_TYPE(x) \
case CharacterCompareType::x: \
return #x;
ENUMERATE_CHARACTER_COMPARE_TYPES
#undef __ENUMERATE_CHARACTER_COMPARE_TYPE
default:
VERIFY_NOT_REACHED();
return "<Unknown>";
}
}
static const char* character_class_name(CharClass ch_class)
{
switch (ch_class) {
#define __ENUMERATE_CHARACTER_CLASS(x) \
case CharClass::x: \
return #x;
ENUMERATE_CHARACTER_CLASSES
#undef __ENUMERATE_CHARACTER_CLASS
default:
VERIFY_NOT_REACHED();
return "<Unknown>";
}
}
OwnPtr<OpCode> ByteCode::s_opcodes[(size_t)OpCodeId::Last + 1];
bool ByteCode::s_opcodes_initialized { false };
void ByteCode::ensure_opcodes_initialized()
{
if (s_opcodes_initialized)
return;
for (u32 i = (u32)OpCodeId::First; i <= (u32)OpCodeId::Last; ++i) {
switch ((OpCodeId)i) {
case OpCodeId::Exit:
s_opcodes[i] = make<OpCode_Exit>();
break;
case OpCodeId::Jump:
s_opcodes[i] = make<OpCode_Jump>();
break;
case OpCodeId::Compare:
s_opcodes[i] = make<OpCode_Compare>();
break;
case OpCodeId::CheckEnd:
s_opcodes[i] = make<OpCode_CheckEnd>();
break;
case OpCodeId::CheckBoundary:
s_opcodes[i] = make<OpCode_CheckBoundary>();
break;
case OpCodeId::ForkJump:
s_opcodes[i] = make<OpCode_ForkJump>();
break;
case OpCodeId::ForkStay:
s_opcodes[i] = make<OpCode_ForkStay>();
break;
case OpCodeId::FailForks:
s_opcodes[i] = make<OpCode_FailForks>();
break;
case OpCodeId::Save:
s_opcodes[i] = make<OpCode_Save>();
break;
case OpCodeId::Restore:
s_opcodes[i] = make<OpCode_Restore>();
break;
case OpCodeId::GoBack:
s_opcodes[i] = make<OpCode_GoBack>();
break;
case OpCodeId::CheckBegin:
s_opcodes[i] = make<OpCode_CheckBegin>();
break;
case OpCodeId::SaveLeftCaptureGroup:
s_opcodes[i] = make<OpCode_SaveLeftCaptureGroup>();
break;
case OpCodeId::SaveRightCaptureGroup:
s_opcodes[i] = make<OpCode_SaveRightCaptureGroup>();
break;
case OpCodeId::SaveLeftNamedCaptureGroup:
s_opcodes[i] = make<OpCode_SaveLeftNamedCaptureGroup>();
break;
case OpCodeId::SaveRightNamedCaptureGroup:
s_opcodes[i] = make<OpCode_SaveRightNamedCaptureGroup>();
break;
}
}
s_opcodes_initialized = true;
}
ALWAYS_INLINE OpCode& ByteCode::get_opcode_by_id(OpCodeId id) const
{
VERIFY(id >= OpCodeId::First && id <= OpCodeId::Last);
auto& opcode = s_opcodes[(u32)id];
opcode->set_bytecode(*const_cast<ByteCode*>(this));
return *opcode;
}
OpCode& ByteCode::get_opcode(MatchState& state) const
{
OpCodeId opcode_id;
if (state.instruction_position >= size())
opcode_id = OpCodeId::Exit;
else
opcode_id = (OpCodeId)at(state.instruction_position);
auto& opcode = get_opcode_by_id(opcode_id);
opcode.set_state(state);
return opcode;
}
ALWAYS_INLINE ExecutionResult OpCode_Exit::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
if (state.string_position > input.view.length() || state.instruction_position >= m_bytecode->size())
return ExecutionResult::Succeeded;
return ExecutionResult::Failed;
}
ALWAYS_INLINE ExecutionResult OpCode_Save::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
input.saved_positions.append(state.string_position);
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_Restore::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
if (input.saved_positions.is_empty())
return ExecutionResult::Failed;
state.string_position = input.saved_positions.take_last();
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_GoBack::execute(const MatchInput&, MatchState& state, MatchOutput&) const
{
if (count() > state.string_position)
return ExecutionResult::Failed_ExecuteLowPrioForks;
state.string_position -= count();
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_FailForks::execute(const MatchInput& input, MatchState&, MatchOutput&) const
{
VERIFY(count() > 0);
input.fail_counter += count() - 1;
return ExecutionResult::Failed_ExecuteLowPrioForks;
}
ALWAYS_INLINE ExecutionResult OpCode_Jump::execute(const MatchInput&, MatchState& state, MatchOutput&) const
{
state.instruction_position += offset();
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_ForkJump::execute(const MatchInput&, MatchState& state, MatchOutput&) const
{
state.fork_at_position = state.instruction_position + size() + offset();
return ExecutionResult::Fork_PrioHigh;
}
ALWAYS_INLINE ExecutionResult OpCode_ForkStay::execute(const MatchInput&, MatchState& state, MatchOutput&) const
{
state.fork_at_position = state.instruction_position + size() + offset();
return ExecutionResult::Fork_PrioLow;
}
