ladybird/Kernel/Task.cpp
Andreas Kling 56c1f9db8e A userspace process can now GPF and the OS goes on!
This is really rickety, but it kinda sorta works for my test GPF!
2018-10-17 23:49:32 +02:00

525 lines
13 KiB
C++

#include "types.h"
#include "Task.h"
#include "kmalloc.h"
#include "VGA.h"
#include "StdLib.h"
#include "i386.h"
#include "system.h"
#include "FileSystem.h"
#include "MemoryManager.h"
Task* current;
Task* s_kernelTask;
static pid_t next_pid;
static InlineLinkedList<Task>* s_tasks;
static bool contextSwitch(Task*);
static void redoKernelTaskTSS()
{
if (!s_kernelTask->selector())
s_kernelTask->setSelector(allocateGDTEntry());
auto& tssDescriptor = getGDTEntry(s_kernelTask->selector());
tssDescriptor.setBase(&s_kernelTask->tss());
tssDescriptor.setLimit(0xffff);
tssDescriptor.dpl = 0;
tssDescriptor.segment_present = 1;
tssDescriptor.granularity = 1;
tssDescriptor.zero = 0;
tssDescriptor.operation_size = 1;
tssDescriptor.descriptor_type = 0;
tssDescriptor.type = 9;
flushGDT();
}
void Task::prepForIRETToNewTask()
{
redoKernelTaskTSS();
s_kernelTask->tss().backlink = current->selector();
loadTaskRegister(s_kernelTask->selector());
}
void Task::initialize()
{
current = nullptr;
next_pid = 0;
s_tasks = new InlineLinkedList<Task>;
s_kernelTask = new Task(0, "idle", IPC::Handle::Any, Task::Ring0);
redoKernelTaskTSS();
loadTaskRegister(s_kernelTask->selector());
}
#ifdef TASK_SANITY_CHECKS
void Task::checkSanity(const char* msg)
{
char ch = current->name()[0];
kprintf("<%p> %s{%u}%b [%d] :%b: sanity check <%s>\n",
current->name().characters(),
current->name().characters(),
current->name().length(),
current->name()[current->name().length() - 1],
current->pid(), ch, msg ? msg : "");
ASSERT((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'));
}
#endif
void Task::allocateLDT()
{
ASSERT(!m_tss.ldt);
static const WORD numLDTEntries = 4;
WORD newLDTSelector = allocateGDTEntry();
m_ldtEntries = new Descriptor[numLDTEntries];
#if 1
kprintf("new ldt selector = %x\n", newLDTSelector);
kprintf("new ldt table at = %p\n", m_ldtEntries);
kprintf("new ldt table size = %u\n", (numLDTEntries * 8) - 1);
#endif
Descriptor& ldt = getGDTEntry(newLDTSelector);
ldt.setBase(m_ldtEntries);
ldt.setLimit(numLDTEntries * 8 - 1);
ldt.dpl = 0;
ldt.segment_present = 1;
ldt.granularity = 0;
ldt.zero = 0;
ldt.operation_size = 1;
ldt.descriptor_type = 0;
ldt.type = Descriptor::LDT;
m_tss.ldt = newLDTSelector;
}
Task::Task(void (*e)(), const char* n, IPC::Handle h, RingLevel ring)
: m_name(n)
, m_entry(e)
, m_pid(next_pid++)
, m_handle(h)
, m_state(Runnable)
, m_ring(ring)
{
memset(&m_tss, 0, sizeof(m_tss));
memset(&m_ldtEntries, 0, sizeof(m_ldtEntries));
if (ring == Ring3) {
allocateLDT();
}
// Only IF is set when a task boots.
m_tss.eflags = 0x0202;
WORD dataSegment;
WORD stackSegment;
WORD codeSegment;
if (ring == Ring0) {
codeSegment = 0x08;
dataSegment = 0x10;
stackSegment = dataSegment;
} else {
codeSegment = 0x1b;
dataSegment = 0x23;
stackSegment = dataSegment;
}
m_tss.ds = dataSegment;
m_tss.es = dataSegment;
m_tss.fs = dataSegment;
m_tss.gs = dataSegment;
m_tss.ss = stackSegment;
m_tss.cs = codeSegment;
m_tss.cr3 = MemoryManager::the().pageDirectoryBase().get();
m_tss.eip = (DWORD)m_entry;
// NOTE: Each task gets 4KB of stack.
// This memory is leaked ATM.
// But uh, there's also no process termination, so I guess it's not technically leaked...
static const DWORD defaultStackSize = 4096;
m_stackTop = ((DWORD)kmalloc(defaultStackSize) + defaultStackSize) & 0xffffff8;
m_tss.esp = m_stackTop;
if (ring == Ring3) {
// Set up a separate stack for Ring0.
