ladybird/Userland/Libraries/LibSQL/AST/Parser.cpp
Jan de Visser 1037d6b0eb LibSQL: Invent statement execution machinery and CREATE SCHEMA statement
This patch introduces the ability execute parsed SQL statements. The
abstract AST Statement node now has a virtual 'execute' method. This
method takes a Database object as parameter and returns a SQLResult
object.

Also introduced here is the CREATE SCHEMA statement. Tables live in a
schema, and if no schema is present in a table reference the 'default'
schema is implied. This schema is created if it doesn't yet exist when
a Database object is created.

Finally, as a proof of concept, the CREATE SCHEMA and CREATE TABLE
statements received an 'execute' implementation. The CREATE TABLE
method is not able to create tables created from SQL queries yet.
2021-07-08 17:55:59 +04:30

1108 lines
39 KiB
C++

/*
* Copyright (c) 2021, Tim Flynn <trflynn89@pm.me>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Parser.h"
#include <AK/ScopeGuard.h>
#include <AK/TypeCasts.h>
namespace SQL::AST {
Parser::Parser(Lexer lexer)
: m_parser_state(move(lexer))
{
}
NonnullRefPtr<Statement> Parser::next_statement()
{
auto terminate_statement = [this](auto statement) {
consume(TokenType::SemiColon);
return statement;
};
if (match(TokenType::With)) {
auto common_table_expression_list = parse_common_table_expression_list();
if (!common_table_expression_list)
return create_ast_node<ErrorStatement>();
return terminate_statement(parse_statement_with_expression_list(move(common_table_expression_list)));
}
return terminate_statement(parse_statement());
}
NonnullRefPtr<Statement> Parser::parse_statement()
{
switch (m_parser_state.m_token.type()) {
case TokenType::Create:
consume();
if (match(TokenType::Schema))
return parse_create_schema_statement();
else
return parse_create_table_statement();
case TokenType::Alter:
return parse_alter_table_statement();
case TokenType::Drop:
return parse_drop_table_statement();
case TokenType::Insert:
return parse_insert_statement({});
case TokenType::Update:
return parse_update_statement({});
case TokenType::Delete:
return parse_delete_statement({});
case TokenType::Select:
return parse_select_statement({});
default:
expected("CREATE, ALTER, DROP, INSERT, UPDATE, DELETE, or SELECT");
return create_ast_node<ErrorStatement>();
}
}
NonnullRefPtr<Statement> Parser::parse_statement_with_expression_list(RefPtr<CommonTableExpressionList> common_table_expression_list)
{
switch (m_parser_state.m_token.type()) {
case TokenType::Insert:
return parse_insert_statement(move(common_table_expression_list));
case TokenType::Update:
return parse_update_statement(move(common_table_expression_list));
case TokenType::Delete:
return parse_delete_statement(move(common_table_expression_list));
case TokenType::Select:
return parse_select_statement(move(common_table_expression_list));
default:
expected("INSERT, UPDATE, DELETE or SELECT");
return create_ast_node<ErrorStatement>();
}
}
NonnullRefPtr<CreateSchema> Parser::parse_create_schema_statement()
{
consume(TokenType::Schema);
bool is_error_if_exists = true;
if (consume_if(TokenType::If)) {
consume(TokenType::Not);
consume(TokenType::Exists);
is_error_if_exists = false;
}
String schema_name = consume(TokenType::Identifier).value();
return create_ast_node<CreateSchema>(move(schema_name), is_error_if_exists);
}
NonnullRefPtr<CreateTable> Parser::parse_create_table_statement()
{
// https://sqlite.org/lang_createtable.html
bool is_temporary = false;
if (consume_if(TokenType::Temp) || consume_if(TokenType::Temporary))
is_temporary = true;
consume(TokenType::Table);
bool is_error_if_table_exists = true;
if (consume_if(TokenType::If)) {
consume(TokenType::Not);
consume(TokenType::Exists);
is_error_if_table_exists = false;
}
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
if (consume_if(TokenType::As)) {
auto select_statement = parse_select_statement({});
return create_ast_node<CreateTable>(move(schema_name), move(table_name), move(select_statement), is_temporary, is_error_if_table_exists);
}
NonnullRefPtrVector<ColumnDefinition> column_definitions;
parse_comma_separated_list(true, [&]() { column_definitions.append(parse_column_definition()); });
// FIXME: Parse "table-constraint".
return create_ast_node<CreateTable>(move(schema_name), move(table_name), move(column_definitions), is_temporary, is_error_if_table_exists);
}
NonnullRefPtr<AlterTable> Parser::parse_alter_table_statement()
{
// https://sqlite.org/lang_altertable.html
consume(TokenType::Alter);
consume(TokenType::Table);
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
if (consume_if(TokenType::Add)) {
consume_if(TokenType::Column); // COLUMN is optional.
