ladybird/Kernel/Time/TimeManagement.cpp
Idan Horowitz 57ba67ed2a Kernel: Create the time page region before initializing the timers
We were unconditionally trying to update it in the interrupt, which
would depend on the timer interrupt not being received too soon after
the timers are initialized (before the time page was initialized),
which was the case when using HPET timers via the ACPI tables, but not
when using the PIT when ACPI was disabled.
2022-01-18 21:00:46 +02:00

456 lines
16 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/StdLibExtras.h>
#include <AK/Time.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/APICTimer.h>
#include <Kernel/Time/HPET.h>
#include <Kernel/Time/HPETComparator.h>
#include <Kernel/Time/HardwareTimer.h>
#include <Kernel/Time/PIT.h>
#include <Kernel/Time/RTC.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
namespace Kernel {
static Singleton<TimeManagement> s_the;
bool TimeManagement::is_initialized()
{
return s_the.is_initialized();
}
TimeManagement& TimeManagement::the()
{
return *s_the;
}
bool TimeManagement::is_valid_clock_id(clockid_t clock_id)
{
switch (clock_id) {
case CLOCK_MONOTONIC:
case CLOCK_MONOTONIC_COARSE:
case CLOCK_MONOTONIC_RAW:
case CLOCK_REALTIME:
case CLOCK_REALTIME_COARSE:
return true;
default:
return false;
};
}
Time TimeManagement::current_time(clockid_t clock_id) const
{
switch (clock_id) {
case CLOCK_MONOTONIC:
return monotonic_time(TimePrecision::Precise);
case CLOCK_MONOTONIC_COARSE:
return monotonic_time(TimePrecision::Coarse);
case CLOCK_MONOTONIC_RAW:
return monotonic_time_raw();
case CLOCK_REALTIME:
return epoch_time(TimePrecision::Precise);
case CLOCK_REALTIME_COARSE:
return epoch_time(TimePrecision::Coarse);
default:
// Syscall entrypoint is missing a is_valid_clock_id(..) check?
VERIFY_NOT_REACHED();
}
}
bool TimeManagement::is_system_timer(const HardwareTimerBase& timer) const
{
return &timer == m_system_timer.ptr();
}
void TimeManagement::set_epoch_time(Time ts)
{
InterruptDisabler disabler;
// FIXME: Should use AK::Time internally
m_epoch_time = ts.to_timespec();
m_remaining_epoch_time_adjustment = { 0, 0 };
}
Time TimeManagement::monotonic_time(TimePrecision precision) const
{
// This is the time when last updated by an interrupt.
u64 seconds;
u32 ticks;
bool do_query = precision == TimePrecision::Precise && m_can_query_precise_time;
u32 update_iteration;
do {
update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
seconds = m_seconds_since_boot;
ticks = m_ticks_this_second;
if (do_query) {
// We may have to do this over again if the timer interrupt fires
// while we're trying to query the information. In that case, our
// seconds and ticks became invalid, producing an incorrect time.
// Be sure to not modify m_seconds_since_boot and m_ticks_this_second
// because this may only be modified by the interrupt handler
HPET::the().update_time(seconds, ticks, true);
}
} while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
VERIFY(m_time_ticks_per_second > 0);
VERIFY(ticks < m_time_ticks_per_second);
u64 ns = ((u64)ticks * 1000000000ull) / m_time_ticks_per_second;
VERIFY(ns < 1000000000ull);
return Time::from_timespec({ (i64)seconds, (i32)ns });
}
Time TimeManagement::epoch_time(TimePrecision) const
{
// TODO: Take into account precision
timespec ts;
u32 update_iteration;
do {
update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
ts = m_epoch_time;
} while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
return Time::from_timespec(ts);
}
u64 TimeManagement::uptime_ms() const
{
auto mtime = monotonic_time().to_timespec();
// This overflows after 292 million years of uptime.
// Since this is only used for performance timestamps and sys$times, that's probably enough.
u64 ms = mtime.tv_sec * 1000ull;
ms += mtime.tv_nsec / 1000000;
return ms;
}
UNMAP_AFTER_INIT void TimeManagement::initialize(u32 cpu)
{
if (cpu == 0) {
VERIFY(!s_the.is_initialized());
s_the.ensure_instance();
if (APIC::initialized()) {
// Initialize the APIC timers after the other timers as the
// initialization needs to briefly enable interrupts, which then
// would trigger a deadlock trying to get the s_the instance while
// creating it.
if (auto* apic_timer = APIC::the().initialize_timers(*s_the->m_system_timer)) {
dmesgln("Time: Using APIC timer as system timer");
s_the->set_system_timer(*apic_timer);
}
}
} else {
VERIFY(s_the.is_initialized());
if (auto* apic_timer = APIC::the().get_timer()) {
dmesgln("Time: Enable APIC timer on CPU #{}", cpu);
apic_timer->enable_local_timer();
}
}
}
void TimeManagement::set_system_timer(HardwareTimerBase& timer)
{
VERIFY(Processor::is_bootstrap_processor()); // This should only be called on the BSP!