// FIXME: Don't leak this stack either.
DWORD ring0StackTop = ((DWORD)kmalloc(defaultStackSize) + defaultStackSize) & 0xffffff8;
m_tss.ss0 = 0x10;
m_tss.esp0 = ring0StackTop;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_pid;
m_farPtr.offset = 0x12345678;
// Don't add task 0 (kernel dummy task) to task list.
// FIXME: This doesn't belong in the constructor.
if (m_pid == 0)
return;
// Add it to head of task list (meaning it's next to run too, ATM.)
s_tasks->prepend(this);
system.nprocess++;
kprintf("Task %u (%s) spawned @ %p\n", m_pid, m_name.characters(), m_entry);
}
Task::~Task()
{
delete [] m_ldtEntries;
m_ldtEntries = nullptr;
}
void yield()
{
if (!current) {
kprintf( "PANIC: yield() with !current" );
HANG;
}
//kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
if (!scheduleNewTask())
return;
//kprintf("yield() jumping to new task: %x (%s)\n", current->farPtr().selector, current->name().characters());
switchNow();
}
void switchNow()
{
Descriptor& descriptor = getGDTEntry(current->selector());
descriptor.type = 9;
flushGDT();
asm(
"ljmp *(%%eax)\n"
::"a"(&current->farPtr())
);
}
bool scheduleNewTask()
{
if (!current) {
// XXX: The first ever context_switch() goes to the idle task.
// This to setup a reliable place we can return to.
return contextSwitch(Task::kernelTask());
}
// Check and unblock tasks whose wait conditions have been met.
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->state() == Task::BlockedReceive && (task->ipc.msg.isValid() || task->ipc.notifies)) {
task->unblock();
continue;
}
if (task->state() == Task::BlockedSend) {
Task* peer = Task::fromIPCHandle(task->ipc.dst);
if (peer && peer->state() == Task::BlockedReceive && peer->acceptsMessageFrom(*task)) {
task->unblock();
continue;
}
}
if (task->state() == Task::BlockedSleep) {
if (task->wakeupTime() <= system.uptime) {
task->unblock();
continue;
}
}
}
auto* prevHead = s_tasks->head();
for (;;) {
// Move head to tail.
s_tasks->append(s_tasks->removeHead());
auto* task = s_tasks->head();
if (task->state() == Task::Runnable || task->state() == Task::Running) {
//kprintf("switch to %s\n", task->name().characters());
return contextSwitch(task);
}
if (task == prevHead) {
// Back at task_head, nothing wants to run.
return contextSwitch(Task::kernelTask());
}
}
}
static void drawSchedulerBanner(Task& task)
{
// FIXME: We need a kernel lock to do stuff like this :(
//return;
auto c = vga_get_cursor();
auto a = vga_get_attr();
vga_set_cursor(0, 50);
vga_set_attr(0x20);
kprintf(" ");
kprintf(" ");
kprintf(" ");
vga_set_cursor(0, 50);
kprintf("pid: %u ", task.pid());
vga_set_cursor(0, 58);
kprintf("%s", task.name().characters());
vga_set_cursor(0, 65);
kprintf("eip: %p", task.tss().eip);
vga_set_attr(a);
vga_set_cursor(c);
}
static bool contextSwitch(Task* t)
{
//kprintf("c_s to %s (same:%u)\n", t->name().characters(), current == t);
t->setTicksLeft(5);
if (current == t)
return false;
// If the last task hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Task::Running)
current->setState(Task::Runnable);
current = t;
t->setState(Task::Running);
if (!t->selector())
t->setSelector(allocateGDTEntry());
auto& tssDescriptor = getGDTEntry(t->selector());
tssDescriptor.limit_hi = 0;
tssDescriptor.limit_lo = 0xFFFF;
tssDescriptor.base_lo = (DWORD)(&t->tss()) & 0xFFFF;
tssDescriptor.base_hi = ((DWORD)(&t->tss()) >> 16) & 0xFF;
tssDescriptor.base_hi2 = ((DWORD)(&t->tss()) >> 24) & 0xFF;
tssDescriptor.dpl = 0;
tssDescriptor.segment_present = 1;
tssDescriptor.granularity = 1;
tssDescriptor.zero = 0;
tssDescriptor.operation_size = 1;
tssDescriptor.descriptor_type = 0;
tssDescriptor.type = 11; // Busy TSS
flushGDT();
drawSchedulerBanner(*t);
return true;
}
Task* Task::fromPID(pid_t pid)
{
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->pid() == pid)
return task;
}
return nullptr;
}
Task* Task::fromIPCHandle(IPC::Handle handle)
{
for (auto* task = s_tasks->head(); task; task = task->next()) {
