ladybird/Userland/Utilities/disasm.cpp
kleines Filmröllchen 3f0a77e788 disasm: Allow disassembling just one symbol
This is done in a crude way for now in that we
disassemble all instructions up to the symbol without printing them.
2024-01-22 20:54:16 -07:00

229 lines
10 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/Demangle.h>
#include <AK/IterationDecision.h>
#include <AK/OwnPtr.h>
#include <AK/QuickSort.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/Vector.h>
#include <LibCore/ArgsParser.h>
#include <LibCore/MappedFile.h>
#include <LibCore/System.h>
#include <LibELF/Image.h>
#include <LibMain/Main.h>
#include <LibX86/Disassembler.h>
#include <LibX86/ELFSymbolProvider.h>
struct Symbol {
size_t value { 0 };
size_t size { 0 };
StringView name;
size_t address() const { return value; }
size_t address_end() const { return value + size; }
bool contains(size_t virtual_address) { return (address() <= virtual_address && virtual_address < address_end()) || (size == 0 && address() == virtual_address); }
String format_symbol_address() const
{
if (size > 0)
return MUST(String::formatted("{:p}-{:p}", address(), address_end()));
return MUST(String::formatted("{:p}", address()));
}
};
ErrorOr<int> serenity_main(Main::Arguments args)
{
StringView path {};
StringView target_symbol;
Core::ArgsParser args_parser;
args_parser.set_general_help(
"Disassemble an executable, and show human-readable "
"assembly code for each function.");
args_parser.add_positional_argument(path, "Path to binary file", "path");
args_parser.add_option(target_symbol, "Show disassembly only for a specific symbol", "symbol", 's', "symbol");
args_parser.parse(args);
OwnPtr<Core::MappedFile> file;
u8 const* asm_data = nullptr;
size_t asm_size = 0;
if ((TRY(Core::System::stat(path))).st_size > 0) {
file = TRY(Core::MappedFile::map(path));
asm_data = static_cast<u8 const*>(file->data());
asm_size = MUST(file->size());
}
// Functions and similar symbols.
Vector<Symbol> ranged_symbols;
// Jump labels, relocation targets, etc.
Vector<Symbol> zero_size_symbols;
size_t file_offset = 0;
OwnPtr<X86::ELFSymbolProvider> symbol_provider; // nullptr for non-ELF disassembly.
OwnPtr<ELF::Image> elf;
if (asm_size >= 4 && strncmp(reinterpret_cast<char const*>(asm_data), "\u007fELF", 4) == 0) {
elf = make<ELF::Image>(asm_data, asm_size);
if (elf->is_valid()) {
symbol_provider = make<X86::ELFSymbolProvider>(*elf);
elf->for_each_section_of_type(SHT_PROGBITS, [&](ELF::Image::Section const& section) {
// FIXME: Disassemble all SHT_PROGBITS sections, not just .text.
if (section.name() != ".text")
return IterationDecision::Continue;
asm_data = reinterpret_cast<u8 const*>(section.raw_data());
asm_size = section.size();
file_offset = section.address();
return IterationDecision::Break;
});
ranged_symbols.ensure_capacity(elf->symbol_count() + 1);
zero_size_symbols.ensure_capacity(elf->symbol_count() + 1);
// Sentinels:
ranged_symbols.append({ 0, 0, StringView() });
zero_size_symbols.append({ 0, 0, StringView() });
elf->for_each_symbol([&](ELF::Image::Symbol const& symbol) {
if (symbol.name().is_empty())
return IterationDecision::Continue;
if (symbol.size() == 0)
zero_size_symbols.append({ symbol.value(), symbol.size(), symbol.name() });
else
ranged_symbols.append({ symbol.value(), symbol.size(), symbol.name() });
return IterationDecision::Continue;
});
auto symbol_order = [](auto& a, auto& b) {
if (a.value != b.value)
return a.value < b.value;
if (a.size != b.size)
return a.size < b.size;
return a.name < b.name;
};
quick_sort(ranged_symbols, symbol_order);
quick_sort(zero_size_symbols, symbol_order);
if constexpr (DISASM_DUMP_DEBUG) {
for (size_t i = 0; i < ranged_symbols.size(); ++i)
dbgln("{}: {:p}, {}", ranged_symbols[i].name, ranged_symbols[i].value, ranged_symbols[i].size);
for (size_t i = 0; i < zero_size_symbols.size(); ++i)
dbgln("{}: {:p}", zero_size_symbols[i].name, zero_size_symbols[i].value);
}
}
}
X86::SimpleInstructionStream stream(asm_data, asm_size);
X86::Disassembler disassembler(stream);
Vector<Symbol>::Iterator current_ranged_symbol = ranged_symbols.begin();
Vector<Symbol>::Iterator current_zero_size_symbol = zero_size_symbols.begin();
bool is_first_symbol = true;
bool current_instruction_is_in_symbol = false;
bool found_symbol = false;
for (;;) {
auto offset = stream.offset();
auto insn = disassembler.next();
if (!insn.has_value())
break;
size_t virtual_offset = file_offset + offset;
// Prefix regions of instructions belonging to a symbol with the symbol's name.
