ladybird/Userland/Libraries/LibAudio/FlacLoader.cpp
Karol Kosek fe60459353 LibAudio: Seek to the first frame on reset in FLAC
The files weren't starting exactly from the beginning before.
This happened because the parameter now takes the sample index, instead
of a seekpoint.
2022-07-26 23:59:06 +01:00

906 lines
38 KiB
C++

/*
* Copyright (c) 2021, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/FixedArray.h>
#include <AK/FlyString.h>
#include <AK/Format.h>
#include <AK/IntegralMath.h>
#include <AK/Math.h>
#include <AK/ScopeGuard.h>
#include <AK/StdLibExtras.h>
#include <AK/String.h>
#include <AK/Try.h>
#include <AK/TypedTransfer.h>
#include <AK/UFixedBigInt.h>
#include <LibAudio/FlacLoader.h>
#include <LibAudio/FlacTypes.h>
#include <LibAudio/LoaderError.h>
#include <LibAudio/Resampler.h>
#include <LibCore/MemoryStream.h>
#include <LibCore/Stream.h>
namespace Audio {
FlacLoaderPlugin::FlacLoaderPlugin(StringView path)
: m_file(Core::File::construct(path))
{
if (!m_file->open(Core::OpenMode::ReadOnly)) {
m_error = LoaderError { String::formatted("Can't open file: {}", m_file->error_string()) };
return;
}
auto maybe_stream = Core::Stream::BufferedFile::create(MUST(Core::Stream::File::open(path, Core::Stream::OpenMode::Read)), FLAC_BUFFER_SIZE);
if (maybe_stream.is_error())
m_error = LoaderError { "Can't open file stream" };
else
m_stream = maybe_stream.release_value();
}
FlacLoaderPlugin::FlacLoaderPlugin(Bytes& buffer)
{
auto maybe_stream = Core::Stream::MemoryStream::construct(buffer);
if (maybe_stream.is_error())
m_error = LoaderError { "Can't open memory stream" };
else
m_stream = maybe_stream.release_value();
}
MaybeLoaderError FlacLoaderPlugin::initialize()
{
if (m_error.has_value())
return m_error.release_value();
TRY(parse_header());
TRY(reset());
return {};
}
// 11.5 STREAM
MaybeLoaderError FlacLoaderPlugin::parse_header()
{
auto bit_input = LOADER_TRY(BigEndianInputBitStream::construct(*m_stream));
// A mixture of VERIFY and the non-crashing TRY().
#define FLAC_VERIFY(check, category, msg) \
do { \
if (!(check)) { \
return LoaderError { category, static_cast<size_t>(m_data_start_location), String::formatted("FLAC header: {}", msg) }; \
} \
} while (0)
// Magic number
u32 flac = LOADER_TRY(bit_input->read_bits<u32>(32));
m_data_start_location += 4;
FLAC_VERIFY(flac == 0x664C6143, LoaderError::Category::Format, "Magic number must be 'flaC'"); // "flaC"
// Receive the streaminfo block
auto streaminfo = TRY(next_meta_block(*bit_input));
FLAC_VERIFY(streaminfo.type == FlacMetadataBlockType::STREAMINFO, LoaderError::Category::Format, "First block must be STREAMINFO");
auto streaminfo_data_memory = LOADER_TRY(Core::Stream::MemoryStream::construct(streaminfo.data.bytes()));
auto streaminfo_data = LOADER_TRY(BigEndianInputBitStream::construct(*streaminfo_data_memory));
// 11.10 METADATA_BLOCK_STREAMINFO
m_min_block_size = LOADER_TRY(streaminfo_data->read_bits<u16>(16));
FLAC_VERIFY(m_min_block_size >= 16, LoaderError::Category::Format, "Minimum block size must be 16");
m_max_block_size = LOADER_TRY(streaminfo_data->read_bits<u16>(16));
FLAC_VERIFY(m_max_block_size >= 16, LoaderError::Category::Format, "Maximum block size");
m_min_frame_size = LOADER_TRY(streaminfo_data->read_bits<u32>(24));
m_max_frame_size = LOADER_TRY(streaminfo_data->read_bits<u32>(24));
m_sample_rate = LOADER_TRY(streaminfo_data->read_bits<u32>(20));
FLAC_VERIFY(m_sample_rate <= 655350, LoaderError::Category::Format, "Sample rate");
m_num_channels = LOADER_TRY(streaminfo_data->read_bits<u8>(3)) + 1; // 0 = one channel
u8 bits_per_sample = LOADER_TRY(streaminfo_data->read_bits<u8>(5)) + 1;
if (bits_per_sample == 8) {
// FIXME: Signed/Unsigned issues?