ALWAYS_INLINE ExecutionResult OpCode_CheckBegin::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
if (0 == state.string_position && (input.regex_options & AllFlags::MatchNotBeginOfLine))
return ExecutionResult::Failed_ExecuteLowPrioForks;
if ((0 == state.string_position && !(input.regex_options & AllFlags::MatchNotBeginOfLine))
|| (0 != state.string_position && (input.regex_options & AllFlags::MatchNotBeginOfLine))
|| (0 == state.string_position && (input.regex_options & AllFlags::Global)))
return ExecutionResult::Continue;
return ExecutionResult::Failed_ExecuteLowPrioForks;
}
ALWAYS_INLINE ExecutionResult OpCode_CheckBoundary::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
auto isword = [](auto ch) { return is_ascii_alphanumeric(ch) || ch == '_'; };
auto is_word_boundary = [&] {
if (state.string_position == input.view.length()) {
if (state.string_position > 0 && isword(input.view[state.string_position - 1]))
return true;
return false;
}
if (state.string_position == 0) {
if (isword(input.view[0]))
return true;
return false;
}
return !!(isword(input.view[state.string_position]) ^ isword(input.view[state.string_position - 1]));
};
switch (type()) {
case BoundaryCheckType::Word: {
if (is_word_boundary())
return ExecutionResult::Continue;
return ExecutionResult::Failed_ExecuteLowPrioForks;
}
case BoundaryCheckType::NonWord: {
if (!is_word_boundary())
return ExecutionResult::Continue;
return ExecutionResult::Failed_ExecuteLowPrioForks;
}
}
VERIFY_NOT_REACHED();
}
ALWAYS_INLINE ExecutionResult OpCode_CheckEnd::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
if (state.string_position == input.view.length() && (input.regex_options & AllFlags::MatchNotEndOfLine))
return ExecutionResult::Failed_ExecuteLowPrioForks;
if ((state.string_position == input.view.length() && !(input.regex_options & AllFlags::MatchNotEndOfLine))
|| (state.string_position != input.view.length() && (input.regex_options & AllFlags::MatchNotEndOfLine || input.regex_options & AllFlags::MatchNotBeginOfLine)))
return ExecutionResult::Continue;
return ExecutionResult::Failed_ExecuteLowPrioForks;
}
ALWAYS_INLINE ExecutionResult OpCode_SaveLeftCaptureGroup::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
if (input.match_index >= state.capture_group_matches.size()) {
state.capture_group_matches.ensure_capacity(input.match_index);
auto capacity = state.capture_group_matches.capacity();
for (size_t i = state.capture_group_matches.size(); i <= capacity; ++i)
state.capture_group_matches.empend();
}
if (id() >= state.capture_group_matches.at(input.match_index).size()) {
state.capture_group_matches.at(input.match_index).ensure_capacity(id());
auto capacity = state.capture_group_matches.at(input.match_index).capacity();
for (size_t i = state.capture_group_matches.at(input.match_index).size(); i <= capacity; ++i)
state.capture_group_matches.at(input.match_index).empend();
}
state.capture_group_matches.at(input.match_index).at(id()).left_column = state.string_position;
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_SaveRightCaptureGroup::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
auto& match = state.capture_group_matches.at(input.match_index).at(id());
auto start_position = match.left_column;
if (state.string_position < start_position)
return ExecutionResult::Failed_ExecuteLowPrioForks;
auto length = state.string_position - start_position;
if (start_position < match.column)
return ExecutionResult::Continue;
VERIFY(start_position + length <= input.view.length());
auto view = input.view.substring_view(start_position, length);
if (input.regex_options & AllFlags::StringCopyMatches) {
match = { view.to_string(), input.line, start_position, input.global_offset + start_position }; // create a copy of the original string
} else {
match = { view, input.line, start_position, input.global_offset + start_position }; // take view to original string
}
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_SaveLeftNamedCaptureGroup::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
if (input.match_index >= state.named_capture_group_matches.size()) {
state.named_capture_group_matches.ensure_capacity(input.match_index);
auto capacity = state.named_capture_group_matches.capacity();
for (size_t i = state.named_capture_group_matches.size(); i <= capacity; ++i)
state.named_capture_group_matches.empend();
}