auto original_callback = m_system_timer->set_callback(nullptr);
m_system_timer->disable();
timer.set_callback(move(original_callback));
m_system_timer = timer;
}
time_t TimeManagement::ticks_per_second() const
{
return m_time_keeper_timer->ticks_per_second();
}
time_t TimeManagement::boot_time() const
{
return RTC::boot_time();
}
UNMAP_AFTER_INIT TimeManagement::TimeManagement()
: m_time_page_region(MM.allocate_kernel_region(PAGE_SIZE, "Time page"sv, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value_but_fixme_should_propagate_errors())
{
bool probe_non_legacy_hardware_timers = !(kernel_command_line().is_legacy_time_enabled());
if (ACPI::is_enabled()) {
if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
RTC::initialize();
m_epoch_time.tv_sec += boot_time();
} else {
dmesgln("ACPI: RTC CMOS Not present");
}
} else {
// We just assume that we can access RTC CMOS, if ACPI isn't usable.
RTC::initialize();
m_epoch_time.tv_sec += boot_time();
}
if (probe_non_legacy_hardware_timers) {
if (!probe_and_set_non_legacy_hardware_timers())
if (!probe_and_set_legacy_hardware_timers())
VERIFY_NOT_REACHED();
} else if (!probe_and_set_legacy_hardware_timers()) {
VERIFY_NOT_REACHED();
}
}
Time TimeManagement::now()
{
return s_the.ptr()->epoch_time();
}
UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_and_initialize_periodic_timers()
{
bool should_enable = is_hpet_periodic_mode_allowed();
dbgln("Time: Scanning for periodic timers");
Vector<HardwareTimerBase*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (hardware_timer.is_periodic_capable()) {
timers.append(&hardware_timer);
if (should_enable)
hardware_timer.set_periodic();
}
}
return timers;
}
UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_for_non_periodic_timers()
{
dbgln("Time: Scanning for non-periodic timers");
Vector<HardwareTimerBase*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (!hardware_timer.is_periodic_capable())
timers.append(&hardware_timer);
}
return timers;
}
bool TimeManagement::is_hpet_periodic_mode_allowed()
{
switch (kernel_command_line().hpet_mode()) {
case HPETMode::Periodic:
return true;
case HPETMode::NonPeriodic:
return false;
default:
VERIFY_NOT_REACHED();
}
}
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_non_legacy_hardware_timers()
{
if (!ACPI::is_enabled())
return false;
if (!HPET::test_and_initialize())
return false;
if (!HPET::the().comparators().size()) {
dbgln("HPET initialization aborted.");
return false;
}
dbgln("HPET: Setting appropriate functions to timers.");
for (auto& hpet_comparator : HPET::the().comparators())
m_hardware_timers.append(hpet_comparator);
auto periodic_timers = scan_and_initialize_periodic_timers();
auto non_periodic_timers = scan_for_non_periodic_timers();
if (is_hpet_periodic_mode_allowed())
VERIFY(!periodic_timers.is_empty());
VERIFY(periodic_timers.size() + non_periodic_timers.size() > 0);
size_t taken_periodic_timers_count = 0;
size_t taken_non_periodic_timers_count = 0;
if (periodic_timers.size() > taken_periodic_timers_count) {
m_system_timer = periodic_timers[taken_periodic_timers_count];
taken_periodic_timers_count += 1;
} else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
m_system_timer = non_periodic_timers[taken_non_periodic_timers_count];
taken_non_periodic_timers_count += 1;
}
m_system_timer->set_callback([this](const RegisterState& regs) {
// Update the time. We don't really care too much about the
// frequency of the interrupt because we'll query the main
// counter to get an accurate time.
if (Processor::is_bootstrap_processor()) {
// TODO: Have the other CPUs call system_timer_tick directly
increment_time_since_boot_hpet();
}
system_timer_tick(regs);
});
// Use the HPET main counter frequency for time purposes. This is likely
// a much higher frequency than the interrupt itself and allows us to
// keep a more accurate time
m_can_query_precise_time = true;
m_time_ticks_per_second = HPET::the().frequency();
m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(OPTIMAL_TICKS_PER_SECOND_RATE));
// We don't need an interrupt for time keeping purposes because we
// can query the timer.