m_sample_format = PcmSampleFormat::Uint8;
} else if (bits_per_sample == 16) {
m_sample_format = PcmSampleFormat::Int16;
} else if (bits_per_sample == 24) {
m_sample_format = PcmSampleFormat::Int24;
} else if (bits_per_sample == 32) {
m_sample_format = PcmSampleFormat::Int32;
} else {
FLAC_VERIFY(false, LoaderError::Category::Format, "Sample bit depth invalid");
}
m_total_samples = LOADER_TRY(streaminfo_data->read_bits<u64>(36));
FLAC_VERIFY(m_total_samples > 0, LoaderError::Category::Format, "Number of samples is zero");
// Parse checksum into a buffer first
[[maybe_unused]] u128 md5_checksum;
VERIFY(streaminfo_data->is_aligned_to_byte_boundary());
auto md5_bytes_read = LOADER_TRY(streaminfo_data->read(md5_checksum.bytes()));
FLAC_VERIFY(md5_bytes_read.size() == md5_checksum.my_size(), LoaderError::Category::IO, "MD5 Checksum size");
md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });
// Parse other blocks
[[maybe_unused]] u16 meta_blocks_parsed = 1;
[[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
FlacRawMetadataBlock block = streaminfo;
while (!block.is_last_block) {
block = TRY(next_meta_block(*bit_input));
switch (block.type) {
case (FlacMetadataBlockType::SEEKTABLE):
TRY(load_seektable(block));
break;
default:
// TODO: Parse the remaining metadata block types.
// Currently only STREAMINFO and SEEKTABLE are handled.
break;
}
++total_meta_blocks;
}
dbgln_if(AFLACLOADER_DEBUG, "Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, static_cast<float>(m_total_samples) / static_cast<float>(m_sample_rate), md5_checksum, m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
return {};
}
// 11.13. METADATA_BLOCK_SEEKTABLE
MaybeLoaderError FlacLoaderPlugin::load_seektable(FlacRawMetadataBlock& block)
{
auto memory_stream = LOADER_TRY(Core::Stream::MemoryStream::construct(block.data.bytes()));
auto seektable_bytes = LOADER_TRY(BigEndianInputBitStream::construct(*memory_stream));
for (size_t i = 0; i < block.length / 18; ++i) {
// 11.14. SEEKPOINT
FlacSeekPoint seekpoint {
.sample_index = LOADER_TRY(seektable_bytes->read_bits<u64>(64)),
.byte_offset = LOADER_TRY(seektable_bytes->read_bits<u64>(64)),
.num_samples = LOADER_TRY(seektable_bytes->read_bits<u16>(16))
};
m_seektable.append(seekpoint);
}
dbgln_if(AFLACLOADER_DEBUG, "Loaded seektable of size {}", m_seektable.size());
return {};
}
// 11.6 METADATA_BLOCK
ErrorOr<FlacRawMetadataBlock, LoaderError> FlacLoaderPlugin::next_meta_block(BigEndianInputBitStream& bit_input)
{
// 11.7 METADATA_BLOCK_HEADER
bool is_last_block = LOADER_TRY(bit_input.read_bit());
// The block type enum constants agree with the specification
FlacMetadataBlockType type = (FlacMetadataBlockType)LOADER_TRY(bit_input.read_bits<u8>(7));
m_data_start_location += 1;
FLAC_VERIFY(type != FlacMetadataBlockType::INVALID, LoaderError::Category::Format, "Invalid metadata block");
u32 block_length = LOADER_TRY(bit_input.read_bits<u32>(24));
m_data_start_location += 3;
// Blocks can be zero-sized, which would trip up the raw data reader below.