state.named_capture_group_matches.at(input.match_index).ensure(name()).column = state.string_position;
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_SaveRightNamedCaptureGroup::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
StringView capture_group_name = name();
if (state.named_capture_group_matches.at(input.match_index).contains(capture_group_name)) {
auto start_position = state.named_capture_group_matches.at(input.match_index).ensure(capture_group_name).column;
auto length = state.string_position - start_position;
auto& map = state.named_capture_group_matches.at(input.match_index);
if constexpr (REGEX_DEBUG) {
VERIFY(start_position + length <= input.view.length());
dbgln("Save named capture group with name={} and content='{}'", capture_group_name, input.view.substring_view(start_position, length));
}
VERIFY(start_position + length <= input.view.length());
auto view = input.view.substring_view(start_position, length);
if (input.regex_options & AllFlags::StringCopyMatches) {
map.set(capture_group_name, { view.to_string(), input.line, start_position, input.global_offset + start_position }); // create a copy of the original string
} else {
map.set(capture_group_name, { view, input.line, start_position, input.global_offset + start_position }); // take view to original string
}
} else {
warnln("Didn't find corresponding capture group match for name={}, match_index={}", capture_group_name.to_string(), input.match_index);
}
return ExecutionResult::Continue;
}
ALWAYS_INLINE ExecutionResult OpCode_Compare::execute(const MatchInput& input, MatchState& state, MatchOutput&) const
{
bool inverse { false };
bool temporary_inverse { false };
bool reset_temp_inverse { false };
auto current_inversion_state = [&]() -> bool { return temporary_inverse ^ inverse; };
size_t string_position = state.string_position;
bool inverse_matched { false };
bool had_zero_length_match { false };
state.string_position_before_match = state.string_position;
size_t offset { state.instruction_position + 3 };
for (size_t i = 0; i < arguments_count(); ++i) {
if (state.string_position > string_position)
break;
if (reset_temp_inverse) {
reset_temp_inverse = false;
temporary_inverse = false;
} else {
reset_temp_inverse = true;
}
auto compare_type = (CharacterCompareType)m_bytecode->at(offset++);
if (compare_type == CharacterCompareType::Inverse)
inverse = true;
else if (compare_type == CharacterCompareType::TemporaryInverse) {
// If "TemporaryInverse" is given, negate the current inversion state only for the next opcode.
// it follows that this cannot be the last compare element.
VERIFY(i != arguments_count() - 1);
temporary_inverse = true;
reset_temp_inverse = false;
} else if (compare_type == CharacterCompareType::Char) {
u32 ch = m_bytecode->at(offset++);
// We want to compare a string that is longer or equal in length to the available string
if (input.view.length() <= state.string_position)
return ExecutionResult::Failed_ExecuteLowPrioForks;
compare_char(input, state, ch, current_inversion_state(), inverse_matched);
} else if (compare_type == CharacterCompareType::AnyChar) {
// We want to compare a string that is definitely longer than the available string
if (input.view.length() <= state.string_position)
return ExecutionResult::Failed_ExecuteLowPrioForks;
VERIFY(!current_inversion_state());
++state.string_position;
} else if (compare_type == CharacterCompareType::String) {
VERIFY(!current_inversion_state());
const auto& length = m_bytecode->at(offset++);
// We want to compare a string that is definitely longer than the available string
if (input.view.length() < state.string_position + length)
return ExecutionResult::Failed_ExecuteLowPrioForks;
Optional<String> str;
Vector<u32> data;
data.ensure_capacity(length);
for (size_t i = offset; i < offset + length; ++i)
data.unchecked_append(m_bytecode->at(i));
auto view = input.view.construct_as_same(data, str);
offset += length;
if (!compare_string(input, state, view, had_zero_length_match))
return ExecutionResult::Failed_ExecuteLowPrioForks;
} else if (compare_type == CharacterCompareType::CharClass) {
if (input.view.length() <= state.string_position)
return ExecutionResult::Failed_ExecuteLowPrioForks;
auto character_class = (CharClass)m_bytecode->at(offset++);
auto ch = input.view[state.string_position];
compare_character_class(input, state, character_class, ch, current_inversion_state(), inverse_matched);
