ladybird/Kernel/FileSystem/BlockBasedFileSystem.cpp
kleines Filmröllchen c8d7bcede6 Kernel/FileSystem: Rename block_size -> logical_block_size
Since this is the block size that file system drivers *should* set,
let's name it the logical block size, just like most file systems such
as ext2 already do anyways.
2023-07-28 14:51:07 +02:00

314 lines
11 KiB
C++

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/IntrusiveList.h>
#include <Kernel/Debug.h>
#include <Kernel/FileSystem/BlockBasedFileSystem.h>
#include <Kernel/Tasks/Process.h>
namespace Kernel {
struct CacheEntry {
IntrusiveListNode<CacheEntry> list_node;
BlockBasedFileSystem::BlockIndex block_index { 0 };
u8* data { nullptr };
bool has_data { false };
};
class DiskCache {
public:
static constexpr size_t EntryCount = 10000;
explicit DiskCache(BlockBasedFileSystem& fs, NonnullOwnPtr<KBuffer> cached_block_data, NonnullOwnPtr<KBuffer> entries_buffer)
: m_fs(fs)
, m_cached_block_data(move(cached_block_data))
, m_entries(move(entries_buffer))
{
for (size_t i = 0; i < EntryCount; ++i) {
entries()[i].data = m_cached_block_data->data() + i * m_fs->logical_block_size();
m_clean_list.append(entries()[i]);
}
}
~DiskCache() = default;
bool is_dirty() const { return !m_dirty_list.is_empty(); }
bool entry_is_dirty(CacheEntry const& entry) const { return m_dirty_list.contains(entry); }
void mark_all_clean()
{
while (auto* entry = m_dirty_list.first())
m_clean_list.prepend(*entry);
}
void mark_dirty(CacheEntry& entry)
{
m_dirty_list.prepend(entry);
}
void mark_clean(CacheEntry& entry)
{
m_clean_list.prepend(entry);
}
CacheEntry* get(BlockBasedFileSystem::BlockIndex block_index) const
{
auto it = m_hash.find(block_index);
if (it == m_hash.end())
return nullptr;
auto& entry = const_cast<CacheEntry&>(*it->value);
VERIFY(entry.block_index == block_index);
if (!entry_is_dirty(entry) && (m_clean_list.first() != &entry)) {
// Cache hit! Promote the entry to the front of the list.
m_clean_list.prepend(entry);
}
return &entry;
}
ErrorOr<CacheEntry*> ensure(BlockBasedFileSystem::BlockIndex block_index) const
{
if (auto* entry = get(block_index))
return entry;
if (m_clean_list.is_empty()) {
// Not a single clean entry! Flush writes and try again.
// NOTE: We want to make sure we only call FileBackedFileSystem flush here,
// not some FileBackedFileSystem subclass flush!
m_fs->flush_writes_impl();
return ensure(block_index);
}
VERIFY(m_clean_list.last());
auto& new_entry = *m_clean_list.last();
m_clean_list.prepend(new_entry);
m_hash.remove(new_entry.block_index);
TRY(m_hash.try_set(block_index, &new_entry));
new_entry.block_index = block_index;
new_entry.has_data = false;
return &new_entry;
}
CacheEntry const* entries() const { return (CacheEntry const*)m_entries->data(); }
CacheEntry* entries() { return (CacheEntry*)m_entries->data(); }
template<typename Callback>
void for_each_dirty_entry(Callback callback)
{
for (auto& entry : m_dirty_list)
callback(entry);
}
private:
mutable NonnullRefPtr<BlockBasedFileSystem> m_fs;
NonnullOwnPtr<KBuffer> m_cached_block_data;
// NOTE: m_entries must be declared before m_dirty_list and m_clean_list because their entries are allocated from it.
// We need to ensure that the destructors of m_dirty_list and m_clean_list are called before m_entries is destroyed.
NonnullOwnPtr<KBuffer> m_entries;
mutable IntrusiveList<&CacheEntry::list_node> m_dirty_list;
mutable IntrusiveList<&CacheEntry::list_node> m_clean_list;
mutable HashMap<BlockBasedFileSystem::BlockIndex, CacheEntry*> m_hash;
};
BlockBasedFileSystem::BlockBasedFileSystem(OpenFileDescription& file_description)
: FileBackedFileSystem(file_description)
{
VERIFY(file_description.file().is_seekable());
}
BlockBasedFileSystem::~BlockBasedFileSystem() = default;
void BlockBasedFileSystem::remove_disk_cache_before_last_unmount()
{
VERIFY(m_lock.is_locked());
m_cache.with_exclusive([&](auto& cache) {
cache.clear();
});
}
ErrorOr<void> BlockBasedFileSystem::initialize_while_locked()
{
VERIFY(m_lock.is_locked());
VERIFY(!is_initialized_while_locked());
VERIFY(logical_block_size() != 0);
auto cached_block_data = TRY(KBuffer::try_create_with_size("BlockBasedFS: Cache blocks"sv, DiskCache::EntryCount * logical_block_size()));
auto entries_data = TRY(KBuffer::try_create_with_size("BlockBasedFS: Cache entries"sv, DiskCache::EntryCount * sizeof(CacheEntry)));
auto disk_cache = TRY(adopt_nonnull_own_or_enomem(new (nothrow) DiskCache(*this, move(cached_block_data), move(entries_data))));
m_cache.with_exclusive([&](auto& cache) {
cache = move(disk_cache);
});
return {};
}
ErrorOr<void> BlockBasedFileSystem::write_block(BlockIndex index, UserOrKernelBuffer const& data, size_t count, u64 offset, bool allow_cache)
{
VERIFY(m_device_block_size);
VERIFY(offset + count <= logical_block_size());
dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::write_block {}, size={}", index, count);
// NOTE: We copy the `data` to write into a local buffer before taking the cache lock.