if (block_length == 0)
return FlacRawMetadataBlock {
.is_last_block = is_last_block,
.type = type,
.length = 0,
.data = LOADER_TRY(ByteBuffer::create_uninitialized(0))
};
auto block_data_result = ByteBuffer::create_uninitialized(block_length);
FLAC_VERIFY(!block_data_result.is_error(), LoaderError::Category::IO, "Out of memory");
auto block_data = block_data_result.release_value();
// Blocks might exceed our buffer size.
auto bytes_left_to_read = block_data.bytes();
while (bytes_left_to_read.size()) {
auto read_bytes = LOADER_TRY(bit_input.read(bytes_left_to_read));
bytes_left_to_read = bytes_left_to_read.slice(read_bytes.size());
}
m_data_start_location += block_length;
return FlacRawMetadataBlock {
is_last_block,
type,
block_length,
block_data,
};
}
#undef FLAC_VERIFY
MaybeLoaderError FlacLoaderPlugin::reset()
{
TRY(seek(0));
m_current_frame.clear();
return {};
}
MaybeLoaderError FlacLoaderPlugin::seek(int int_sample_index)
{
auto sample_index = static_cast<size_t>(int_sample_index);
if (sample_index == m_loaded_samples)
return {};
auto maybe_target_seekpoint = m_seektable.last_matching([sample_index](auto& seekpoint) { return seekpoint.sample_index <= sample_index; });
// No seektable or no fitting entry: Perform normal forward read
if (!maybe_target_seekpoint.has_value()) {
if (sample_index < m_loaded_samples) {
LOADER_TRY(m_stream->seek(m_data_start_location, Core::Stream::SeekMode::SetPosition));
m_loaded_samples = 0;
}
auto to_read = sample_index - m_loaded_samples;
if (to_read == 0)
return {};
dbgln_if(AFLACLOADER_DEBUG, "Seeking {} samples manually", to_read);
(void)TRY(get_more_samples(to_read));
} else {
auto target_seekpoint = maybe_target_seekpoint.release_value();
// When a small seek happens, we may already be closer to the target than the seekpoint.
if (sample_index - target_seekpoint.sample_index > sample_index - m_loaded_samples) {
dbgln_if(AFLACLOADER_DEBUG, "Close enough to target: seeking {} samples manually", sample_index - m_loaded_samples);
(void)TRY(get_more_samples(sample_index - m_loaded_samples));
return {};
}
dbgln_if(AFLACLOADER_DEBUG, "Seeking to seektable: sample index {}, byte offset {}, sample count {}", target_seekpoint.sample_index, target_seekpoint.byte_offset, target_seekpoint.num_samples);
auto position = target_seekpoint.byte_offset + m_data_start_location;
if (m_stream->seek(static_cast<i64>(position), Core::Stream::SeekMode::SetPosition).is_error())
return LoaderError { LoaderError::Category::IO, m_loaded_samples, String::formatted("Invalid seek position {}", position) };
auto remaining_samples_after_seekpoint = sample_index - m_data_start_location;
if (remaining_samples_after_seekpoint > 0)
(void)TRY(get_more_samples(remaining_samples_after_seekpoint));
m_loaded_samples = target_seekpoint.sample_index;
}
return {};
}
LoaderSamples FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
{
ssize_t remaining_samples = static_cast<ssize_t>(m_total_samples - m_loaded_samples);
if (remaining_samples <= 0)
return FixedArray<Sample> {};
// FIXME: samples_to_read is calculated wrong, because when seeking not all samples are loaded.