// Separate regions of instructions belonging to distinct symbols with newlines,
// and separate regions of instructions not belonging to symbols from regions belonging to symbols with newlines.
// Interesting cases:
// - More than 1 symbol covering a region of instructions (ICF, D1/D2)
// - Symbols of size 0 that don't cover any instructions but are at an address (want to print them, separated from instructions both before and after)
// Invariant: current_ranged_symbol is the largest instruction containing insn, or it is the largest instruction that has an address less than the instruction's address.
StringBuilder dangling_symbols;
StringBuilder instruction_symbols;
bool needs_separator = false;
if (current_zero_size_symbol < zero_size_symbols.end()) {
// Print "dangling" symbols preceding the current instruction.
while (current_zero_size_symbol + 1 < zero_size_symbols.end() && !(current_zero_size_symbol + 1)->contains(virtual_offset) && (current_zero_size_symbol + 1)->address() <= virtual_offset) {
++current_zero_size_symbol;
if (!is_first_symbol)
dangling_symbols.appendff("\n({} ({}))\n", demangle(current_zero_size_symbol->name), current_zero_size_symbol->format_symbol_address());
}
// Find and print all symbols covering the current instruction.
while (current_zero_size_symbol + 1 < zero_size_symbols.end() && (current_zero_size_symbol + 1)->contains(virtual_offset)) {
if (!is_first_symbol && !current_instruction_is_in_symbol)
needs_separator = true;
++current_zero_size_symbol;
current_instruction_is_in_symbol = true;
instruction_symbols.appendff("{} ({}):\n", demangle(current_zero_size_symbol->name), current_zero_size_symbol->format_symbol_address());
}
}
// Handle ranged symbols separately.
if (current_ranged_symbol < ranged_symbols.end() && !current_ranged_symbol->contains(virtual_offset)) {
if (!is_first_symbol && current_instruction_is_in_symbol) {
// The previous instruction was part of a symbol that doesn't cover the current instruction, so separate it from the current instruction with a newline.
needs_separator = true;
current_instruction_is_in_symbol = (current_ranged_symbol + 1 < ranged_symbols.end() && (current_ranged_symbol + 1)->contains(virtual_offset));
}
// Print "dangling" symbols preceding the current instruction.
while (current_ranged_symbol + 1 < ranged_symbols.end() && !(current_ranged_symbol + 1)->contains(virtual_offset) && (current_ranged_symbol + 1)->address() <= virtual_offset) {
++current_ranged_symbol;
if (!is_first_symbol)
dangling_symbols.appendff("\n({} ({}))\n", demangle(current_ranged_symbol->name), current_ranged_symbol->format_symbol_address());
}
// Find and print all symbols covering the current instruction.
while (current_ranged_symbol + 1 < ranged_symbols.end() && (current_ranged_symbol + 1)->contains(virtual_offset)) {
if (!is_first_symbol && !current_instruction_is_in_symbol)
needs_separator = true;
++current_ranged_symbol;
current_instruction_is_in_symbol = true;
instruction_symbols.appendff("{} ({}):\n", demangle(current_ranged_symbol->name), current_ranged_symbol->format_symbol_address());
}
is_first_symbol = false;
}
// Past the target symbol now; no need to disassemble more.
if (found_symbol && current_ranged_symbol->name != target_symbol)
break;
found_symbol = !target_symbol.is_empty() && current_ranged_symbol->name == target_symbol;
// We have not found the target symbol yet; don't print anything.
if (!target_symbol.is_empty() && current_ranged_symbol->name != target_symbol)
continue;
// Insert extra newline after the "dangling" symbols.
if (needs_separator)
outln();
if (auto dangling_symbols_text = TRY(dangling_symbols.to_string()); !dangling_symbols_text.is_empty())
outln("{}", dangling_symbols_text);
if (auto instruction_symbols_text = TRY(instruction_symbols.to_string()); !instruction_symbols_text.is_empty())
out("{}", instruction_symbols_text);
size_t length = insn.value().length();
StringBuilder builder;
builder.appendff("{:p} ", virtual_offset);
for (size_t i = 0; i < 7; i++) {
if (i < length)
builder.appendff("{:02x} ", asm_data[offset + i]);
else
builder.append(" "sv);
}
builder.append(" "sv);
builder.append(insn.value().to_byte_string(virtual_offset, symbol_provider));
outln("{}", builder.string_view());
for (size_t bytes_printed = 7; bytes_printed < length; bytes_printed += 7) {
builder.clear();
builder.appendff("{:p} ", virtual_offset + bytes_printed);
for (size_t i = bytes_printed; i < bytes_printed + 7 && i < length; i++)
builder.appendff(" {:02x}", asm_data[offset + i]);
outln("{}", builder.string_view());
}
}
return 0;
}