ladybird/Userland/Libraries/LibWeb/Layout/TreeBuilder.cpp
Andreas Kling 7e1bf4d300 LibWeb: Compute element style in Layout::TreeBuilder
Instead of making each Layout::Node compute style for itself, we now
compute it in TreeBuilder before even calling create_layout_node().

For non-element DOM nodes, we create the style and layout tree node
in TreeBuilder. This allows us to move create_layout_node() from
DOM::Node to DOM::Element.
2022-02-05 22:50:39 +01:00

382 lines
15 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Optional.h>
#include <AK/TemporaryChange.h>
#include <LibWeb/DOM/Document.h>
#include <LibWeb/DOM/Element.h>
#include <LibWeb/DOM/ParentNode.h>
#include <LibWeb/DOM/ShadowRoot.h>
#include <LibWeb/Dump.h>
#include <LibWeb/Layout/InitialContainingBlock.h>
#include <LibWeb/Layout/Node.h>
#include <LibWeb/Layout/TableBox.h>
#include <LibWeb/Layout/TableCellBox.h>
#include <LibWeb/Layout/TableRowBox.h>
#include <LibWeb/Layout/TextNode.h>
#include <LibWeb/Layout/TreeBuilder.h>
namespace Web::Layout {
TreeBuilder::TreeBuilder()
{
}
// The insertion_parent_for_*() functions maintain the invariant that block-level boxes must have either
// only block-level children or only inline-level children.
static Layout::Node& insertion_parent_for_inline_node(Layout::NodeWithStyle& layout_parent)
{
if (layout_parent.is_inline() && !layout_parent.is_inline_block())
return layout_parent;
if (layout_parent.computed_values().display().is_flex_inside()) {
layout_parent.append_child(layout_parent.create_anonymous_wrapper());
}
if (!layout_parent.has_children() || layout_parent.children_are_inline())
return layout_parent;
// Parent has block-level children, insert into an anonymous wrapper block (and create it first if needed)
if (!layout_parent.last_child()->is_anonymous() || !layout_parent.last_child()->children_are_inline()) {
layout_parent.append_child(layout_parent.create_anonymous_wrapper());
}
return *layout_parent.last_child();
}
static Layout::Node& insertion_parent_for_block_node(Layout::Node& layout_parent, Layout::Node& layout_node)
{
if (!layout_parent.has_children()) {
// Parent block has no children, insert this block into parent.
return layout_parent;
}
if (!layout_parent.children_are_inline()) {
// Parent block has block-level children, insert this block into parent.
return layout_parent;
}
// Parent block has inline-level children (our siblings).
// First move these siblings into an anonymous wrapper block.
NonnullRefPtrVector<Layout::Node> children;
while (RefPtr<Layout::Node> child = layout_parent.first_child()) {
layout_parent.remove_child(*child);
children.append(child.release_nonnull());
}
layout_parent.append_child(adopt_ref(*new BlockContainer(layout_node.document(), nullptr, layout_parent.computed_values().clone_inherited_values())));
layout_parent.set_children_are_inline(false);
for (auto& child : children) {
layout_parent.last_child()->append_child(child);
}
layout_parent.last_child()->set_children_are_inline(true);
// Then it's safe to insert this block into parent.
return layout_parent;
}
void TreeBuilder::create_layout_tree(DOM::Node& dom_node, TreeBuilder::Context& context)
{
// If the parent doesn't have a layout node, we don't need one either.
if (dom_node.parent_or_shadow_host() && !dom_node.parent_or_shadow_host()->layout_node())
return;
Optional<TemporaryChange<bool>> has_svg_root_change;
if (dom_node.is_svg_container()) {
has_svg_root_change.emplace(context.has_svg_root, true);
} else if (dom_node.requires_svg_container() && !context.has_svg_root) {
return;
}
auto& document = dom_node.document();
auto& style_computer = document.style_computer();
RefPtr<Layout::Node> layout_node;
if (is<DOM::Element>(dom_node)) {
auto& element = static_cast<DOM::Element&>(dom_node);
auto style = style_computer.compute_style(element);
if (style->display().is_none())
return;
element.set_specified_css_values(style);
layout_node = element.create_layout_node(move(style));
} else if (is<DOM::Document>(dom_node)) {
auto style = style_computer.create_document_style();
layout_node = adopt_ref(*new Layout::InitialContainingBlock(static_cast<DOM::Document&>(dom_node), move(style)));
} else if (is<DOM::Text>(dom_node)) {
layout_node = adopt_ref(*new Layout::TextNode(document, static_cast<DOM::Text&>(dom_node)));
} else if (is<DOM::ShadowRoot>(dom_node)) {
layout_node = adopt_ref(*new Layout::BlockContainer(document, &static_cast<DOM::ShadowRoot&>(dom_node), CSS::ComputedValues {}));
}
if (!layout_node)
return;
if (!dom_node.parent_or_shadow_host()) {
m_layout_root = layout_node;
} else {
if (layout_node->is_inline() && !(layout_node->is_inline_block() && m_parent_stack.last()->computed_values().display().is_flex_inside())) {
// Inlines can be inserted into the nearest ancestor.