size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples);
auto samples = FixedArray<Sample>::must_create_but_fixme_should_propagate_errors(samples_to_read);
size_t sample_index = 0;
if (m_unread_data.size() > 0) {
size_t to_transfer = min(m_unread_data.size(), samples_to_read);
dbgln_if(AFLACLOADER_DEBUG, "Reading {} samples from unread sample buffer (size {})", to_transfer, m_unread_data.size());
AK::TypedTransfer<Sample>::move(samples.data(), m_unread_data.data(), to_transfer);
if (to_transfer < m_unread_data.size())
m_unread_data.remove(0, to_transfer);
else
m_unread_data.clear_with_capacity();
sample_index += to_transfer;
}
while (sample_index < samples_to_read) {
TRY(next_frame(samples.span().slice(sample_index)));
sample_index += m_current_frame->sample_count;
}
m_loaded_samples += sample_index;
return samples;
}
// 11.21. FRAME
MaybeLoaderError FlacLoaderPlugin::next_frame(Span<Sample> target_vector)
{
#define FLAC_VERIFY(check, category, msg) \
do { \
if (!(check)) { \
return LoaderError { category, static_cast<size_t>(m_current_sample_or_frame), String::formatted("FLAC header: {}", msg) }; \
} \
} while (0)
auto bit_stream = LOADER_TRY(BigEndianInputBitStream::construct(*m_stream));
// TODO: Check the CRC-16 checksum (and others) by keeping track of read data
// 11.22. FRAME_HEADER
u16 sync_code = LOADER_TRY(bit_stream->read_bits<u16>(14));
FLAC_VERIFY(sync_code == 0b11111111111110, LoaderError::Category::Format, "Sync code");
bool reserved_bit = LOADER_TRY(bit_stream->read_bit());
FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header bit");
// 11.22.2. BLOCKING STRATEGY
[[maybe_unused]] bool blocking_strategy = LOADER_TRY(bit_stream->read_bit());
u32 sample_count = TRY(convert_sample_count_code(LOADER_TRY(bit_stream->read_bits<u8>(4))));
u32 frame_sample_rate = TRY(convert_sample_rate_code(LOADER_TRY(bit_stream->read_bits<u8>(4))));
u8 channel_type_num = LOADER_TRY(bit_stream->read_bits<u8>(4));
FLAC_VERIFY(channel_type_num < 0b1011, LoaderError::Category::Format, "Channel assignment");
FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;
PcmSampleFormat bit_depth = TRY(convert_bit_depth_code(LOADER_TRY(bit_stream->read_bits<u8>(3))));
reserved_bit = LOADER_TRY(bit_stream->read_bit());
FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header end bit");
// 11.22.8. CODED NUMBER
// FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
m_current_sample_or_frame = LOADER_TRY(read_utf8_char(*bit_stream));
// Conditional header variables
// 11.22.9. BLOCK SIZE INT
if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
sample_count = LOADER_TRY(bit_stream->read_bits<u32>(8)) + 1;
} else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
sample_count = LOADER_TRY(bit_stream->read_bits<u32>(16)) + 1;
}
// 11.22.10. SAMPLE RATE INT
if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
frame_sample_rate = LOADER_TRY(bit_stream->read_bits<u32>(8)) * 1000;
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
frame_sample_rate = LOADER_TRY(bit_stream->read_bits<u32>(16));
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
frame_sample_rate = LOADER_TRY(bit_stream->read_bits<u32>(16)) * 10;
}
// 11.22.11. FRAME CRC
// TODO: check header checksum, see above
[[maybe_unused]] u8 checksum = LOADER_TRY(bit_stream->read_bits<u8>(8));
dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);
m_current_frame = FlacFrameHeader {
sample_count,
frame_sample_rate,
channel_type,
bit_depth,
};
u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
Vector<Vector<i32>> current_subframes;
current_subframes.ensure_capacity(subframe_count);
for (u8 i = 0; i < subframe_count; ++i) {
FlacSubframeHeader new_subframe = TRY(next_subframe_header(*bit_stream, i));
Vector<i32> subframe_samples = TRY(parse_subframe(new_subframe, *bit_stream));
current_subframes.unchecked_append(move(subframe_samples));
}
// 11.2. Overview ("The audio data is composed of...")
bit_stream->align_to_byte_boundary();
// 11.23. FRAME_FOOTER
// TODO: check checksum, see above
[[maybe_unused]] u16 footer_checksum = LOADER_TRY(bit_stream->read_bits<u16>(16));
dbgln_if(AFLACLOADER_DEBUG, "Subframe footer checksum: {}", footer_checksum);
Vector<i32> left;
Vector<i32> right;
switch (channel_type) {
case FlacFrameChannelType::Mono:
left = right = current_subframes[0];
break;
case FlacFrameChannelType::Stereo:
// TODO mix together surround channels on each side?