auto column = parse_column_definition();
return create_ast_node<AddColumn>(move(schema_name), move(table_name), move(column));
}
if (consume_if(TokenType::Drop)) {
consume_if(TokenType::Column); // COLUMN is optional.
auto column = consume(TokenType::Identifier).value();
return create_ast_node<DropColumn>(move(schema_name), move(table_name), move(column));
}
consume(TokenType::Rename);
if (consume_if(TokenType::To)) {
auto new_table_name = consume(TokenType::Identifier).value();
return create_ast_node<RenameTable>(move(schema_name), move(table_name), move(new_table_name));
}
consume_if(TokenType::Column); // COLUMN is optional.
auto column_name = consume(TokenType::Identifier).value();
consume(TokenType::To);
auto new_column_name = consume(TokenType::Identifier).value();
return create_ast_node<RenameColumn>(move(schema_name), move(table_name), move(column_name), move(new_column_name));
}
NonnullRefPtr<DropTable> Parser::parse_drop_table_statement()
{
// https://sqlite.org/lang_droptable.html
consume(TokenType::Drop);
consume(TokenType::Table);
bool is_error_if_table_does_not_exist = true;
if (consume_if(TokenType::If)) {
consume(TokenType::Exists);
is_error_if_table_does_not_exist = false;
}
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
return create_ast_node<DropTable>(move(schema_name), move(table_name), is_error_if_table_does_not_exist);
}
NonnullRefPtr<Insert> Parser::parse_insert_statement(RefPtr<CommonTableExpressionList> common_table_expression_list)
{
// https://sqlite.org/lang_insert.html
consume(TokenType::Insert);
auto conflict_resolution = parse_conflict_resolution();
consume(TokenType::Into);
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
String alias;
if (consume_if(TokenType::As))
alias = consume(TokenType::Identifier).value();
Vector<String> column_names;
if (match(TokenType::ParenOpen))
parse_comma_separated_list(true, [&]() { column_names.append(consume(TokenType::Identifier).value()); });
NonnullRefPtrVector<ChainedExpression> chained_expressions;
RefPtr<Select> select_statement;
if (consume_if(TokenType::Values)) {
parse_comma_separated_list(false, [&]() {
if (auto chained_expression = parse_chained_expression(); chained_expression.has_value())
chained_expressions.append(move(chained_expression.value()));
else
expected("Chained expression");
});
} else if (match(TokenType::Select)) {
select_statement = parse_select_statement({});
} else {
consume(TokenType::Default);
consume(TokenType::Values);
}
RefPtr<ReturningClause> returning_clause;
if (match(TokenType::Returning))
returning_clause = parse_returning_clause();
// FIXME: Parse 'upsert-clause'.
if (!chained_expressions.is_empty())
return create_ast_node<Insert>(move(common_table_expression_list), conflict_resolution, move(schema_name), move(table_name), move(alias), move(column_names), move(chained_expressions));
if (!select_statement.is_null())
return create_ast_node<Insert>(move(common_table_expression_list), conflict_resolution, move(schema_name), move(table_name), move(alias), move(column_names), move(select_statement));
return create_ast_node<Insert>(move(common_table_expression_list), conflict_resolution, move(schema_name), move(table_name), move(alias), move(column_names));
}
NonnullRefPtr<Update> Parser::parse_update_statement(RefPtr<CommonTableExpressionList> common_table_expression_list)
{
// https://sqlite.org/lang_update.html
consume(TokenType::Update);
auto conflict_resolution = parse_conflict_resolution();
auto qualified_table_name = parse_qualified_table_name();
consume(TokenType::Set);
Vector<Update::UpdateColumns> update_columns;
parse_comma_separated_list(false, [&]() {
Vector<String> column_names;
if (match(TokenType::ParenOpen)) {
parse_comma_separated_list(true, [&]() { column_names.append(consume(TokenType::Identifier).value()); });
} else {
column_names.append(consume(TokenType::Identifier).value());
}
consume(TokenType::Equals);
update_columns.append({ move(column_names), parse_expression() });
});
NonnullRefPtrVector<TableOrSubquery> table_or_subquery_list;
if (consume_if(TokenType::From)) {
// FIXME: Parse join-clause.