auto& insertion_point = insertion_parent_for_inline_node(*m_parent_stack.last());
insertion_point.append_child(*layout_node);
insertion_point.set_children_are_inline(true);
} else {
// Non-inlines can't be inserted into an inline parent, so find the nearest non-inline ancestor.
auto& nearest_non_inline_ancestor = [&]() -> Layout::Node& {
for (ssize_t i = m_parent_stack.size() - 1; i >= 0; --i) {
if (!m_parent_stack[i]->is_inline() || m_parent_stack[i]->is_inline_block())
return *m_parent_stack[i];
}
VERIFY_NOT_REACHED();
}();
auto& insertion_point = insertion_parent_for_block_node(nearest_non_inline_ancestor, *layout_node);
insertion_point.append_child(*layout_node);
insertion_point.set_children_are_inline(false);
}
}
auto* shadow_root = is<DOM::Element>(dom_node) ? verify_cast<DOM::Element>(dom_node).shadow_root() : nullptr;
if ((dom_node.has_children() || shadow_root) && layout_node->can_have_children()) {
push_parent(verify_cast<NodeWithStyle>(*layout_node));
if (shadow_root)
create_layout_tree(*shadow_root, context);
verify_cast<DOM::ParentNode>(dom_node).for_each_child([&](auto& dom_child) {
create_layout_tree(dom_child, context);
});
pop_parent();
}
}
RefPtr<Node> TreeBuilder::build(DOM::Node& dom_node)
{
if (dom_node.parent()) {
// We're building a partial layout tree, so start by building up the stack of parent layout nodes.
for (auto* ancestor = dom_node.parent()->layout_node(); ancestor; ancestor = ancestor->parent())
m_parent_stack.prepend(verify_cast<NodeWithStyle>(ancestor));
}
Context context;
create_layout_tree(dom_node, context);
if (auto* root = dom_node.document().layout_node())
fixup_tables(*root);
return move(m_layout_root);
}
template<CSS::Display::Internal internal, typename Callback>
void TreeBuilder::for_each_in_tree_with_internal_display(NodeWithStyle& root, Callback callback)
{
root.for_each_in_inclusive_subtree_of_type<Box>([&](auto& box) {
auto const& display = box.computed_values().display();
if (display.is_internal() && display.internal() == internal)
callback(box);
return IterationDecision::Continue;
});
}
template<CSS::Display::Inside inside, typename Callback>
void TreeBuilder::for_each_in_tree_with_inside_display(NodeWithStyle& root, Callback callback)
{
root.for_each_in_inclusive_subtree_of_type<Box>([&](auto& box) {
auto const& display = box.computed_values().display();
if (display.it_outside_and_inside() && display.inside() == inside)
callback(box);
return IterationDecision::Continue;
});
}
void TreeBuilder::fixup_tables(NodeWithStyle& root)
{
// NOTE: Even if we only do a partial build, we always do fixup from the root.
remove_irrelevant_boxes(root);
generate_missing_child_wrappers(root);
generate_missing_parents(root);
}
void TreeBuilder::remove_irrelevant_boxes(NodeWithStyle& root)
{
// The following boxes are discarded as if they were display:none:
NonnullRefPtrVector<Node> to_remove;
// Children of a table-column.
for_each_in_tree_with_internal_display<CSS::Display::Internal::TableColumn>(root, [&](Box& table_column) {
table_column.for_each_child([&](auto& child) {
to_remove.append(child);
});
});
// Children of a table-column-group which are not a table-column.
for_each_in_tree_with_internal_display<CSS::Display::Internal::TableColumnGroup>(root, [&](Box& table_column_group) {
table_column_group.for_each_child([&](auto& child) {
if (child.computed_values().display().is_table_column())
to_remove.append(child);
});
});
// FIXME:
// Anonymous inline boxes which contain only white space and are between two immediate siblings each of which is a table-non-root box.
// Anonymous inline boxes which meet all of the following criteria:
// - they contain only white space
// - they are the first and/or last child of a tabular container
// - whose immediate sibling, if any, is a table-non-root box
for (auto& box : to_remove)
box.parent()->remove_child(box);
}
static bool is_table_track(CSS::Display display)
{
return display.is_table_row() || display.is_table_column();
}
static bool is_table_track_group(CSS::Display display)
{
// Unless explicitly mentioned otherwise, mentions of table-row-groups in this spec also encompass the specialized
// table-header-groups and table-footer-groups.
