ladybird/Userland/Libraries/LibCore/EventLoopImplementationUnix.cpp
Andreas Kling f61947fa9e LibCore: Remove unused EventLoopManager::wake()
Only EventLoopImplementation needs to know how to wake up.
2023-04-26 19:17:04 +01:00

531 lines
16 KiB
C++

/*
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/IDAllocator.h>
#include <AK/Singleton.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <AK/WeakPtr.h>
#include <LibCore/Event.h>
#include <LibCore/EventLoopImplementationUnix.h>
#include <LibCore/Notifier.h>
#include <LibCore/Object.h>
#include <LibCore/Socket.h>
#include <LibCore/System.h>
#include <LibCore/ThreadEventQueue.h>
#include <sys/select.h>
#include <unistd.h>
namespace Core {
struct ThreadData;
namespace {
thread_local ThreadData* s_thread_data;
}
struct EventLoopTimer {
int timer_id { 0 };
Time interval;
Time fire_time;
bool should_reload { false };
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
WeakPtr<Object> owner;
void reload(Time const& now) { fire_time = now + interval; }
bool has_expired(Time const& now) const { return now > fire_time; }
};
struct ThreadData {
static ThreadData& the()
{
if (!s_thread_data) {
// FIXME: Don't leak this.
s_thread_data = new ThreadData;
}
return *s_thread_data;
}
ThreadData()
{
pid = getpid();
initialize_wake_pipe();
}
void initialize_wake_pipe()
{
if (wake_pipe_fds[0] != -1)
close(wake_pipe_fds[0]);
if (wake_pipe_fds[1] != -1)
close(wake_pipe_fds[1]);
#if defined(SOCK_NONBLOCK)
int rc = pipe2(wake_pipe_fds, O_CLOEXEC);
#else
int rc = pipe(wake_pipe_fds);
fcntl(wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
fcntl(wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);
#endif
VERIFY(rc == 0);
}
// Each thread has its own timers, notifiers and a wake pipe.
HashMap<int, NonnullOwnPtr<EventLoopTimer>> timers;
HashTable<Notifier*> notifiers;
// The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
// wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
int wake_pipe_fds[2] { -1, -1 };
pid_t pid { 0 };
IDAllocator id_allocator;
};
EventLoopImplementationUnix::EventLoopImplementationUnix()
: m_wake_pipe_fds(&ThreadData::the().wake_pipe_fds)
{
}
EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;
int EventLoopImplementationUnix::exec()
{
for (;;) {
if (m_exit_requested)
return m_exit_code;
pump(PumpMode::WaitForEvents);
}
VERIFY_NOT_REACHED();
}
size_t EventLoopImplementationUnix::pump(PumpMode mode)
{
static_cast<EventLoopManagerUnix&>(EventLoopManager::the()).wait_for_events(mode);
return ThreadEventQueue::current().process();
}
void EventLoopImplementationUnix::quit(int code)
{
m_exit_requested = true;
m_exit_code = code;
}
void EventLoopImplementationUnix::unquit()
{
m_exit_requested = false;
m_exit_code = 0;
}
bool EventLoopImplementationUnix::was_exit_requested() const
{
return m_exit_requested;
}
void EventLoopImplementationUnix::post_event(Object& receiver, NonnullOwnPtr<Event>&& event)
{
m_thread_event_queue.post_event(receiver, move(event));
if (&m_thread_event_queue != &ThreadEventQueue::current())
wake();
}
void EventLoopImplementationUnix::wake()
{
int wake_event = 0;
MUST(Core::System::write((*m_wake_pipe_fds)[1], { &wake_event, sizeof(wake_event) }));
}
void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mode)
{
auto& thread_data = ThreadData::the();
fd_set read_fds {};
fd_set write_fds {};
retry:
int max_fd = 0;
auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
FD_SET(fd, &set);
if (fd > max_fd)
max_fd = fd;
};
int max_fd_added = -1;
// The wake pipe informs us of POSIX signals as well as manual calls to wake()
add_fd_to_set(thread_data.wake_pipe_fds[0], read_fds);
max_fd = max(max_fd, max_fd_added);
for (auto& notifier : thread_data.notifiers) {
if (notifier->type() == Notifier::Type::Read)
add_fd_to_set(notifier->fd(), read_fds);
if (notifier->type() == Notifier::Type::Write)
add_fd_to_set(notifier->fd(), write_fds);
if (notifier->type() == Notifier::Type::Exceptional)
TODO();
}
bool has_pending_events = ThreadEventQueue::current().has_pending_events();
// Figure out how long to wait at maximum.