parse_comma_separated_list(false, [&]() { table_or_subquery_list.append(parse_table_or_subquery()); });
}
RefPtr<Expression> where_clause;
if (consume_if(TokenType::Where))
where_clause = parse_expression();
RefPtr<ReturningClause> returning_clause;
if (match(TokenType::Returning))
returning_clause = parse_returning_clause();
return create_ast_node<Update>(move(common_table_expression_list), conflict_resolution, move(qualified_table_name), move(update_columns), move(table_or_subquery_list), move(where_clause), move(returning_clause));
}
NonnullRefPtr<Delete> Parser::parse_delete_statement(RefPtr<CommonTableExpressionList> common_table_expression_list)
{
// https://sqlite.org/lang_delete.html
consume(TokenType::Delete);
consume(TokenType::From);
auto qualified_table_name = parse_qualified_table_name();
RefPtr<Expression> where_clause;
if (consume_if(TokenType::Where))
where_clause = parse_expression();
RefPtr<ReturningClause> returning_clause;
if (match(TokenType::Returning))
returning_clause = parse_returning_clause();
return create_ast_node<Delete>(move(common_table_expression_list), move(qualified_table_name), move(where_clause), move(returning_clause));
}
NonnullRefPtr<Select> Parser::parse_select_statement(RefPtr<CommonTableExpressionList> common_table_expression_list)
{
// https://sqlite.org/lang_select.html
consume(TokenType::Select);
bool select_all = !consume_if(TokenType::Distinct);
consume_if(TokenType::All); // ALL is the default, so ignore it if specified.
NonnullRefPtrVector<ResultColumn> result_column_list;
parse_comma_separated_list(false, [&]() { result_column_list.append(parse_result_column()); });
NonnullRefPtrVector<TableOrSubquery> table_or_subquery_list;
if (consume_if(TokenType::From)) {
// FIXME: Parse join-clause.
parse_comma_separated_list(false, [&]() { table_or_subquery_list.append(parse_table_or_subquery()); });
}
RefPtr<Expression> where_clause;
if (consume_if(TokenType::Where))
where_clause = parse_expression();
RefPtr<GroupByClause> group_by_clause;
if (consume_if(TokenType::Group)) {
consume(TokenType::By);
NonnullRefPtrVector<Expression> group_by_list;
parse_comma_separated_list(false, [&]() { group_by_list.append(parse_expression()); });
if (!group_by_list.is_empty()) {
RefPtr<Expression> having_clause;
if (consume_if(TokenType::Having))
having_clause = parse_expression();
group_by_clause = create_ast_node<GroupByClause>(move(group_by_list), move(having_clause));
}
}
// FIXME: Parse 'WINDOW window-name AS window-defn'.
// FIXME: Parse 'compound-operator'.
NonnullRefPtrVector<OrderingTerm> ordering_term_list;
if (consume_if(TokenType::Order)) {
consume(TokenType::By);
parse_comma_separated_list(false, [&]() { ordering_term_list.append(parse_ordering_term()); });
}
RefPtr<LimitClause> limit_clause;
if (consume_if(TokenType::Limit)) {
auto limit_expression = parse_expression();
RefPtr<Expression> offset_expression;
if (consume_if(TokenType::Offset)) {
offset_expression = parse_expression();
} else if (consume_if(TokenType::Comma)) {
// Note: The limit clause may instead be defined as "offset-expression, limit-expression", effectively reversing the
// order of the expressions. SQLite notes "this is counter-intuitive" and "to avoid confusion, programmers are strongly
// encouraged to ... avoid using a LIMIT clause with a comma-separated offset."
syntax_error("LIMIT clauses of the form 'LIMIT <expr>, <expr>' are not supported");
}
limit_clause = create_ast_node<LimitClause>(move(limit_expression), move(offset_expression));
}
return create_ast_node<Select>(move(common_table_expression_list), select_all, move(result_column_list), move(table_or_subquery_list), move(where_clause), move(group_by_clause), move(ordering_term_list), move(limit_clause));
}
RefPtr<CommonTableExpressionList> Parser::parse_common_table_expression_list()
{
consume(TokenType::With);
bool recursive = consume_if(TokenType::Recursive);
NonnullRefPtrVector<CommonTableExpression> common_table_expression;
parse_comma_separated_list(false, [&]() { common_table_expression.append(parse_common_table_expression()); });
if (common_table_expression.is_empty()) {
expected("Common table expression list");
return {};
}
return create_ast_node<CommonTableExpressionList>(recursive, move(common_table_expression));
}
NonnullRefPtr<Expression> Parser::parse_expression()
{
if (++m_parser_state.m_current_expression_depth > Limits::maximum_expression_tree_depth) {
syntax_error(String::formatted("Exceeded maximum expression tree depth of {}", Limits::maximum_expression_tree_depth));
return create_ast_node<ErrorExpression>();
}
// https://sqlite.org/lang_expr.html
auto expression = parse_primary_expression();
if (match_secondary_expression())
expression = parse_secondary_expression(move(expression));
// FIXME: Parse 'bind-parameter'.