return display.is_table_row_group()
|| display.is_table_header_group()
|| display.is_table_footer_group()
|| display.is_table_column_group();
}
static bool is_not_proper_table_child(const Node& node)
{
if (!node.has_style())
return true;
auto display = node.computed_values().display();
return !is_table_track_group(display) && !is_table_track(display) && !display.is_table_caption();
}
static bool is_not_table_row(const Node& node)
{
if (!node.has_style())
return true;
auto display = node.computed_values().display();
return !display.is_table_row();
}
static bool is_not_table_cell(const Node& node)
{
if (!node.has_style())
return true;
auto display = node.computed_values().display();
return !display.is_table_cell();
}
static bool is_ignorable_whitespace(Layout::Node const& node)
{
if (node.is_text_node() && static_cast<TextNode const&>(node).text_for_rendering().is_whitespace())
return true;
if (node.is_anonymous() && node.is_block_container() && static_cast<BlockContainer const&>(node).children_are_inline()) {
bool contains_only_white_space = true;
node.for_each_in_inclusive_subtree_of_type<TextNode>([&contains_only_white_space](auto& text_node) {
if (!text_node.text_for_rendering().is_whitespace()) {
contains_only_white_space = false;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (contains_only_white_space)
return true;
}
return false;
}
template<typename Matcher, typename Callback>
static void for_each_sequence_of_consecutive_children_matching(NodeWithStyle& parent, Matcher matcher, Callback callback)
{
NonnullRefPtrVector<Node> sequence;
auto sequence_is_all_ignorable_whitespace = [&]() -> bool {
for (auto& node : sequence) {
if (!is_ignorable_whitespace(node))
return false;
}
return true;
};
Node* next_sibling = nullptr;
for (auto* child = parent.first_child(); child; child = next_sibling) {
next_sibling = child->next_sibling();
if (matcher(*child)) {
sequence.append(*child);
} else {
if (!sequence.is_empty()) {
if (!sequence_is_all_ignorable_whitespace())
callback(sequence, next_sibling);
sequence.clear();
}
}
}
if (sequence.is_empty() && !sequence_is_all_ignorable_whitespace())
callback(sequence, nullptr);
}
template<typename WrapperBoxType>
static void wrap_in_anonymous(NonnullRefPtrVector<Node>& sequence, Node* nearest_sibling)
{
VERIFY(!sequence.is_empty());
auto& parent = *sequence.first().parent();
auto computed_values = parent.computed_values().clone_inherited_values();
static_cast<CSS::MutableComputedValues&>(computed_values).set_display(WrapperBoxType::static_display());
auto wrapper = adopt_ref(*new WrapperBoxType(parent.document(), nullptr, move(computed_values)));
for (auto& child : sequence) {
parent.remove_child(child);
wrapper->append_child(child);
}
if (nearest_sibling)
parent.insert_before(move(wrapper), *nearest_sibling);
else
parent.append_child(move(wrapper));
}
void TreeBuilder::generate_missing_child_wrappers(NodeWithStyle& root)
{
// An anonymous table-row box must be generated around each sequence of consecutive children of a table-root box which are not proper table child boxes.
for_each_in_tree_with_inside_display<CSS::Display::Inside::Table>(root, [&](auto& parent) {
for_each_sequence_of_consecutive_children_matching(parent, is_not_proper_table_child, [&](auto sequence, auto nearest_sibling) {
wrap_in_anonymous<TableRowBox>(sequence, nearest_sibling);
});
});
// An anonymous table-row box must be generated around each sequence of consecutive children of a table-row-group box which are not table-row boxes.
for_each_in_tree_with_internal_display<CSS::Display::Internal::TableRowGroup>(root, [&](auto& parent) {
for_each_sequence_of_consecutive_children_matching(parent, is_not_table_row, [&](auto& sequence, auto nearest_sibling) {
wrap_in_anonymous<TableRowBox>(sequence, nearest_sibling);
});
});
// Unless explicitly mentioned otherwise, mentions of table-row-groups in this spec also encompass the specialized
// table-header-groups and table-footer-groups.
for_each_in_tree_with_internal_display<CSS::Display::Internal::TableHeaderGroup>(root, [&](auto& parent) {
for_each_sequence_of_consecutive_children_matching(parent, is_not_table_row, [&](auto& sequence, auto nearest_sibling) {
wrap_in_anonymous<TableRowBox>(sequence, nearest_sibling);
});
});
for_each_in_tree_with_internal_display<CSS::Display::Internal::TableFooterGroup>(root, [&](auto& parent) {
for_each_sequence_of_consecutive_children_matching(parent, is_not_table_row, [&](auto& sequence, auto nearest_sibling) {
wrap_in_anonymous<TableRowBox>(sequence, nearest_sibling);
});
});
// An anonymous table-cell box must be generated around each sequence of consecutive children of a table-row box which are not table-cell boxes. !Testcase
for_each_in_tree_with_internal_display<CSS::Display::Internal::TableRow>(root, [&](auto& parent) {
for_each_sequence_of_consecutive_children_matching(parent, is_not_table_cell, [&](auto& sequence, auto nearest_sibling) {
wrap_in_anonymous<TableCellBox>(sequence, nearest_sibling);
});
});
}
void TreeBuilder::generate_missing_parents(NodeWithStyle&)
{
// FIXME: Implement.
}
}