if (task->handle() == handle)
return task;
}
return nullptr;
}
class FileHandle {
public:
FileHandle() { }
~FileHandle() { }
int seek(int offset);
size_t read(void* buffer, int bufferSize);
int fd() const { return m_fd; }
static FileHandle* fromFileDescriptor(int fd);
//private:
RefPtr<FileSystem::VirtualNode> m_vnode;
int m_fd { -1 };
size_t m_offset { 0 };
};
size_t FileHandle::read(void* buffer, int bufferSize)
{
Task::checkSanity("FileHandle::read");
size_t nread = m_vnode->read((BYTE*)buffer, m_offset, bufferSize);
m_offset += nread;
return nread;
}
int FileHandle::seek(int offset)
{
if (!m_vnode)
return -1;
ASSERT(offset >= 0);
if ((unsigned)offset >= m_vnode->size())
return -1;
m_offset = offset;
return m_offset;
}
FileHandle* FileHandle::fromFileDescriptor(int fd)
{
return current->fileHandleIfExists(fd);
}
FileHandle* Task::fileHandleIfExists(int fd)
{
if (fd < 0)
return nullptr;
if ((unsigned)fd < m_fileHandles.size())
return m_fileHandles[fd];
return nullptr;
}
int Task::sys$seek(int fd, int offset)
{
auto* handle = FileHandle::fromFileDescriptor(fd);
if (!handle)
return -1;
return handle->seek(offset);
}
int Task::sys$read(int fd, void* outbuf, size_t nread)
{
Task::checkSanity("Task::sys$read");
kprintf("Task::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
auto* handle = FileHandle::fromFileDescriptor(fd);
kprintf("Task::sys$read: handle=%p\n", handle);
if (!handle) {
kprintf("Task::sys$read: handle not found :(\n");
return -1;
}
kprintf("call read on handle=%p\n", handle);
nread = handle->read(outbuf, nread);
kprintf("called read\n");
kprintf("Task::sys$read: nread=%u\n", nread);
return nread;
}
int Task::sys$close(int fd)
{
auto* handle = FileHandle::fromFileDescriptor(fd);
if (!handle)
return -1;
return 0;
}
int Task::sys$open(const char* path, size_t pathLength)
{
Task::checkSanity("sys$open");
kprintf("Task::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
auto* handle = current->openFile(String(path, pathLength));
if (handle)
return handle->fd();
return -1;
}
FileHandle* Task::openFile(String&& path)
{
#if 0
auto vnode = FileSystem::createVirtualNode(move(path));
if (!vnode) {
kprintf("createVirtualNode failed\n");
return nullptr;
}
#endif
#if 0
FileHandle* fh = new FileHandle;
kprintf("made new FileHandle\n");
fh->m_fd = m_fileHandles.size();
kprintf(" fd = %d\n", fh->m_fd);
fh->m_vnode = move(vnode);
kprintf(" vnode = %p\n", fh->m_vnode.ptr());
m_fileHandles.append(move(fh)); // FIXME: allow non-move Vector::append
kprintf("Task::openFile(): FileHandle{%p} fd=%d\n", fh, fh->m_fd);
return fh;
#endif
return nullptr;
}
int Task::sys$kill(pid_t pid, int sig)
{
(void) sig;
if (pid == 0) {
// FIXME: Send to same-group processes.
ASSERT(pid != 0);
}
if (pid == -1) {
// FIXME: Send to all processes.
ASSERT(pid != -1);
}
ASSERT_NOT_REACHED();
Task* peer = Task::fromPID(pid);
if (!peer) {
// errno = ESRCH;
return -1;
}
#if 0
send(peer->handle(), IPC::Message(SYS_KILL, DataBuffer::copy((BYTE*)&sig, sizeof(sig))));
IPC::Message response = receive(peer->handle());
return *(int*)response.data();
#endif
return -1;
}
uid_t Task::sys$getuid()
{
return m_uid;
}
bool Task::acceptsMessageFrom(Task& peer)
{
return !ipc.msg.isValid() && (ipc.src == IPC::Handle::Any || ipc.src == peer.handle());
}
void Task::unblock()
{
ASSERT(m_state != Task::Runnable && m_state != Task::Running);
system.nblocked--;
m_state = Task::Runnable;
}
void Task::block(Task::State state)
{
ASSERT(current->state() == Task::Running);
system.nblocked++;
current->setState(state);
}
void block(Task::State state)
{
current->block(state);
yield();
}
void sleep(DWORD ticks)
{
ASSERT(current->state() == Task::Running);
current->setWakeupTime(system.uptime + ticks);
current->block(Task::BlockedSleep);
yield();
}
void Task::sys$sleep(DWORD ticks)
{
ASSERT(this == current);
sleep(ticks);
}
Task* Task::kernelTask()
{
ASSERT(s_kernelTask);
return s_kernelTask;
}
void Task::setError(int error)
{
m_error = error;
}