// FIXME: Parse 'function-name'.
// FIXME: Parse 'raise-function'.
--m_parser_state.m_current_expression_depth;
return expression;
}
NonnullRefPtr<Expression> Parser::parse_primary_expression()
{
if (auto expression = parse_literal_value_expression(); expression.has_value())
return move(expression.value());
if (auto expression = parse_column_name_expression(); expression.has_value())
return move(expression.value());
if (auto expression = parse_unary_operator_expression(); expression.has_value())
return move(expression.value());
if (auto expression = parse_chained_expression(); expression.has_value())
return move(expression.value());
if (auto expression = parse_cast_expression(); expression.has_value())
return move(expression.value());
if (auto expression = parse_case_expression(); expression.has_value())
return move(expression.value());
if (auto expression = parse_exists_expression(false); expression.has_value())
return move(expression.value());
expected("Primary Expression");
consume();
return create_ast_node<ErrorExpression>();
}
NonnullRefPtr<Expression> Parser::parse_secondary_expression(NonnullRefPtr<Expression> primary)
{
if (auto expression = parse_binary_operator_expression(primary); expression.has_value())
return move(expression.value());
if (auto expression = parse_collate_expression(primary); expression.has_value())
return move(expression.value());
if (auto expression = parse_is_expression(primary); expression.has_value())
return move(expression.value());
bool invert_expression = false;
if (consume_if(TokenType::Not))
invert_expression = true;
if (auto expression = parse_match_expression(primary, invert_expression); expression.has_value())
return move(expression.value());
if (auto expression = parse_null_expression(primary, invert_expression); expression.has_value())
return move(expression.value());
if (auto expression = parse_between_expression(primary, invert_expression); expression.has_value())
return move(expression.value());
if (auto expression = parse_in_expression(primary, invert_expression); expression.has_value())
return move(expression.value());
expected("Secondary Expression");
consume();
return create_ast_node<ErrorExpression>();
}
bool Parser::match_secondary_expression() const
{
return match(TokenType::Not)
|| match(TokenType::DoublePipe)
|| match(TokenType::Asterisk)
|| match(TokenType::Divide)
|| match(TokenType::Modulus)
|| match(TokenType::Plus)
|| match(TokenType::Minus)
|| match(TokenType::ShiftLeft)
|| match(TokenType::ShiftRight)
|| match(TokenType::Ampersand)
|| match(TokenType::Pipe)
|| match(TokenType::LessThan)
|| match(TokenType::LessThanEquals)
|| match(TokenType::GreaterThan)
|| match(TokenType::GreaterThanEquals)
|| match(TokenType::Equals)
|| match(TokenType::EqualsEquals)
|| match(TokenType::NotEquals1)
|| match(TokenType::NotEquals2)
|| match(TokenType::And)
|| match(TokenType::Or)
|| match(TokenType::Collate)
|| match(TokenType::Is)
|| match(TokenType::Like)
|| match(TokenType::Glob)
|| match(TokenType::Match)
|| match(TokenType::Regexp)
|| match(TokenType::Isnull)
|| match(TokenType::Notnull)
|| match(TokenType::Between)
|| match(TokenType::In);
}
Optional<NonnullRefPtr<Expression>> Parser::parse_literal_value_expression()
{
if (match(TokenType::NumericLiteral)) {
auto value = consume().double_value();
return create_ast_node<NumericLiteral>(value);
}
if (match(TokenType::StringLiteral)) {
// TODO: Should the surrounding ' ' be removed here?
auto value = consume().value();
return create_ast_node<StringLiteral>(value);
}
if (match(TokenType::BlobLiteral)) {
// TODO: Should the surrounding x' ' be removed here?