// This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
Time now;
struct timeval timeout = { 0, 0 };
bool should_wait_forever = false;
if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
auto next_timer_expiration = get_next_timer_expiration();
if (next_timer_expiration.has_value()) {
now = Time::now_monotonic_coarse();
auto computed_timeout = next_timer_expiration.value() - now;
if (computed_timeout.is_negative())
computed_timeout = Time::zero();
timeout = computed_timeout.to_timeval();
} else {
should_wait_forever = true;
}
}
try_select_again:
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
int marked_fd_count = select(max_fd + 1, &read_fds, &write_fds, nullptr, should_wait_forever ? nullptr : &timeout);
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
if (marked_fd_count < 0) {
int saved_errno = errno;
if (saved_errno == EINTR)
goto try_select_again;
dbgln("EventLoopImplementationUnix::wait_for_events: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
VERIFY_NOT_REACHED();
}
// We woke up due to a call to wake() or a POSIX signal.
// Handle signals and see whether we need to handle events as well.
if (FD_ISSET(thread_data.wake_pipe_fds[0], &read_fds)) {
int wake_events[8];
ssize_t nread;
// We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
// but we get interrupted. Therefore, just retry while we were interrupted.
do {
errno = 0;
nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
if (nread == 0)
break;
} while (nread < 0 && errno == EINTR);
if (nread < 0) {
perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
VERIFY_NOT_REACHED();
}
VERIFY(nread > 0);
bool wake_requested = false;
int event_count = nread / sizeof(wake_events[0]);
for (int i = 0; i < event_count; i++) {
if (wake_events[i] != 0)
dispatch_signal(wake_events[i]);
else
wake_requested = true;
}
if (!wake_requested && nread == sizeof(wake_events))
goto retry;
}
if (!thread_data.timers.is_empty()) {
now = Time::now_monotonic_coarse();
}
// Handle expired timers.
for (auto& it : thread_data.timers) {
auto& timer = *it.value;
if (!timer.has_expired(now))
continue;
auto owner = timer.owner.strong_ref();
if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
&& owner && !owner->is_visible_for_timer_purposes()) {
continue;
}
if (owner)
ThreadEventQueue::current().post_event(*owner, make<TimerEvent>(timer.timer_id));
if (timer.should_reload) {
timer.reload(now);
} else {
// FIXME: Support removing expired timers that don't want to reload.
VERIFY_NOT_REACHED();
}
}
if (!marked_fd_count)
return;
// Handle file system notifiers by making them normal events.
for (auto& notifier : thread_data.notifiers) {
if (notifier->type() == Notifier::Type::Read && FD_ISSET(notifier->fd(), &read_fds)) {
ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
}
if (notifier->type() == Notifier::Type::Write && FD_ISSET(notifier->fd(), &write_fds)) {
ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
}
}
}
class SignalHandlers : public RefCounted<SignalHandlers> {
AK_MAKE_NONCOPYABLE(SignalHandlers);
AK_MAKE_NONMOVABLE(SignalHandlers);
public:
SignalHandlers(int signal_number, void (*handle_signal)(int));
~SignalHandlers();
void dispatch();
int add(Function<void(int)>&& handler);
bool remove(int handler_id);
bool is_empty() const
{
if (m_calling_handlers) {
for (auto& handler : m_handlers_pending) {
if (handler.value)
return false; // an add is pending
}
}
return m_handlers.is_empty();
}
bool have(int handler_id) const
{
if (m_calling_handlers) {
auto it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // a deletion is pending
}
}
return m_handlers.contains(handler_id);
}
int m_signal_number;
void (*m_original_handler)(int); // TODO: can't use sighandler_t?
HashMap<int, Function<void(int)>> m_handlers;
HashMap<int, Function<void(int)>> m_handlers_pending;
bool m_calling_handlers { false };
};
struct SignalHandlersInfo {
HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
int next_signal_id { 0 };
};
static Singleton<SignalHandlersInfo> s_signals;
template<bool create_if_null = true>
inline SignalHandlersInfo* signals_info()
{
return s_signals.ptr();
}
void EventLoopManagerUnix::dispatch_signal(int signal_number)
{
auto& info = *signals_info();
auto handlers = info.signal_handlers.find(signal_number);
if (handlers != info.signal_handlers.end()) {
// Make sure we bump the ref count while dispatching the handlers!