case FlacFrameChannelType::StereoCenter:
case FlacFrameChannelType::Surround4p0:
case FlacFrameChannelType::Surround5p0:
case FlacFrameChannelType::Surround5p1:
case FlacFrameChannelType::Surround6p1:
case FlacFrameChannelType::Surround7p1:
left = current_subframes[0];
right = current_subframes[1];
break;
case FlacFrameChannelType::LeftSideStereo:
// channels are left (0) and side (1)
left = current_subframes[0];
right.ensure_capacity(left.size());
for (size_t i = 0; i < left.size(); ++i) {
// right = left - side
right.unchecked_append(left[i] - current_subframes[1][i]);
}
break;
case FlacFrameChannelType::RightSideStereo:
// channels are side (0) and right (1)
right = current_subframes[1];
left.ensure_capacity(right.size());
for (size_t i = 0; i < right.size(); ++i) {
// left = right + side
left.unchecked_append(right[i] + current_subframes[0][i]);
}
break;
case FlacFrameChannelType::MidSideStereo:
// channels are mid (0) and side (1)
left.ensure_capacity(current_subframes[0].size());
right.ensure_capacity(current_subframes[0].size());
for (size_t i = 0; i < current_subframes[0].size(); ++i) {
i64 mid = current_subframes[0][i];
i64 side = current_subframes[1][i];
mid *= 2;
// prevent integer division errors
left.unchecked_append(static_cast<i32>((mid + side) / 2));
right.unchecked_append(static_cast<i32>((mid - side) / 2));
}
break;
}
VERIFY(left.size() == right.size() && left.size() == m_current_frame->sample_count);
float sample_rescale = static_cast<float>(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1));
dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);
// zip together channels
auto samples_to_directly_copy = min(target_vector.size(), m_current_frame->sample_count);
for (size_t i = 0; i < samples_to_directly_copy; ++i) {
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
target_vector[i] = frame;
}
// move superfluous data into the class buffer instead
auto result = m_unread_data.try_grow_capacity(m_current_frame->sample_count - samples_to_directly_copy);
if (result.is_error())
return LoaderError { LoaderError::Category::Internal, static_cast<size_t>(samples_to_directly_copy + m_current_sample_or_frame), "Couldn't allocate sample buffer for superfluous data" };
for (size_t i = samples_to_directly_copy; i < m_current_frame->sample_count; ++i) {
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
m_unread_data.unchecked_append(frame);
}
return {};
#undef FLAC_VERIFY
}
// 11.22.3. INTERCHANNEL SAMPLE BLOCK SIZE
ErrorOr<u32, LoaderError> FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
{
// single codes
switch (sample_count_code) {
case 0:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved block size" };
case 1:
return 192;
case 6:
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
case 7:
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
}
if (sample_count_code >= 2 && sample_count_code <= 5) {
return 576 * AK::exp2(sample_count_code - 2);
}
return 256 * AK::exp2(sample_count_code - 8);
}
// 11.22.4. SAMPLE RATE
ErrorOr<u32, LoaderError> FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
{
switch (sample_rate_code) {
case 0:
return m_sample_rate;
case 1:
return 88200;
case 2:
return 176400;
case 3:
return 192000;
case 4:
return 8000;
case 5:
return 16000;
case 6:
return 22050;
case 7:
return 24000;
case 8:
return 32000;
case 9:
return 44100;
case 10:
return 48000;
case 11:
return 96000;
case 12:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
case 13:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
case 14:
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
default:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Invalid sample rate code" };
}
}
// 11.22.6. SAMPLE SIZE
ErrorOr<PcmSampleFormat, LoaderError> FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
{
switch (bit_depth_code) {
case 0:
return m_sample_format;
case 1:
return PcmSampleFormat::Uint8;
case 4:
return PcmSampleFormat::Int16;
case 6:
return PcmSampleFormat::Int24;
case 3:
case 7:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved sample size" };
default:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), String::formatted("Unsupported sample size {}", bit_depth_code) };
}
}
// 11.22.5. CHANNEL ASSIGNMENT