auto value = consume().value();
return create_ast_node<BlobLiteral>(value);
}
if (consume_if(TokenType::Null))
return create_ast_node<NullLiteral>();
return {};
}
Optional<NonnullRefPtr<Expression>> Parser::parse_column_name_expression(String with_parsed_identifier, bool with_parsed_period)
{
if (with_parsed_identifier.is_null() && !match(TokenType::Identifier))
return {};
String first_identifier;
if (with_parsed_identifier.is_null())
first_identifier = consume(TokenType::Identifier).value();
else
first_identifier = move(with_parsed_identifier);
String schema_name;
String table_name;
String column_name;
if (with_parsed_period || consume_if(TokenType::Period)) {
String second_identifier = consume(TokenType::Identifier).value();
if (consume_if(TokenType::Period)) {
schema_name = move(first_identifier);
table_name = move(second_identifier);
column_name = consume(TokenType::Identifier).value();
} else {
table_name = move(first_identifier);
column_name = move(second_identifier);
}
} else {
column_name = move(first_identifier);
}
return create_ast_node<ColumnNameExpression>(move(schema_name), move(table_name), move(column_name));
}
Optional<NonnullRefPtr<Expression>> Parser::parse_unary_operator_expression()
{
if (consume_if(TokenType::Minus))
return create_ast_node<UnaryOperatorExpression>(UnaryOperator::Minus, parse_expression());
if (consume_if(TokenType::Plus))
return create_ast_node<UnaryOperatorExpression>(UnaryOperator::Plus, parse_expression());
if (consume_if(TokenType::Tilde))
return create_ast_node<UnaryOperatorExpression>(UnaryOperator::BitwiseNot, parse_expression());
if (consume_if(TokenType::Not)) {
if (match(TokenType::Exists))
return parse_exists_expression(true);
else
return create_ast_node<UnaryOperatorExpression>(UnaryOperator::Not, parse_expression());
}
return {};
}
Optional<NonnullRefPtr<Expression>> Parser::parse_binary_operator_expression(NonnullRefPtr<Expression> lhs)
{
if (consume_if(TokenType::DoublePipe))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Concatenate, move(lhs), parse_expression());
if (consume_if(TokenType::Asterisk))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Multiplication, move(lhs), parse_expression());
if (consume_if(TokenType::Divide))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Division, move(lhs), parse_expression());
if (consume_if(TokenType::Modulus))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Modulo, move(lhs), parse_expression());
if (consume_if(TokenType::Plus))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Plus, move(lhs), parse_expression());
if (consume_if(TokenType::Minus))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Minus, move(lhs), parse_expression());
if (consume_if(TokenType::ShiftLeft))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::ShiftLeft, move(lhs), parse_expression());
if (consume_if(TokenType::ShiftRight))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::ShiftRight, move(lhs), parse_expression());
if (consume_if(TokenType::Ampersand))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::BitwiseAnd, move(lhs), parse_expression());
if (consume_if(TokenType::Pipe))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::BitwiseOr, move(lhs), parse_expression());
if (consume_if(TokenType::LessThan))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::LessThan, move(lhs), parse_expression());
if (consume_if(TokenType::LessThanEquals))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::LessThanEquals, move(lhs), parse_expression());
if (consume_if(TokenType::GreaterThan))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::GreaterThan, move(lhs), parse_expression());
if (consume_if(TokenType::GreaterThanEquals))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::GreaterThanEquals, move(lhs), parse_expression());
if (consume_if(TokenType::Equals) || consume_if(TokenType::EqualsEquals))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Equals, move(lhs), parse_expression());
if (consume_if(TokenType::NotEquals1) || consume_if(TokenType::NotEquals2))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::NotEquals, move(lhs), parse_expression());
if (consume_if(TokenType::And))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::And, move(lhs), parse_expression());
if (consume_if(TokenType::Or))
return create_ast_node<BinaryOperatorExpression>(BinaryOperator::Or, move(lhs), parse_expression());
return {};
}
Optional<NonnullRefPtr<Expression>> Parser::parse_chained_expression()
{
if (!consume_if(TokenType::ParenOpen))
return {};
if (match(TokenType::Select))
return parse_exists_expression(false, TokenType::Select);
NonnullRefPtrVector<Expression> expressions;
parse_comma_separated_list(false, [&]() { expressions.append(parse_expression()); });
consume(TokenType::ParenClose);
return create_ast_node<ChainedExpression>(move(expressions));
}
Optional<NonnullRefPtr<Expression>> Parser::parse_cast_expression()
{
