ladybird/Userland/Libraries/LibGfx/AffineTransform.cpp
2021-01-12 12:17:46 +01:00

176 lines
5.4 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/LogStream.h>
#include <AK/Optional.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Rect.h>
namespace Gfx {
bool AffineTransform::is_identity() const
{
return m_values[0] == 1 && m_values[1] == 0 && m_values[2] == 0 && m_values[3] == 1 && m_values[4] == 0 && m_values[5] == 0;
}
static float hypotenuse(float x, float y)
{
// FIXME: This won't handle overflow :(
return sqrt(x * x + y * y);
}
float AffineTransform::x_scale() const
{
return hypotenuse(m_values[0], m_values[1]);
}
float AffineTransform::y_scale() const
{
return hypotenuse(m_values[2], m_values[3]);
}
AffineTransform& AffineTransform::scale(float sx, float sy)
{
m_values[0] *= sx;
m_values[1] *= sx;
m_values[2] *= sy;
m_values[3] *= sy;
return *this;
}
AffineTransform& AffineTransform::translate(float tx, float ty)
{
m_values[4] += tx * m_values[0] + ty * m_values[2];
m_values[5] += tx * m_values[1] + ty * m_values[3];
return *this;
}
AffineTransform& AffineTransform::multiply(const AffineTransform& other)
{
AffineTransform result;
result.m_values[0] = other.a() * a() + other.b() * c();
result.m_values[1] = other.a() * b() + other.b() * d();
result.m_values[2] = other.c() * a() + other.d() * c();
result.m_values[3] = other.c() * b() + other.d() * d();
result.m_values[4] = other.e() * a() + other.f() * c() + e();
result.m_values[5] = other.e() * b() + other.f() * d() + f();
*this = result;
return *this;
}
AffineTransform& AffineTransform::rotate_radians(float radians)
{
float sin_angle = sinf(radians);
float cos_angle = cosf(radians);
AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0);
multiply(rotation);
return *this;
}
void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const
{
mapped_x = (m_values[0] * unmapped_x + m_values[2] * unmapped_y + m_values[4]);
mapped_y = (m_values[1] * unmapped_x + m_values[3] * unmapped_y + m_values[5]);
}
template<>
IntPoint AffineTransform::map(const IntPoint& point) const
{
float mapped_x;
float mapped_y;
map(point.x(), point.y(), mapped_x, mapped_y);
return { roundf(mapped_x), roundf(mapped_y) };
}
template<>
FloatPoint AffineTransform::map(const FloatPoint& point) const
{
float mapped_x;
float mapped_y;
map(point.x(), point.y(), mapped_x, mapped_y);
return { mapped_x, mapped_y };
}
template<>
IntSize AffineTransform::map(const IntSize& size) const
{
return { roundf(size.width() * x_scale()), roundf(size.height() * y_scale()) };
}
template<>
FloatSize AffineTransform::map(const FloatSize& size) const
{
return { size.width() * x_scale(), size.height() * y_scale() };
}
template<typename T>
static T smallest_of(T p1, T p2, T p3, T p4)
{
return min(min(p1, p2), min(p3, p4));
}
template<typename T>
static T largest_of(T p1, T p2, T p3, T p4)
{
return max(max(p1, p2), max(p3, p4));
}
template<>
FloatRect AffineTransform::map(const FloatRect& rect) const
{
FloatPoint p1 = map(rect.top_left());
FloatPoint p2 = map(rect.top_right().translated(1, 0));
FloatPoint p3 = map(rect.bottom_right().translated(1, 1));
FloatPoint p4 = map(rect.bottom_left().translated(0, 1));
float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x());
float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y());
float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x());
float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y());
return { left, top, right - left, bottom - top };
}
template<>
IntRect AffineTransform::map(const IntRect& rect) const
{
return enclosing_int_rect(map(FloatRect(rect)));
}
const LogStream& operator<<(const LogStream& stream, const AffineTransform& value)
{
if (value.is_identity())
return stream << "{ Identity }";
return stream << "{ "
<< value.a() << ", "
<< value.b() << ", "
<< value.c() << ", "
<< value.d() << ", "
<< value.e() << ", "
<< value.f() << " }";
}
}