u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
{
if (channel_type <= FlacFrameChannelType::Surround7p1)
return to_underlying(channel_type) + 1;
return 2;
}
// 11.25. SUBFRAME_HEADER
ErrorOr<FlacSubframeHeader, LoaderError> FlacLoaderPlugin::next_subframe_header(BigEndianInputBitStream& bit_stream, u8 channel_index)
{
u8 bits_per_sample = static_cast<u16>(pcm_bits_per_sample(m_current_frame->bit_depth));
// For inter-channel correlation, the side channel needs an extra bit for its samples
switch (m_current_frame->channels) {
case FlacFrameChannelType::LeftSideStereo:
case FlacFrameChannelType::MidSideStereo:
if (channel_index == 1) {
++bits_per_sample;
}
break;
case FlacFrameChannelType::RightSideStereo:
if (channel_index == 0) {
++bits_per_sample;
}
break;
// "normal" channel types
default:
break;
}
// zero-bit padding
if (LOADER_TRY(bit_stream.read_bit()) != 0)
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Zero bit padding" };
// 11.25.1. SUBFRAME TYPE
u8 subframe_code = LOADER_TRY(bit_stream.read_bits<u8>(6));
if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000))
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Subframe type" };
FlacSubframeType subframe_type;
u8 order = 0;
// LPC has the highest bit set
if ((subframe_code & 0b100000) > 0) {
subframe_type = FlacSubframeType::LPC;
order = (subframe_code & 0b011111) + 1;
} else if ((subframe_code & 0b001000) > 0) {
// Fixed has the third-highest bit set
subframe_type = FlacSubframeType::Fixed;
order = (subframe_code & 0b000111);
} else {
subframe_type = (FlacSubframeType)subframe_code;
}
// 11.25.2. WASTED BITS PER SAMPLE FLAG
bool has_wasted_bits = LOADER_TRY(bit_stream.read_bit());
u8 k = 0;
if (has_wasted_bits) {
bool current_k_bit = 0;
do {
current_k_bit = LOADER_TRY(bit_stream.read_bit());
++k;
} while (current_k_bit != 1);
}
return FlacSubframeHeader {
subframe_type,
order,
k,
bits_per_sample
};
}
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, BigEndianInputBitStream& bit_input)
{
Vector<i32> samples;
switch (subframe_header.type) {
case FlacSubframeType::Constant: {
// 11.26. SUBFRAME_CONSTANT
u64 constant_value = LOADER_TRY(bit_input.read_bits<u64>(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample));
dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);
samples.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample != 0);
i32 constant = sign_extend(static_cast<u32>(constant_value), subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
samples.unchecked_append(constant);
}
break;
}
case FlacSubframeType::Fixed: {
dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
samples = TRY(decode_fixed_lpc(subframe_header, bit_input));
break;
}
case FlacSubframeType::Verbatim: {
dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
samples = TRY(decode_verbatim(subframe_header, bit_input));
break;
}
case FlacSubframeType::LPC: {
dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
samples = TRY(decode_custom_lpc(subframe_header, bit_input));
break;
}
default:
return LoaderError { LoaderError::Category::Unimplemented, static_cast<size_t>(m_current_sample_or_frame), "Unhandled FLAC subframe type" };
}
for (size_t i = 0; i < samples.size(); ++i) {
samples[i] <<= subframe_header.wasted_bits_per_sample;
}
ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
return resampler.resample(samples);
}
// 11.29. SUBFRAME_VERBATIM
// Decode a subframe that isn't actually encoded, usually seen in random data
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
for (size_t i = 0; i < m_current_frame->sample_count; ++i) {
decoded.unchecked_append(sign_extend(
LOADER_TRY(bit_input.read_bits<u32>(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
return decoded;
}
// 11.28. SUBFRAME_LPC
// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
// warm-up samples
for (auto i = 0; i < subframe.order; ++i) {
decoded.unchecked_append(sign_extend(
LOADER_TRY(bit_input.read_bits<u32>(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
// precision of the coefficients
u8 lpc_precision = LOADER_TRY(bit_input.read_bits<u8>(4));
if (lpc_precision == 0b1111)
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Invalid linear predictor coefficient precision" };
lpc_precision += 1;
// shift needed on the data (signed!)