if (!match(TokenType::Cast))
return {};
consume(TokenType::Cast);
consume(TokenType::ParenOpen);
auto expression = parse_expression();
consume(TokenType::As);
auto type_name = parse_type_name();
consume(TokenType::ParenClose);
return create_ast_node<CastExpression>(move(expression), move(type_name));
}
Optional<NonnullRefPtr<Expression>> Parser::parse_case_expression()
{
if (!match(TokenType::Case))
return {};
consume();
RefPtr<Expression> case_expression;
if (!match(TokenType::When)) {
case_expression = parse_expression();
}
Vector<CaseExpression::WhenThenClause> when_then_clauses;
do {
consume(TokenType::When);
auto when = parse_expression();
consume(TokenType::Then);
auto then = parse_expression();
when_then_clauses.append({ move(when), move(then) });
if (!match(TokenType::When))
break;
} while (!match(TokenType::Eof));
RefPtr<Expression> else_expression;
if (consume_if(TokenType::Else))
else_expression = parse_expression();
consume(TokenType::End);
return create_ast_node<CaseExpression>(move(case_expression), move(when_then_clauses), move(else_expression));
}
Optional<NonnullRefPtr<Expression>> Parser::parse_exists_expression(bool invert_expression, TokenType opening_token)
{
VERIFY((opening_token == TokenType::Exists) || (opening_token == TokenType::Select));
if ((opening_token == TokenType::Exists) && !consume_if(TokenType::Exists))
return {};
if (opening_token == TokenType::Exists)
consume(TokenType::ParenOpen);
auto select_statement = parse_select_statement({});
consume(TokenType::ParenClose);
return create_ast_node<ExistsExpression>(move(select_statement), invert_expression);
}
Optional<NonnullRefPtr<Expression>> Parser::parse_collate_expression(NonnullRefPtr<Expression> expression)
{
if (!match(TokenType::Collate))
return {};
consume();
String collation_name = consume(TokenType::Identifier).value();
return create_ast_node<CollateExpression>(move(expression), move(collation_name));
}
Optional<NonnullRefPtr<Expression>> Parser::parse_is_expression(NonnullRefPtr<Expression> expression)
{
if (!match(TokenType::Is))
return {};
consume();
bool invert_expression = false;
if (match(TokenType::Not)) {
consume();
invert_expression = true;
}
auto rhs = parse_expression();
return create_ast_node<IsExpression>(move(expression), move(rhs), invert_expression);
}
Optional<NonnullRefPtr<Expression>> Parser::parse_match_expression(NonnullRefPtr<Expression> lhs, bool invert_expression)
{
auto parse_escape = [this]() {
RefPtr<Expression> escape;
if (consume_if(TokenType::Escape))
escape = parse_expression();
return escape;
};
if (consume_if(TokenType::Like))
return create_ast_node<MatchExpression>(MatchOperator::Like, move(lhs), parse_expression(), parse_escape(), invert_expression);
if (consume_if(TokenType::Glob))
return create_ast_node<MatchExpression>(MatchOperator::Glob, move(lhs), parse_expression(), parse_escape(), invert_expression);
if (consume_if(TokenType::Match))
return create_ast_node<MatchExpression>(MatchOperator::Match, move(lhs), parse_expression(), parse_escape(), invert_expression);
if (consume_if(TokenType::Regexp))
return create_ast_node<MatchExpression>(MatchOperator::Regexp, move(lhs), parse_expression(), parse_escape(), invert_expression);
return {};
}
Optional<NonnullRefPtr<Expression>> Parser::parse_null_expression(NonnullRefPtr<Expression> expression, bool invert_expression)
{
if (!match(TokenType::Isnull) && !match(TokenType::Notnull) && !(invert_expression && match(TokenType::Null)))
return {};
auto type = consume().type();
invert_expression |= (type == TokenType::Notnull);
return create_ast_node<NullExpression>(move(expression), invert_expression);
}
Optional<NonnullRefPtr<Expression>> Parser::parse_between_expression(NonnullRefPtr<Expression> expression, bool invert_expression)
{
if (!match(TokenType::Between))
return {};
consume();
auto nested = parse_expression();
if (!is<BinaryOperatorExpression>(*nested)) {
expected("Binary Expression");
return create_ast_node<ErrorExpression>();
}
const auto& binary_expression = static_cast<const BinaryOperatorExpression&>(*nested);
if (binary_expression.type() != BinaryOperator::And) {
expected("AND Expression");
return create_ast_node<ErrorExpression>();
}
return create_ast_node<BetweenExpression>(move(expression), binary_expression.lhs(), binary_expression.rhs(), invert_expression);
}
Optional<NonnullRefPtr<Expression>> Parser::parse_in_expression(NonnullRefPtr<Expression> expression, bool invert_expression)
{
if (!match(TokenType::In))
return {};
consume();
if (consume_if(TokenType::ParenOpen)) {
if (match(TokenType::Select)) {
auto select_statement = parse_select_statement({});
return create_ast_node<InSelectionExpression>(move(expression), move(select_statement), invert_expression);
}
// FIXME: Consolidate this with parse_chained_expression(). That method consumes the opening paren as
// well, and also requires at least one expression (whereas this allows for an empty chain).
