ladybird/Kernel/KSyms.cpp
Andreas Kling 9eef39d68a Kernel: Start implementing x86 SMAP support
Supervisor Mode Access Prevention (SMAP) is an x86 CPU feature that
prevents the kernel from accessing userspace memory. With SMAP enabled,
trying to read/write a userspace memory address while in the kernel
will now generate a page fault.

Since it's sometimes necessary to read/write userspace memory, there
are two new instructions that quickly switch the protection on/off:
STAC (disables protection) and CLAC (enables protection.)
These are exposed in kernel code via the stac() and clac() helpers.

There's also a SmapDisabler RAII object that can be used to ensure
that you don't forget to re-enable protection before returning to
userspace code.

THis patch also adds copy_to_user(), copy_from_user() and memset_user()
which are the "correct" way of doing things. These functions allow us
to briefly disable protection for a specific purpose, and then turn it
back on immediately after it's done. Going forward all kernel code
should be moved to using these and all uses of SmapDisabler are to be
considered FIXME's.

Note that we're not realizing the full potential of this feature since
I've used SmapDisabler quite liberally in this initial bring-up patch.
2020-01-05 18:14:51 +01:00

166 lines
5.2 KiB
C++

#include <AK/Demangle.h>
#include <AK/TemporaryChange.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <LibELF/ELFLoader.h>
static KSym* s_ksyms;
u32 ksym_lowest_address = 0xffffffff;
u32 ksym_highest_address = 0;
u32 ksym_count = 0;
bool ksyms_ready = false;
static u8 parse_hex_digit(char nibble)
{
if (nibble >= '0' && nibble <= '9')
return nibble - '0';
ASSERT(nibble >= 'a' && nibble <= 'f');
return 10 + (nibble - 'a');
}
u32 address_for_kernel_symbol(const char* name)
{
for (unsigned i = 0; i < ksym_count; ++i) {
if (!strcmp(name, s_ksyms[i].name))
return s_ksyms[i].address;
}
return 0;
}
const KSym* ksymbolicate(u32 address)
{
if (address < ksym_lowest_address || address > ksym_highest_address)
return nullptr;
for (unsigned i = 0; i < ksym_count; ++i) {
if (address < s_ksyms[i + 1].address)
return &s_ksyms[i];
}
return nullptr;
}
static void load_ksyms_from_data(const ByteBuffer& buffer)
{
ksym_lowest_address = 0xffffffff;
ksym_highest_address = 0;
auto* bufptr = (const char*)buffer.data();
auto* start_of_name = bufptr;
u32 address = 0;
for (unsigned i = 0; i < 8; ++i)
ksym_count = (ksym_count << 4) | parse_hex_digit(*(bufptr++));
s_ksyms = static_cast<KSym*>(kmalloc_eternal(sizeof(KSym) * ksym_count));
++bufptr; // skip newline
kprintf("Loading ksyms...");
unsigned current_ksym_index = 0;
while (bufptr < buffer.end_pointer()) {
for (unsigned i = 0; i < 8; ++i)
address = (address << 4) | parse_hex_digit(*(bufptr++));
bufptr += 3;
start_of_name = bufptr;
while (*(++bufptr)) {
if (*bufptr == '\n') {
break;
}
}
auto& ksym = s_ksyms[current_ksym_index];
ksym.address = address;
char* name = static_cast<char*>(kmalloc_eternal((bufptr - start_of_name) + 1));
memcpy(name, start_of_name, bufptr - start_of_name);
name[bufptr - start_of_name] = '\0';
ksym.name = name;
if (ksym.address < ksym_lowest_address)
ksym_lowest_address = ksym.address;
if (ksym.address > ksym_highest_address)
ksym_highest_address = ksym.address;
++bufptr;
++current_ksym_index;
}
kprintf("ok\n");
ksyms_ready = true;
}
[[gnu::noinline]] void dump_backtrace_impl(u32 ebp, bool use_ksyms)
{
SmapDisabler disabler;
#if 0
if (!current) {
//hang();
return;
}
#endif
if (use_ksyms && !ksyms_ready) {
hang();
return;
}
struct RecognizedSymbol {
u32 address;
const KSym* ksym;
};
int max_recognized_symbol_count = 256;
RecognizedSymbol recognized_symbols[max_recognized_symbol_count];
int recognized_symbol_count = 0;
if (use_ksyms) {
for (u32* stack_ptr = (u32*)ebp;
(current ? current->process().validate_read_from_kernel(VirtualAddress((u32)stack_ptr), sizeof(void*) * 2) : 1) && recognized_symbol_count < max_recognized_symbol_count; stack_ptr = (u32*)*stack_ptr) {
u32 retaddr = stack_ptr[1];
recognized_symbols[recognized_symbol_count++] = { retaddr, ksymbolicate(retaddr) };
}
} else {
for (u32* stack_ptr = (u32*)ebp;
(current ? current->process().validate_read_from_kernel(VirtualAddress((u32)stack_ptr), sizeof(void*) * 2) : 1); stack_ptr = (u32*)*stack_ptr) {
u32 retaddr = stack_ptr[1];
dbgprintf("%x (next: %x)\n", retaddr, stack_ptr ? (u32*)*stack_ptr : 0);
}
return;
}
ASSERT(recognized_symbol_count <= max_recognized_symbol_count);
for (int i = 0; i < recognized_symbol_count; ++i) {
auto& symbol = recognized_symbols[i];
if (!symbol.address)
break;
if (!symbol.ksym) {
if (current && current->process().elf_loader() && current->process().elf_loader()->has_symbols()) {
dbgprintf("%p %s\n", symbol.address, current->process().elf_loader()->symbolicate(symbol.address).characters());
} else {
dbgprintf("%p (no ELF symbols for process)\n", symbol.address);
}
continue;
}
unsigned offset = symbol.address - symbol.ksym->address;
if (symbol.ksym->address == ksym_highest_address && offset > 4096)
dbgprintf("%p\n", symbol.address);
else
dbgprintf("%p %s +%u\n", symbol.address, demangle(symbol.ksym->name).characters(), offset);
}
}
void dump_backtrace()
{
static bool in_dump_backtrace = false;
if (in_dump_backtrace)
return;
TemporaryChange change(in_dump_backtrace, true);
TemporaryChange disable_kmalloc_stacks(g_dump_kmalloc_stacks, false);
u32 ebp;
asm volatile("movl %%ebp, %%eax"
: "=a"(ebp));
dump_backtrace_impl(ebp, ksyms_ready);
}
void load_ksyms()
{
auto result = VFS::the().open("/res/kernel.map", 0, 0, VFS::the().root_custody());
ASSERT(!result.is_error());
auto description = result.value();
auto buffer = description->read_entire_file();
ASSERT(buffer);
load_ksyms_from_data(buffer);
}