i8 lpc_shift = sign_extend(LOADER_TRY(bit_input.read_bits<u8>(5)), 5);
Vector<i32> coefficients;
coefficients.ensure_capacity(subframe.order);
// read coefficients
for (auto i = 0; i < subframe.order; ++i) {
u32 raw_coefficient = LOADER_TRY(bit_input.read_bits<u32>(lpc_precision));
i32 coefficient = static_cast<i32>(sign_extend(raw_coefficient, lpc_precision));
coefficients.unchecked_append(coefficient);
}
dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients);
TRY(decode_residual(decoded, subframe, bit_input));
// approximate the waveform with the predictor
for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
// (see below)
i64 sample = 0;
for (size_t t = 0; t < subframe.order; ++t) {
// It's really important that we compute in 64-bit land here.
// Even though FLAC operates at a maximum bit depth of 32 bits, modern encoders use super-large coefficients for maximum compression.
// These will easily overflow 32 bits and cause strange white noise that abruptly stops intermittently (at the end of a frame).
// The simple fix of course is to do intermediate computations in 64 bits.
// These considerations are not in the original FLAC spec, but have been added to the IETF standard: https://datatracker.ietf.org/doc/html/draft-ietf-cellar-flac-03#appendix-A.3
sample += static_cast<i64>(coefficients[t]) * static_cast<i64>(decoded[i - t - 1]);
}
decoded[i] += sample >> lpc_shift;
}
return decoded;
}
// 11.27. SUBFRAME_FIXED
// Decode a subframe encoded with one of the fixed linear predictor codings
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
Vector<i32> decoded;
decoded.ensure_capacity(m_current_frame->sample_count);
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
// warm-up samples
for (auto i = 0; i < subframe.order; ++i) {
decoded.unchecked_append(sign_extend(
LOADER_TRY(bit_input.read_bits<u32>(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
}
TRY(decode_residual(decoded, subframe, bit_input));
dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);
// Skip these comments if you don't care about the neat math behind fixed LPC :^)
// These coefficients for the recursive prediction formula are the only ones that can be resolved to polynomial predictor functions.
// The order equals the degree of the polynomial - 1, so the second-order predictor has an underlying polynomial of degree 1, a straight line.
// More specifically, the closest approximation to a polynomial is used, and the degree depends on how many previous values are available.
// This makes use of a very neat property of polynomials, which is that they are entirely characterized by their finitely many derivatives.
// (Mathematically speaking, the infinite Taylor series of any polynomial equals the polynomial itself.)
// Now remember that derivation is just the slope of the function, which is the same as the difference of two close-by values.
// Therefore, with two samples we can calculate the first derivative at a sample via the difference, which gives us a polynomial of degree 1.
// With three samples, we can do the same but also calculate the second derivative via the difference in the first derivatives.
// This gives us a polynomial of degree 2, as it has two "proper" (non-constant) derivatives.
// This can be continued for higher-order derivatives when we have more coefficients, giving us higher-order polynomials.
// In essence, it's akin to a Lagrangian polynomial interpolation for every sample (but already pre-solved).