NonnullRefPtrVector<Expression> expressions;
if (!match(TokenType::ParenClose))
parse_comma_separated_list(false, [&]() { expressions.append(parse_expression()); });
consume(TokenType::ParenClose);
auto chain = create_ast_node<ChainedExpression>(move(expressions));
return create_ast_node<InChainedExpression>(move(expression), move(chain), invert_expression);
}
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
if (match(TokenType::ParenOpen)) {
// FIXME: Parse "table-function".
return {};
}
return create_ast_node<InTableExpression>(move(expression), move(schema_name), move(table_name), invert_expression);
}
NonnullRefPtr<ColumnDefinition> Parser::parse_column_definition()
{
// https://sqlite.org/syntax/column-def.html
auto name = consume(TokenType::Identifier).value();
auto type_name = match(TokenType::Identifier)
? parse_type_name()
// https://www.sqlite.org/datatype3.html: If no type is specified then the column has affinity BLOB.
: create_ast_node<TypeName>("BLOB", NonnullRefPtrVector<SignedNumber> {});
// FIXME: Parse "column-constraint".
return create_ast_node<ColumnDefinition>(move(name), move(type_name));
}
NonnullRefPtr<TypeName> Parser::parse_type_name()
{
// https: //sqlite.org/syntax/type-name.html
auto name = consume(TokenType::Identifier).value();
NonnullRefPtrVector<SignedNumber> signed_numbers;
if (consume_if(TokenType::ParenOpen)) {
signed_numbers.append(parse_signed_number());
if (consume_if(TokenType::Comma))
signed_numbers.append(parse_signed_number());
consume(TokenType::ParenClose);
}
return create_ast_node<TypeName>(move(name), move(signed_numbers));
}
NonnullRefPtr<SignedNumber> Parser::parse_signed_number()
{
// https://sqlite.org/syntax/signed-number.html
bool is_positive = true;
if (consume_if(TokenType::Plus))
is_positive = true;
else if (consume_if(TokenType::Minus))
is_positive = false;
if (match(TokenType::NumericLiteral)) {
auto number = consume(TokenType::NumericLiteral).double_value();
return create_ast_node<SignedNumber>(is_positive ? number : (number * -1));
}
expected("NumericLiteral");
return create_ast_node<SignedNumber>(0);
}
NonnullRefPtr<CommonTableExpression> Parser::parse_common_table_expression()
{
// https://sqlite.org/syntax/common-table-expression.html
auto table_name = consume(TokenType::Identifier).value();
Vector<String> column_names;
if (match(TokenType::ParenOpen))
parse_comma_separated_list(true, [&]() { column_names.append(consume(TokenType::Identifier).value()); });
consume(TokenType::As);
consume(TokenType::ParenOpen);
auto select_statement = parse_select_statement({});
consume(TokenType::ParenClose);
return create_ast_node<CommonTableExpression>(move(table_name), move(column_names), move(select_statement));
}
NonnullRefPtr<QualifiedTableName> Parser::parse_qualified_table_name()
{
// https://sqlite.org/syntax/qualified-table-name.html
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
String alias;
if (consume_if(TokenType::As))
alias = consume(TokenType::Identifier).value();
// Note: The qualified-table-name spec may include an "INDEXED BY index-name" or "NOT INDEXED" clause. This is a SQLite extension
// "designed to help detect undesirable query plan changes during regression testing", and "application developers are admonished
// to omit all use of INDEXED BY during application design, implementation, testing, and tuning". Our implementation purposefully
// omits parsing INDEXED BY for now until there is good reason to add support.
return create_ast_node<QualifiedTableName>(move(schema_name), move(table_name), move(alias));
}
NonnullRefPtr<ReturningClause> Parser::parse_returning_clause()
{
// https://sqlite.org/syntax/returning-clause.html
consume(TokenType::Returning);
if (consume_if(TokenType::Asterisk))
return create_ast_node<ReturningClause>();
Vector<ReturningClause::ColumnClause> columns;
parse_comma_separated_list(false, [&]() {
auto expression = parse_expression();
String column_alias;
if (consume_if(TokenType::As) || match(TokenType::Identifier))
column_alias = consume(TokenType::Identifier).value();
columns.append({ move(expression), move(column_alias) });
});
return create_ast_node<ReturningClause>(move(columns));
}
NonnullRefPtr<ResultColumn> Parser::parse_result_column()
{
// https://sqlite.org/syntax/result-column.html
if (consume_if(TokenType::Asterisk))
return create_ast_node<ResultColumn>();
// If we match an identifier now, we don't know whether it is a table-name of the form "table-name.*", or if it is the start of a
// column-name-expression, until we try to parse the asterisk. So if we consume an identifier and a period, but don't find an
// asterisk, hold onto that information to form a column-name-expression later.