} else if (compare_type == CharacterCompareType::CharRange) {
if (input.view.length() <= state.string_position)
return ExecutionResult::Failed_ExecuteLowPrioForks;
auto value = (CharRange)m_bytecode->at(offset++);
auto from = value.from;
auto to = value.to;
auto ch = input.view[state.string_position];
compare_character_range(input, state, from, to, ch, current_inversion_state(), inverse_matched);
} else if (compare_type == CharacterCompareType::Reference) {
auto reference_number = (size_t)m_bytecode->at(offset++);
auto& groups = state.capture_group_matches.at(input.match_index);
if (groups.size() <= reference_number)
return ExecutionResult::Failed_ExecuteLowPrioForks;
auto str = groups.at(reference_number).view;
// We want to compare a string that is definitely longer than the available string
if (input.view.length() < state.string_position + str.length())
return ExecutionResult::Failed_ExecuteLowPrioForks;
if (!compare_string(input, state, str, had_zero_length_match))
return ExecutionResult::Failed_ExecuteLowPrioForks;
} else if (compare_type == CharacterCompareType::NamedReference) {
auto ptr = (const char*)m_bytecode->at(offset++);
auto length = (size_t)m_bytecode->at(offset++);
StringView name { ptr, length };
auto group = state.named_capture_group_matches.at(input.match_index).get(name);
if (!group.has_value())
return ExecutionResult::Failed_ExecuteLowPrioForks;
auto str = group.value().view;
// We want to compare a string that is definitely longer than the available string
if (input.view.length() < state.string_position + str.length())
return ExecutionResult::Failed_ExecuteLowPrioForks;
if (!compare_string(input, state, str, had_zero_length_match))
return ExecutionResult::Failed_ExecuteLowPrioForks;
} else {
warnln("Undefined comparison: {}", (int)compare_type);
VERIFY_NOT_REACHED();
break;
}
}
if (current_inversion_state() && !inverse_matched)
++state.string_position;
if ((!had_zero_length_match && string_position == state.string_position) || state.string_position > input.view.length())
return ExecutionResult::Failed_ExecuteLowPrioForks;
return ExecutionResult::Continue;
}
ALWAYS_INLINE void OpCode_Compare::compare_char(const MatchInput& input, MatchState& state, u32 ch1, bool inverse, bool& inverse_matched)
{
if (state.string_position == input.view.length())
return;
auto input_view = input.view.substring_view(state.string_position, 1);
Optional<String> str;
auto compare_view = input_view.construct_as_same({ &ch1, 1 }, str);
bool equal;
if (input.regex_options & AllFlags::Insensitive)
equal = input_view.equals_ignoring_case(compare_view);
else
equal = input_view.equals(compare_view);
if (equal) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
}
ALWAYS_INLINE bool OpCode_Compare::compare_string(const MatchInput& input, MatchState& state, RegexStringView const& str, bool& had_zero_length_match)
{
if (state.string_position + str.length() > input.view.length()) {
if (str.is_empty()) {
had_zero_length_match = true;
return true;
}
return false;
}
if (str.length() == 0) {
had_zero_length_match = true;
return true;
}
auto subject = input.view.substring_view(state.string_position, str.length());
bool equals;
if (input.regex_options & AllFlags::Insensitive)
equals = subject.equals_ignoring_case(str);
else
equals = subject.equals(str);
if (equals)
state.string_position += str.length();
return equals;
}
ALWAYS_INLINE void OpCode_Compare::compare_character_class(const MatchInput& input, MatchState& state, CharClass character_class, u32 ch, bool inverse, bool& inverse_matched)
{
switch (character_class) {
case CharClass::Alnum:
if (is_ascii_alphanumeric(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Alpha:
if (is_ascii_alpha(ch))
++state.string_position;
break;
case CharClass::Blank:
if (is_ascii_blank(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Cntrl:
if (is_ascii_control(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Digit:
if (is_ascii_digit(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Graph:
if (is_ascii_graphical(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Lower:
if (is_ascii_lower_alpha(ch) || ((input.regex_options & AllFlags::Insensitive) && is_ascii_upper_alpha(ch))) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Print:
if (is_ascii_printable(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Punct:
if (is_ascii_punctuation(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Space:
if (is_ascii_space(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Upper:
if (is_ascii_upper_alpha(ch) || ((input.regex_options & AllFlags::Insensitive) && is_ascii_lower_alpha(ch))) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Word:
if (is_ascii_alphanumeric(ch) || ch == '_') {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
case CharClass::Xdigit:
if (is_ascii_hex_digit(ch)) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
break;
}
}
ALWAYS_INLINE void OpCode_Compare::compare_character_range(const MatchInput& input, MatchState& state, u32 from, u32 to, u32 ch, bool inverse, bool& inverse_matched)
{
if (input.regex_options & AllFlags::Insensitive) {
from = to_ascii_lowercase(from);
to = to_ascii_lowercase(to);
ch = to_ascii_lowercase(ch);
}
if (ch >= from && ch <= to) {
if (inverse)
inverse_matched = true;
else
++state.string_position;
}
}
const String OpCode_Compare::arguments_string() const
{
return String::formatted("argc={}, args={} ", arguments_count(), arguments_size());
}
const Vector<String> OpCode_Compare::variable_arguments_to_string(Optional<MatchInput> input) const
{
Vector<String> result;
size_t offset { state().instruction_position + 3 };
RegexStringView view = ((input.has_value()) ? input.value().view : nullptr);
for (size_t i = 0; i < arguments_count(); ++i) {
auto compare_type = (CharacterCompareType)m_bytecode->at(offset++);
result.empend(String::formatted("type={} [{}]", (size_t)compare_type, character_compare_type_name(compare_type)));
auto string_start_offset = state().string_position_before_match;
if (compare_type == CharacterCompareType::Char) {
auto ch = m_bytecode->at(offset++);
auto is_ascii = is_ascii_printable(ch);
if (is_ascii)
result.empend(String::formatted("value='{:c}'", static_cast<char>(ch)));
else
result.empend(String::formatted("value={:x}", ch));
if (!view.is_null() && view.length() > string_start_offset) {
if (is_ascii) {
result.empend(String::formatted(
"compare against: '{}'",
view.substring_view(string_start_offset, string_start_offset > view.length() ? 0 : 1).to_string()));
} else {
auto str = view.substring_view(string_start_offset, string_start_offset > view.length() ? 0 : 1).to_string();
u8 buf[8] { 0 };
__builtin_memcpy(buf, str.characters(), min(str.length(), sizeof(buf)));
result.empend(String::formatted("compare against: {:x},{:x},{:x},{:x},{:x},{:x},{:x},{:x}",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]));
}
}
} else if (compare_type == CharacterCompareType::NamedReference) {
auto ptr = (const char*)m_bytecode->at(offset++);
auto length = m_bytecode->at(offset++);
result.empend(String::formatted("name='{}'", StringView { ptr, (size_t)length }));
} else if (compare_type == CharacterCompareType::Reference) {
auto ref = m_bytecode->at(offset++);
result.empend(String::formatted("number={}", ref));
} else if (compare_type == CharacterCompareType::String) {
auto& length = m_bytecode->at(offset++);
StringBuilder str_builder;
for (size_t i = 0; i < length; ++i)
str_builder.append(m_bytecode->at(offset++));
result.empend(String::formatted("value=\"{}\"", str_builder.string_view().substring_view(0, length)));
if (!view.is_null() && view.length() > state().string_position)
result.empend(String::formatted(
"compare against: \"{}\"",
input.value().view.substring_view(string_start_offset, string_start_offset + length > view.length() ? 0 : length).to_string()));
} else if (compare_type == CharacterCompareType::CharClass) {
auto character_class = (CharClass)m_bytecode->at(offset++);
result.empend(String::formatted("ch_class={} [{}]", (size_t)character_class, character_class_name(character_class)));
if (!view.is_null() && view.length() > state().string_position)
result.empend(String::formatted(
"compare against: '{}'",
input.value().view.substring_view(string_start_offset, state().string_position > view.length() ? 0 : 1).to_string()));
} else if (compare_type == CharacterCompareType::CharRange) {
auto value = (CharRange)m_bytecode->at(offset++);
result.empend(String::formatted("ch_range='{:c}'-'{:c}'", value.from, value.to));
if (!view.is_null() && view.length() > state().string_position)
result.empend(String::formatted(
"compare against: '{}'",
input.value().view.substring_view(string_start_offset, state().string_position > view.length() ? 0 : 1).to_string()));
}
}
return result;
}
}