// This allows a handler to unregister/register while the handlers
// are being called!
auto handler = handlers->value;
handler->dispatch();
}
}
void EventLoopImplementationUnix::notify_forked_and_in_child()
{
auto& thread_data = ThreadData::the();
thread_data.timers.clear();
thread_data.notifiers.clear();
thread_data.initialize_wake_pipe();
if (auto* info = signals_info<false>()) {
info->signal_handlers.clear();
info->next_signal_id = 0;
}
thread_data.pid = getpid();
}
Optional<Time> EventLoopManagerUnix::get_next_timer_expiration()
{
auto now = Time::now_monotonic_coarse();
Optional<Time> soonest {};
for (auto& it : ThreadData::the().timers) {
auto& fire_time = it.value->fire_time;
auto owner = it.value->owner.strong_ref();
if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
&& owner && !owner->is_visible_for_timer_purposes()) {
continue;
}
// OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
// FIXME: This whole operation could be O(1) with a better data structure.
if (fire_time < now)
return now;
if (!soonest.has_value() || fire_time < soonest.value())
soonest = fire_time;
}
return soonest;
}
SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
: m_signal_number(signal_number)
, m_original_handler(signal(signal_number, handle_signal))
{
}
SignalHandlers::~SignalHandlers()
{
signal(m_signal_number, m_original_handler);
}
void SignalHandlers::dispatch()
{
TemporaryChange change(m_calling_handlers, true);
for (auto& handler : m_handlers)
handler.value(m_signal_number);
if (!m_handlers_pending.is_empty()) {
// Apply pending adds/removes
for (auto& handler : m_handlers_pending) {
if (handler.value) {
auto result = m_handlers.set(handler.key, move(handler.value));
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
} else {
m_handlers.remove(handler.key);
}
}
m_handlers_pending.clear();
}
}
int SignalHandlers::add(Function<void(int)>&& handler)
{
int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
if (m_calling_handlers)
m_handlers_pending.set(id, move(handler));
else
m_handlers.set(id, move(handler));
return id;
}
bool SignalHandlers::remove(int handler_id)
{
VERIFY(handler_id != 0);
if (m_calling_handlers) {
auto it = m_handlers.find(handler_id);
if (it != m_handlers.end()) {
// Mark pending remove
m_handlers_pending.set(handler_id, {});
return true;
}
it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // already was marked as deleted
it->value = nullptr;
return true;
}
return false;
}
return m_handlers.remove(handler_id);
}
void EventLoopManagerUnix::handle_signal(int signal_number)
{
VERIFY(signal_number != 0);
auto& thread_data = ThreadData::the();
// We MUST check if the current pid still matches, because there
// is a window between fork() and exec() where a signal delivered
// to our fork could be inadvertently routed to the parent process!
if (getpid() == thread_data.pid) {
int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
if (nwritten < 0) {
perror("EventLoopImplementationUnix::register_signal: write");
VERIFY_NOT_REACHED();
}
} else {
// We're a fork who received a signal, reset thread_data.pid.
thread_data.pid = getpid();
}
}
int EventLoopManagerUnix::register_signal(int signal_number, Function<void(int)> handler)
{
VERIFY(signal_number != 0);
auto& info = *signals_info();
auto handlers = info.signal_handlers.find(signal_number);
if (handlers == info.signal_handlers.end()) {
auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopManagerUnix::handle_signal));
auto handler_id = signal_handlers->add(move(handler));
info.signal_handlers.set(signal_number, move(signal_handlers));
return handler_id;
} else {
return handlers->value->add(move(handler));
}
}
void EventLoopManagerUnix::unregister_signal(int handler_id)
{
VERIFY(handler_id != 0);
int remove_signal_number = 0;
auto& info = *signals_info();
for (auto& h : info.signal_handlers) {
auto& handlers = *h.value;
if (handlers.remove(handler_id)) {
if (handlers.is_empty())
remove_signal_number = handlers.m_signal_number;
break;
}
}
if (remove_signal_number != 0)
info.signal_handlers.remove(remove_signal_number);
}
int EventLoopManagerUnix::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
{
VERIFY(milliseconds >= 0);
auto& thread_data = ThreadData::the();
auto timer = make<EventLoopTimer>();
timer->owner = object;
timer->interval = Time::from_milliseconds(milliseconds);
timer->reload(Time::now_monotonic_coarse());
timer->should_reload = should_reload;
timer->fire_when_not_visible = fire_when_not_visible;
int timer_id = thread_data.id_allocator.allocate();
timer->timer_id = timer_id;
thread_data.timers.set(timer_id, move(timer));
return timer_id;
}
bool EventLoopManagerUnix::unregister_timer(int timer_id)
{
auto& thread_data = ThreadData::the();
thread_data.id_allocator.deallocate(timer_id);
return thread_data.timers.remove(timer_id);
}
void EventLoopManagerUnix::register_notifier(Notifier& notifier)
{
ThreadData::the().notifiers.set(&notifier);
}
void EventLoopManagerUnix::unregister_notifier(Notifier& notifier)
{
ThreadData::the().notifiers.remove(&notifier);
}
void EventLoopManagerUnix::did_post_event()
{
}
EventLoopManagerUnix::~EventLoopManagerUnix() = default;
NonnullOwnPtr<EventLoopImplementation> EventLoopManagerUnix::make_implementation()
{
return adopt_own(*new EventLoopImplementationUnix);
}
}