String table_name;
bool parsed_period = false;
if (match(TokenType::Identifier)) {
table_name = consume().value();
parsed_period = consume_if(TokenType::Period);
if (parsed_period && consume_if(TokenType::Asterisk))
return create_ast_node<ResultColumn>(move(table_name));
}
auto expression = table_name.is_null()
? parse_expression()
: static_cast<NonnullRefPtr<Expression>>(*parse_column_name_expression(move(table_name), parsed_period));
String column_alias;
if (consume_if(TokenType::As) || match(TokenType::Identifier))
column_alias = consume(TokenType::Identifier).value();
return create_ast_node<ResultColumn>(move(expression), move(column_alias));
}
NonnullRefPtr<TableOrSubquery> Parser::parse_table_or_subquery()
{
if (++m_parser_state.m_current_subquery_depth > Limits::maximum_subquery_depth)
syntax_error(String::formatted("Exceeded maximum subquery depth of {}", Limits::maximum_subquery_depth));
ScopeGuard guard([&]() { --m_parser_state.m_current_subquery_depth; });
// https://sqlite.org/syntax/table-or-subquery.html
if (match(TokenType::Identifier)) {
String schema_name;
String table_name;
parse_schema_and_table_name(schema_name, table_name);
String table_alias;
if (consume_if(TokenType::As) || match(TokenType::Identifier))
table_alias = consume(TokenType::Identifier).value();
return create_ast_node<TableOrSubquery>(move(schema_name), move(table_name), move(table_alias));
}
// FIXME: Parse join-clause.
NonnullRefPtrVector<TableOrSubquery> subqueries;
parse_comma_separated_list(true, [&]() { subqueries.append(parse_table_or_subquery()); });
return create_ast_node<TableOrSubquery>(move(subqueries));
}
NonnullRefPtr<OrderingTerm> Parser::parse_ordering_term()
{
// https://sqlite.org/syntax/ordering-term.html
auto expression = parse_expression();
String collation_name;
if (is<CollateExpression>(*expression)) {
const auto& collate = static_cast<const CollateExpression&>(*expression);
collation_name = collate.collation_name();
expression = collate.expression();
} else if (consume_if(TokenType::Collate)) {
collation_name = consume(TokenType::Identifier).value();
}
Order order = consume_if(TokenType::Desc) ? Order::Descending : Order::Ascending;
consume_if(TokenType::Asc); // ASC is the default, so ignore it if specified.
Nulls nulls = order == Order::Ascending ? Nulls::First : Nulls::Last;
if (consume_if(TokenType::Nulls)) {
if (consume_if(TokenType::First))
nulls = Nulls::First;
else if (consume_if(TokenType::Last))
nulls = Nulls::Last;
else
expected("FIRST or LAST");
}
return create_ast_node<OrderingTerm>(move(expression), move(collation_name), order, nulls);
}
void Parser::parse_schema_and_table_name(String& schema_name, String& table_name)
{
String schema_or_table_name = consume(TokenType::Identifier).value();
if (consume_if(TokenType::Period)) {
schema_name = move(schema_or_table_name);
table_name = consume(TokenType::Identifier).value();
} else {
table_name = move(schema_or_table_name);
}
}
ConflictResolution Parser::parse_conflict_resolution()
{
// https://sqlite.org/lang_conflict.html
if (consume_if(TokenType::Or)) {
if (consume_if(TokenType::Abort))
return ConflictResolution::Abort;
if (consume_if(TokenType::Fail))
return ConflictResolution::Fail;
if (consume_if(TokenType::Ignore))
return ConflictResolution::Ignore;
if (consume_if(TokenType::Replace))
return ConflictResolution::Replace;
if (consume_if(TokenType::Rollback))
return ConflictResolution::Rollback;
expected("ABORT, FAIL, IGNORE, REPLACE, or ROLLBACK");
}
return ConflictResolution::Abort;
}
Token Parser::consume()
{
auto old_token = m_parser_state.m_token;
m_parser_state.m_token = m_parser_state.m_lexer.next();
return old_token;
}
Token Parser::consume(TokenType expected_type)
{
if (!match(expected_type)) {
expected(Token::name(expected_type));
}
return consume();
}
bool Parser::consume_if(TokenType expected_type)
{
if (!match(expected_type))
return false;
consume();
return true;
}
bool Parser::match(TokenType type) const
{
return m_parser_state.m_token.type() == type;
}
void Parser::expected(StringView what)
{
syntax_error(String::formatted("Unexpected token {}, expected {}", m_parser_state.m_token.name(), what));
}
void Parser::syntax_error(String message)
{
m_parser_state.m_errors.append({ move(message), position() });
}
SourcePosition Parser::position() const
{
return m_parser_state.m_token.start_position();
}
Parser::ParserState::ParserState(Lexer lexer)
: m_lexer(move(lexer))
, m_token(m_lexer.next())
{
}
}