ladybird/Kernel/VirtIO/VirtIOQueue.h
Sahan Fernando ed0e7b53a5 Kernel: Move VirtIO code away from using a scatter gather list
Currently, when passing buffers into VirtIOQueues, we use scatter-gather
lists, which contain an internal vector of buffers. This vector is
allocated, filled and the destroy whenever we try to provide buffers
into a virtqueue, which would happen a lot in performance cricital code
(the main transport mechanism for certain paravirtualized devices).

This commit moves it over to using VirtIOQueueChains and building the
chain in place in the VirtIOQueue. Also included are a bunch of fixups
for the VirtIO Console device, making it use an internal VM::RingBuffer
instead.
2021-05-13 10:00:42 +02:00

187 lines
5.3 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <Kernel/SpinLock.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/ScatterGatherList.h>
namespace Kernel {
#define VIRTQ_DESC_F_NEXT 1
#define VIRTQ_DESC_F_INDIRECT 4
#define VIRTQ_AVAIL_F_NO_INTERRUPT 1
#define VIRTQ_USED_F_NO_NOTIFY 1
enum class BufferType {
DeviceReadable = 0,
DeviceWritable = 2
};
class VirtIODevice;
class VirtIOQueueChain;
class VirtIOQueue {
public:
VirtIOQueue(u16 queue_size, u16 notify_offset);
~VirtIOQueue();
bool is_null() const { return !m_queue_region; }
u16 notify_offset() const { return m_notify_offset; }
void enable_interrupts();
void disable_interrupts();
PhysicalAddress descriptor_area() const { return to_physical(m_descriptors.ptr()); }
PhysicalAddress driver_area() const { return to_physical(m_driver.ptr()); }
PhysicalAddress device_area() const { return to_physical(m_device.ptr()); }
bool new_data_available() const;
bool has_free_slots() const;
Optional<u16> take_free_slot();
VirtIOQueueChain pop_used_buffer_chain(size_t& used);
void discard_used_buffers();
SpinLock<u8>& lock() { return m_lock; }
bool should_notify() const;
private:
void reclaim_buffer_chain(u16 chain_start_index, u16 chain_end_index, size_t length_of_chain);
PhysicalAddress to_physical(const void* ptr) const
{
auto offset = FlatPtr(ptr) - m_queue_region->vaddr().get();
return m_queue_region->physical_page(0)->paddr().offset(offset);
}
struct [[gnu::packed]] VirtIOQueueDescriptor {
u64 address;
u32 length;
u16 flags;
u16 next;
};
struct [[gnu::packed]] VirtIOQueueDriver {
u16 flags;
u16 index;
u16 rings[];
};
struct [[gnu::packed]] VirtIOQueueDeviceItem {
u32 index;
u32 length;
};
struct [[gnu::packed]] VirtIOQueueDevice {
u16 flags;
u16 index;
VirtIOQueueDeviceItem rings[];
};
const u16 m_queue_size;
const u16 m_notify_offset;
u16 m_free_buffers;
u16 m_free_head { 0 };
u16 m_used_tail { 0 };
u16 m_driver_index_shadow { 0 };
OwnPtr<VirtIOQueueDescriptor> m_descriptors { nullptr };
OwnPtr<VirtIOQueueDriver> m_driver { nullptr };
OwnPtr<VirtIOQueueDevice> m_device { nullptr };
OwnPtr<Region> m_queue_region;
SpinLock<u8> m_lock;
friend class VirtIOQueueChain;
};
class VirtIOQueueChain {
public:
VirtIOQueueChain(VirtIOQueue& queue)
: m_queue(queue)
{
}
VirtIOQueueChain(VirtIOQueue& queue, u16 start_index, u16 end_index, size_t chain_length)
: m_queue(queue)
, m_start_of_chain_index(start_index)
, m_end_of_chain_index(end_index)
, m_chain_length(chain_length)
{
}
VirtIOQueueChain(VirtIOQueueChain&& other)
: m_queue(other.m_queue)
, m_start_of_chain_index(other.m_start_of_chain_index)
, m_end_of_chain_index(other.m_end_of_chain_index)
, m_chain_length(other.m_chain_length)
, m_chain_has_writable_pages(other.m_chain_has_writable_pages)
{
other.m_start_of_chain_index = {};
other.m_end_of_chain_index = {};
other.m_chain_length = 0;
other.m_chain_has_writable_pages = false;
}
VirtIOQueueChain& operator=(VirtIOQueueChain&& other)
{
VERIFY(&m_queue == &other.m_queue);
ensure_chain_is_empty();
m_start_of_chain_index = other.m_start_of_chain_index;
m_end_of_chain_index = other.m_end_of_chain_index;
m_chain_length = other.m_chain_length;
m_chain_has_writable_pages = other.m_chain_has_writable_pages;
other.m_start_of_chain_index = {};
other.m_end_of_chain_index = {};
other.m_chain_length = 0;
other.m_chain_has_writable_pages = false;
return *this;
}
~VirtIOQueueChain()
{
ensure_chain_is_empty();
}
[[nodiscard]] VirtIOQueue& queue() const { return m_queue; }
[[nodiscard]] bool is_empty() const { return m_chain_length == 0; }
[[nodiscard]] size_t length() const { return m_chain_length; }
bool add_buffer_to_chain(PhysicalAddress buffer_start, size_t buffer_length, BufferType buffer_type);
void submit_to_queue();
void release_buffer_slots_to_queue();
void for_each(Function<void(PhysicalAddress, size_t)> callback)
{
VERIFY(m_queue.lock().is_locked());
if (!m_start_of_chain_index.has_value())
return;
auto index = m_start_of_chain_index.value();
for (size_t i = 0; i < m_chain_length; ++i) {
auto addr = m_queue.m_descriptors[index].address;
auto length = m_queue.m_descriptors[index].length;
callback(PhysicalAddress(addr), length);
index = m_queue.m_descriptors[index].next;
}
}
private:
void ensure_chain_is_empty() const
{
VERIFY(!m_start_of_chain_index.has_value());
VERIFY(!m_end_of_chain_index.has_value());
VERIFY(m_chain_length == 0);
}
VirtIOQueue& m_queue;
Optional<u16> m_start_of_chain_index {};
Optional<u16> m_end_of_chain_index {};
size_t m_chain_length {};
bool m_chain_has_writable_pages { false };
};
}