// The coefficients for orders 0-3 originate from the SHORTEN codec:
// http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/robinson_tr156.pdf page 4
// The coefficients for order 4 are undocumented in the original FLAC specification(s), but can now be found in
// https://datatracker.ietf.org/doc/html/draft-ietf-cellar-flac-03#section-10.2.5
switch (subframe.order) {
case 0:
// s_0(t) = 0
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 0;
break;
case 1:
// s_1(t) = s(t-1)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += decoded[i - 1];
break;
case 2:
// s_2(t) = 2s(t-1) - s(t-2)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
break;
case 3:
// s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
break;
case 4:
// s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
break;
default:
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), String::formatted("Unrecognized predictor order {}", subframe.order) };
}
return decoded;
}
// 11.30. RESIDUAL
// Decode the residual, the "error" between the function approximation and the actual audio data
MaybeLoaderError FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
// 11.30.1. RESIDUAL_CODING_METHOD
auto residual_mode = static_cast<FlacResidualMode>(LOADER_TRY(bit_input.read_bits<u8>(2)));
u8 partition_order = LOADER_TRY(bit_input.read_bits<u8>(4));
size_t partitions = 1 << partition_order;
if (residual_mode == FlacResidualMode::Rice4Bit) {
// 11.30.2. RESIDUAL_CODING_METHOD_PARTITIONED_EXP_GOLOMB
// decode a single Rice partition with four bits for the order k
for (size_t i = 0; i < partitions; ++i) {
auto rice_partition = TRY(decode_rice_partition(4, partitions, i, subframe, bit_input));
decoded.extend(move(rice_partition));
}
} else if (residual_mode == FlacResidualMode::Rice5Bit) {
// 11.30.3. RESIDUAL_CODING_METHOD_PARTITIONED_EXP_GOLOMB2
// five bits equivalent
for (size_t i = 0; i < partitions; ++i) {
auto rice_partition = TRY(decode_rice_partition(5, partitions, i, subframe, bit_input));
decoded.extend(move(rice_partition));
}
} else
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved residual coding method" };
return {};
}
// 11.30.2.1. EXP_GOLOMB_PARTITION and 11.30.3.1. EXP_GOLOMB2_PARTITION
// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
ALWAYS_INLINE ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input)
{
// 11.30.2.2. EXP GOLOMB PARTITION ENCODING PARAMETER and 11.30.3.2. EXP-GOLOMB2 PARTITION ENCODING PARAMETER
u8 k = LOADER_TRY(bit_input.read_bits<u8>(partition_type));
u32 residual_sample_count;
if (partitions == 0)
residual_sample_count = m_current_frame->sample_count - subframe.order;
else
residual_sample_count = m_current_frame->sample_count / partitions;
if (partition_index == 0)
residual_sample_count -= subframe.order;
Vector<i32> rice_partition;
rice_partition.resize(residual_sample_count);
// escape code for unencoded binary partition
if (k == (1 << partition_type) - 1) {
u8 unencoded_bps = LOADER_TRY(bit_input.read_bits<u8>(5));
for (size_t r = 0; r < residual_sample_count; ++r) {
rice_partition[r] = LOADER_TRY(bit_input.read_bits<u8>(unencoded_bps));
}
} else {
for (size_t r = 0; r < residual_sample_count; ++r) {
rice_partition[r] = LOADER_TRY(decode_unsigned_exp_golomb(k, bit_input));
}
}
return rice_partition;
}
// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
ALWAYS_INLINE ErrorOr<i32> decode_unsigned_exp_golomb(u8 k, BigEndianInputBitStream& bit_input)
{
u8 q = 0;
while (TRY(bit_input.read_bit()) == 0)
++q;
// least significant bits (remainder)
u32 rem = TRY(bit_input.read_bits<u32>(k));
u32 value = q << k | rem;
return rice_to_signed(value);
}
ErrorOr<u64> read_utf8_char(BigEndianInputBitStream& input)
{
u64 character;
u8 buffer = 0;
Bytes buffer_bytes { &buffer, 1 };
TRY(input.read(buffer_bytes));
u8 start_byte = buffer_bytes[0];
// Signal byte is zero: ASCII character
if ((start_byte & 0b10000000) == 0) {
return start_byte;
} else if ((start_byte & 0b11000000) == 0b10000000) {
return Error::from_string_literal("Illegal continuation byte");
}
// This algorithm is too good and supports the theoretical max 0xFF start byte
u8 length = 1;
while (((start_byte << length) & 0b10000000) == 0b10000000)
++length;
u8 bits_from_start_byte = 8 - (length + 1);
u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1;
character = start_byte_bitmask & start_byte;
for (u8 i = length - 1; i > 0; --i) {
TRY(input.read(buffer_bytes));
u8 current_byte = buffer_bytes[0];
character = (character << 6) | (current_byte & 0b00111111);
}
return character;
}
i64 sign_extend(u32 n, u8 size)
{
// negative
if ((n & (1 << (size - 1))) > 0) {
return static_cast<i64>(n | (0xffffffff << size));
}
// positive
return n;
}
i32 rice_to_signed(u32 x)
{
// positive numbers are even, negative numbers are odd
// bitmask for conditionally inverting the entire number, thereby "negating" it
i32 sign = -static_cast<i32>(x & 1);
// copies the sign's sign onto the actual magnitude of x
return static_cast<i32>(sign ^ (x >> 1));
}
}