ladybird/AK/HashTable.h
Muhammad Zahalqa a68650a7b4
AK: HashTable add a constructor that allows preallocation of capacity + Use in CppLexer. (#3147)
1. Add general utility to get array number of elements.
2. Add Needed API to AK::HashTable
3. Refactor CppLexer initialization
2020-08-16 11:04:00 +02:00

407 lines
11 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/SinglyLinkedList.h>
#include <AK/StdLibExtras.h>
#include <AK/TemporaryChange.h>
#include <AK/Traits.h>
namespace AK {
enum class HashSetResult {
InsertedNewEntry,
ReplacedExistingEntry
};
template<typename T, typename>
class HashTable;
template<typename HashTableType, typename ElementType, typename BucketIteratorType>
class HashTableIterator {
public:
bool operator!=(const HashTableIterator& other) const
{
if (m_is_end && other.m_is_end)
return false;
return &m_table != &other.m_table
|| m_is_end != other.m_is_end
|| m_bucket_index != other.m_bucket_index
|| m_bucket_iterator != other.m_bucket_iterator;
}
bool operator==(const HashTableIterator& other) const { return !(*this != other); }
ElementType& operator*() { return *m_bucket_iterator; }
ElementType* operator->() { return m_bucket_iterator.operator->(); }
HashTableIterator& operator++()
{
skip_to_next();
return *this;
}
void skip_to_next()
{
while (!m_is_end) {
if (m_bucket_iterator.is_end()) {
++m_bucket_index;
if (m_bucket_index >= m_table.capacity()) {
m_is_end = true;
return;
}
m_bucket_iterator = m_table.bucket(m_bucket_index).begin();
} else {
++m_bucket_iterator;
}
if (!m_bucket_iterator.is_end())
return;
}
}
private:
friend HashTableType;
explicit HashTableIterator(HashTableType& table, bool is_end, BucketIteratorType bucket_iterator = {}, size_t bucket_index = 0)
: m_table(table)
, m_bucket_index(bucket_index)
, m_is_end(is_end)
, m_bucket_iterator(bucket_iterator)
{
ASSERT(!table.m_clearing);
ASSERT(!table.m_rehashing);
if (!is_end && !m_table.is_empty() && m_bucket_iterator.is_end()) {
m_bucket_iterator = m_table.bucket(0).begin();
if (m_bucket_iterator.is_end())
skip_to_next();
}
}
HashTableType& m_table;
size_t m_bucket_index { 0 };
bool m_is_end { false };
BucketIteratorType m_bucket_iterator;
};
template<typename T, typename TraitsForT>
class HashTable {
private:
using Bucket = SinglyLinkedList<T>;
public:
HashTable() { }
HashTable(size_t capacity)
: m_buckets(new Bucket[capacity])
, m_capacity(capacity)
{
}
HashTable(const HashTable& other)
{
ensure_capacity(other.size());
for (auto& it : other)
set(it);
}
HashTable& operator=(const HashTable& other)
{
if (this != &other) {
clear();
ensure_capacity(other.size());
for (auto& it : other)
set(it);
}
return *this;
}
HashTable(HashTable&& other)
: m_buckets(other.m_buckets)
, m_size(other.m_size)
, m_capacity(other.m_capacity)
{
other.m_size = 0;
other.m_capacity = 0;
other.m_buckets = nullptr;
}
HashTable& operator=(HashTable&& other)
{
if (this != &other) {
clear();
m_buckets = other.m_buckets;
m_size = other.m_size;
m_capacity = other.m_capacity;
other.m_size = 0;
other.m_capacity = 0;
other.m_buckets = nullptr;
}
return *this;
}
~HashTable() { clear(); }
bool is_empty() const { return !m_size; }
size_t size() const { return m_size; }
size_t capacity() const { return m_capacity; }
void ensure_capacity(size_t capacity)
{
ASSERT(capacity >= size());
rehash(capacity);
}
HashSetResult set(const T&);
HashSetResult set(T&&);
template<typename U, size_t N>
void set_from(U (&from_array)[N])
{
for (size_t i = 0; i < N; ++i) {
set(from_array[i]);
}
}
bool contains(const T&) const;
void clear();
using Iterator = HashTableIterator<HashTable, T, typename Bucket::Iterator>;
friend Iterator;
Iterator begin() { return Iterator(*this, is_empty()); }
Iterator end() { return Iterator(*this, true); }
using ConstIterator = HashTableIterator<const HashTable, const T, typename Bucket::ConstIterator>;
friend ConstIterator;
ConstIterator begin() const { return ConstIterator(*this, is_empty()); }
ConstIterator end() const { return ConstIterator(*this, true); }
template<typename Finder>
Iterator find(unsigned hash, Finder finder)
{
if (is_empty())
return end();
size_t bucket_index;
auto& bucket = lookup_with_hash(hash, &bucket_index);
auto bucket_iterator = bucket.find(finder);
if (bucket_iterator != bucket.end())
return Iterator(*this, false, bucket_iterator, bucket_index);