// This makes sure any page faults caused by accessing the data will occur before
// we tie down the cache.
auto buffered_data = TRY(ByteBuffer::create_uninitialized(count));
TRY(data.read(buffered_data.bytes()));
return m_cache.with_exclusive([&](auto& cache) -> ErrorOr<void> {
if (!allow_cache) {
flush_specific_block_if_needed(index);
u64 base_offset = index.value() * logical_block_size() + offset;
auto nwritten = TRY(file_description().write(base_offset, data, count));
VERIFY(nwritten == count);
return {};
}
auto entry = TRY(cache->ensure(index));
if (count < logical_block_size()) {
// Fill the cache first.
TRY(read_block(index, nullptr, logical_block_size()));
}
memcpy(entry->data + offset, buffered_data.data(), count);
cache->mark_dirty(*entry);
entry->has_data = true;
return {};
});
}
ErrorOr<void> BlockBasedFileSystem::raw_read(BlockIndex index, UserOrKernelBuffer& buffer)
{
auto base_offset = index.value() * m_device_block_size;
auto nread = TRY(file_description().read(buffer, base_offset, m_device_block_size));
VERIFY(nread == m_device_block_size);
return {};
}
ErrorOr<void> BlockBasedFileSystem::raw_write(BlockIndex index, UserOrKernelBuffer const& buffer)
{
auto base_offset = index.value() * m_device_block_size;
auto nwritten = TRY(file_description().write(base_offset, buffer, m_device_block_size));
VERIFY(nwritten == m_device_block_size);
return {};
}
ErrorOr<void> BlockBasedFileSystem::raw_read_blocks(BlockIndex index, size_t count, UserOrKernelBuffer& buffer)
{
auto current = buffer;
for (auto block = index.value(); block < (index.value() + count); block++) {
TRY(raw_read(BlockIndex { block }, current));
current = current.offset(device_block_size());
}
return {};
}
ErrorOr<void> BlockBasedFileSystem::raw_write_blocks(BlockIndex index, size_t count, UserOrKernelBuffer const& buffer)
{
auto current = buffer;
for (auto block = index.value(); block < (index.value() + count); block++) {
TRY(raw_write(block, current));
current = current.offset(device_block_size());
}
return {};
}
ErrorOr<void> BlockBasedFileSystem::write_blocks(BlockIndex index, unsigned count, UserOrKernelBuffer const& data, bool allow_cache)
{
VERIFY(m_device_block_size);
dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::write_blocks {}, count={}", index, count);
for (unsigned i = 0; i < count; ++i) {
TRY(write_block(BlockIndex { index.value() + i }, data.offset(i * logical_block_size()), logical_block_size(), 0, allow_cache));
}
return {};
}
ErrorOr<void> BlockBasedFileSystem::read_block(BlockIndex index, UserOrKernelBuffer* buffer, size_t count, u64 offset, bool allow_cache) const
{
VERIFY(m_device_block_size);
VERIFY(offset + count <= logical_block_size());
dbgln_if(BBFS_DEBUG, "BlockBasedFileSystem::read_block {}", index);
return m_cache.with_exclusive([&](auto& cache) -> ErrorOr<void> {
if (!allow_cache) {
const_cast<BlockBasedFileSystem*>(this)->flush_specific_block_if_needed(index);
u64 base_offset = index.value() * logical_block_size() + offset;
auto nread = TRY(file_description().read(*buffer, base_offset, count));
VERIFY(nread == count);
return {};
}
auto* entry = TRY(cache->ensure(index));
if (!entry->has_data) {
auto base_offset = index.value() * logical_block_size();
auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry->data);
auto nread = TRY(file_description().read(entry_data_buffer, base_offset, logical_block_size()));
VERIFY(nread == logical_block_size());
entry->has_data = true;
}
if (buffer)
TRY(buffer->write(entry->data + offset, count));
return {};
});
}
ErrorOr<void> BlockBasedFileSystem::read_blocks(BlockIndex index, unsigned count, UserOrKernelBuffer& buffer, bool allow_cache) const
{
VERIFY(m_device_block_size);
if (!count)
return EINVAL;
if (count == 1)
return read_block(index, &buffer, logical_block_size(), 0, allow_cache);
auto out = buffer;
for (unsigned i = 0; i < count; ++i) {
TRY(read_block(BlockIndex { index.value() + i }, &out, logical_block_size(), 0, allow_cache));
out = out.offset(logical_block_size());
}
return {};
}
void BlockBasedFileSystem::flush_specific_block_if_needed(BlockIndex index)
{
m_cache.with_exclusive([&](auto& cache) {
if (!cache->is_dirty())
return;
auto* entry = cache->get(index);
if (!entry)
return;
if (!cache->entry_is_dirty(*entry))
return;
size_t base_offset = entry->block_index.value() * logical_block_size();
auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry->data);
(void)file_description().write(base_offset, entry_data_buffer, logical_block_size());
});
}
void BlockBasedFileSystem::flush_writes_impl()
{
size_t count = 0;
m_cache.with_exclusive([&](auto& cache) {
if (!cache->is_dirty())
return;
cache->for_each_dirty_entry([&](CacheEntry& entry) {
auto base_offset = entry.block_index.value() * logical_block_size();
auto entry_data_buffer = UserOrKernelBuffer::for_kernel_buffer(entry.data);
[[maybe_unused]] auto rc = file_description().write(base_offset, entry_data_buffer, logical_block_size());
++count;
});
cache->mark_all_clean();
dbgln("{}: Flushed {} blocks to disk", class_name(), count);
});
}
void BlockBasedFileSystem::flush_writes()
{
flush_writes_impl();
}
}