m_time_keeper_timer = m_system_timer;
if (periodic_timers.size() > taken_periodic_timers_count) {
m_profile_timer = periodic_timers[taken_periodic_timers_count];
taken_periodic_timers_count += 1;
} else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
m_profile_timer = non_periodic_timers[taken_non_periodic_timers_count];
taken_non_periodic_timers_count += 1;
}
if (m_profile_timer) {
m_profile_timer->set_callback(PerformanceManager::timer_tick);
m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
}
return true;
}
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_legacy_hardware_timers()
{
if (ACPI::is_enabled()) {
if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
dbgln("ACPI: CMOS RTC Not Present");
return false;
} else {
dbgln("ACPI: CMOS RTC Present");
}
}
m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
m_hardware_timers.append(RealTimeClock::create(TimeManagement::system_timer_tick));
m_time_keeper_timer = m_hardware_timers[0];
m_system_timer = m_hardware_timers[1];
// The timer is only as accurate as the interrupts...
m_time_ticks_per_second = m_time_keeper_timer->ticks_per_second();
return true;
}
void TimeManagement::update_time(const RegisterState&)
{
TimeManagement::the().increment_time_since_boot();
}
void TimeManagement::increment_time_since_boot_hpet()
{
VERIFY(!m_time_keeper_timer.is_null());
VERIFY(m_time_keeper_timer->timer_type() == HardwareTimerType::HighPrecisionEventTimer);
// NOTE: m_seconds_since_boot and m_ticks_this_second are only ever
// updated here! So we can safely read that information, query the clock,
// and when we're all done we can update the information. This reduces
// contention when other processors attempt to read the clock.
auto seconds_since_boot = m_seconds_since_boot;
auto ticks_this_second = m_ticks_this_second;
auto delta_ns = HPET::the().update_time(seconds_since_boot, ticks_this_second, false);
// Now that we have a precise time, go update it as quickly as we can
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
m_seconds_since_boot = seconds_since_boot;
m_ticks_this_second = ticks_this_second;
// TODO: Apply m_remaining_epoch_time_adjustment
timespec_add(m_epoch_time, { (time_t)(delta_ns / 1000000000), (long)(delta_ns % 1000000000) }, m_epoch_time);
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
update_time_page();
}
void TimeManagement::increment_time_since_boot()
{
VERIFY(!m_time_keeper_timer.is_null());
// Compute time adjustment for adjtime. Let the clock run up to 1% fast or slow.
// That way, adjtime can adjust up to 36 seconds per hour, without time getting very jumpy.
// Once we have a smarter NTP service that also adjusts the frequency instead of just slewing time, maybe we can lower this.
long NanosPerTick = 1'000'000'000 / m_time_keeper_timer->frequency();
time_t MaxSlewNanos = NanosPerTick / 100;
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
// Clamp twice, to make sure intermediate fits into a long.
long slew_nanos = clamp(clamp(m_remaining_epoch_time_adjustment.tv_sec, (time_t)-1, (time_t)1) * 1'000'000'000 + m_remaining_epoch_time_adjustment.tv_nsec, -MaxSlewNanos, MaxSlewNanos);
timespec slew_nanos_ts;
timespec_sub({ 0, slew_nanos }, { 0, 0 }, slew_nanos_ts); // Normalize tv_nsec to be positive.
timespec_sub(m_remaining_epoch_time_adjustment, slew_nanos_ts, m_remaining_epoch_time_adjustment);
timespec epoch_tick = { .tv_sec = 0, .tv_nsec = NanosPerTick };
epoch_tick.tv_nsec += slew_nanos; // No need for timespec_add(), guaranteed to be in range.
timespec_add(m_epoch_time, epoch_tick, m_epoch_time);
if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
// FIXME: Synchronize with other clock somehow to prevent drifting apart.
++m_seconds_since_boot;
m_ticks_this_second = 0;
}
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
update_time_page();
}
void TimeManagement::system_timer_tick(const RegisterState& regs)
{
if (Processor::current_in_irq() <= 1) {
// Don't expire timers while handling IRQs
TimerQueue::the().fire();
}
Scheduler::timer_tick(regs);
}
bool TimeManagement::enable_profile_timer()
{
if (!m_profile_timer)
return false;
if (m_profile_enable_count.fetch_add(1) == 0)
return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(OPTIMAL_PROFILE_TICKS_PER_SECOND_RATE));
return true;
}
bool TimeManagement::disable_profile_timer()
{
if (!m_profile_timer)
return false;
if (m_profile_enable_count.fetch_sub(1) == 1)
return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
return true;
}
void TimeManagement::update_time_page()
{
auto& page = time_page();
u32 update_iteration = AK::atomic_fetch_add(&page.update2, 1u, AK::MemoryOrder::memory_order_acquire);
page.clocks[CLOCK_REALTIME_COARSE] = m_epoch_time;
page.clocks[CLOCK_MONOTONIC_COARSE] = monotonic_time(TimePrecision::Coarse).to_timespec();
AK::atomic_store(&page.update1, update_iteration + 1u, AK::MemoryOrder::memory_order_release);
}
TimePage& TimeManagement::time_page()
{
return *static_cast<TimePage*>((void*)m_time_page_region->vaddr().as_ptr());
}
Memory::VMObject& TimeManagement::time_page_vmobject()
{
return m_time_page_region->vmobject();
}
}