return end();
}
template<typename Finder>
ConstIterator find(unsigned hash, Finder finder) const
{
if (is_empty())
return end();
size_t bucket_index;
auto& bucket = lookup_with_hash(hash, &bucket_index);
auto bucket_iterator = bucket.find(finder);
if (bucket_iterator != bucket.end())
return ConstIterator(*this, false, bucket_iterator, bucket_index);
return end();
}
Iterator find(const T& value)
{
return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
}
ConstIterator find(const T& value) const
{
return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
}
bool remove(const T& value)
{
auto it = find(value);
if (it != end()) {
remove(it);
return true;
}
return false;
}
void remove(Iterator);
private:
Bucket& lookup(const T&, size_t* bucket_index = nullptr);
const Bucket& lookup(const T&, size_t* bucket_index = nullptr) const;
Bucket& lookup_with_hash(unsigned hash, size_t* bucket_index)
{
if (bucket_index)
*bucket_index = hash % m_capacity;
return m_buckets[hash % m_capacity];
}
const Bucket& lookup_with_hash(unsigned hash, size_t* bucket_index) const
{
if (bucket_index)
*bucket_index = hash % m_capacity;
return m_buckets[hash % m_capacity];
}
void rehash(size_t capacity);
void insert(const T&);
void insert(T&&);
Bucket& bucket(size_t index) { return m_buckets[index]; }
const Bucket& bucket(size_t index) const { return m_buckets[index]; }
Bucket* m_buckets { nullptr };
size_t m_size { 0 };
size_t m_capacity { 0 };
bool m_clearing { false };
bool m_rehashing { false };
};
template<typename T, typename TraitsForT>
HashSetResult HashTable<T, TraitsForT>::set(T&& value)
{
if (!m_capacity)
rehash(1);
auto& bucket = lookup(value);
for (auto& e : bucket) {
if (TraitsForT::equals(e, value)) {
e = move(value);
return HashSetResult::ReplacedExistingEntry;
}
}
if (size() >= capacity()) {
rehash(size() + 1);
insert(move(value));
} else {
bucket.append(move(value));
}
m_size++;
return HashSetResult::InsertedNewEntry;
}
template<typename T, typename TraitsForT>
HashSetResult HashTable<T, TraitsForT>::set(const T& value)
{
if (!m_capacity)
rehash(1);
auto& bucket = lookup(value);
for (auto& e : bucket) {
if (TraitsForT::equals(e, value)) {
e = value;
return HashSetResult::ReplacedExistingEntry;
}
}
if (size() >= capacity()) {
rehash(size() + 1);
insert(value);
} else {
bucket.append(value);
}
m_size++;
return HashSetResult::InsertedNewEntry;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::rehash(size_t new_capacity)
{
TemporaryChange<bool> change(m_rehashing, true);
new_capacity *= 2;
auto* new_buckets = new Bucket[new_capacity];
auto* old_buckets = m_buckets;
size_t old_capacity = m_capacity;
m_buckets = new_buckets;
m_capacity = new_capacity;
for (size_t i = 0; i < old_capacity; ++i) {
for (auto& value : old_buckets[i]) {
insert(move(value));
}
}
delete[] old_buckets;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::clear()
{
TemporaryChange<bool> change(m_clearing, true);
if (m_buckets) {
delete[] m_buckets;
m_buckets = nullptr;
}
m_capacity = 0;
m_size = 0;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::insert(T&& value)
{
auto& bucket = lookup(value);
bucket.append(move(value));
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::insert(const T& value)
{
auto& bucket = lookup(value);
bucket.append(value);
}
template<typename T, typename TraitsForT>
bool HashTable<T, TraitsForT>::contains(const T& value) const
{
if (is_empty())
return false;
auto& bucket = lookup(value);
for (auto& e : bucket) {
if (TraitsForT::equals(e, value))
return true;
}
return false;
}
template<typename T, typename TraitsForT>
void HashTable<T, TraitsForT>::remove(Iterator it)
{
ASSERT(!is_empty());
m_buckets[it.m_bucket_index].remove(it.m_bucket_iterator);
--m_size;
}
template<typename T, typename TraitsForT>
auto HashTable<T, TraitsForT>::lookup(const T& value, size_t* bucket_index) -> Bucket&
{
unsigned hash = TraitsForT::hash(value);
if (bucket_index)
*bucket_index = hash % m_capacity;
return m_buckets[hash % m_capacity];
}
template<typename T, typename TraitsForT>
auto HashTable<T, TraitsForT>::lookup(const T& value, size_t* bucket_index) const -> const Bucket&
{
unsigned hash = TraitsForT::hash(value);
if (bucket_index)
*bucket_index = hash % m_capacity;
return m_buckets[hash % m_capacity];
}
}
using AK::HashTable;