ladybird/Kernel/PCI/MMIOAccess.cpp
Andreas Kling 09b1b09c19 Kernel: Assert if rounding-up-to-page-size would wrap around to 0
If we try to align a number above 0xfffff000 to the next multiple of
the page size (4 KiB), it would wrap around to 0. This is most likely
never what we want, so let's assert if that happens.
2021-02-14 10:01:50 +01:00

247 lines
9.5 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Optional.h>
#include <AK/StringView.h>
#include <Kernel/Debug.h>
#include <Kernel/PCI/MMIOAccess.h>
#include <Kernel/VM/MemoryManager.h>
namespace Kernel {
namespace PCI {
class MMIOSegment {
public:
MMIOSegment(PhysicalAddress, u8, u8);
u8 get_start_bus() const;
u8 get_end_bus() const;
size_t get_size() const;
PhysicalAddress get_paddr() const;
private:
PhysicalAddress m_base_addr;
u8 m_start_bus;
u8 m_end_bus;
};
#define PCI_MMIO_CONFIG_SPACE_SIZE 4096
DeviceConfigurationSpaceMapping::DeviceConfigurationSpaceMapping(Address device_address, const MMIOSegment& mmio_segment)
: m_device_address(device_address)
, m_mapped_region(MM.allocate_kernel_region(page_round_up(PCI_MMIO_CONFIG_SPACE_SIZE), "PCI MMIO Device Access", Region::Access::Read | Region::Access::Write).release_nonnull())
{
PhysicalAddress segment_lower_addr = mmio_segment.get_paddr();
PhysicalAddress device_physical_mmio_space = segment_lower_addr.offset(
PCI_MMIO_CONFIG_SPACE_SIZE * m_device_address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * m_device_address.device() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS) * (m_device_address.bus() - mmio_segment.get_start_bus()));
m_mapped_region->physical_page_slot(0) = PhysicalPage::create(device_physical_mmio_space, false, false);
m_mapped_region->remap();
}
uint32_t MMIOAccess::segment_count() const
{
return m_segments.size();
}
uint8_t MMIOAccess::segment_start_bus(u32 seg) const
{
auto segment = m_segments.get(seg);
ASSERT(segment.has_value());
return segment.value().get_start_bus();
}
uint8_t MMIOAccess::segment_end_bus(u32 seg) const
{
auto segment = m_segments.get(seg);
ASSERT(segment.has_value());
return segment.value().get_end_bus();
}
void MMIOAccess::initialize(PhysicalAddress mcfg)
{
if (!Access::is_initialized()) {
new MMIOAccess(mcfg);
#if PCI_DEBUG
dbgln("PCI: MMIO access initialised.");
#endif
}
}
MMIOAccess::MMIOAccess(PhysicalAddress p_mcfg)
: m_mcfg(p_mcfg)
{
klog() << "PCI: Using MMIO for PCI configuration space access";
auto checkup_region = MM.allocate_kernel_region(p_mcfg.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write);
#if PCI_DEBUG
dbgln("PCI: Checking MCFG Table length to choose the correct mapping size");
#endif
auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
u32 length = sdt->length;
u8 revision = sdt->revision;
klog() << "PCI: MCFG, length - " << length << ", revision " << revision;
checkup_region->unmap();
auto mcfg_region = MM.allocate_kernel_region(p_mcfg.page_base(), page_round_up(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write);
auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), PhysicalAddress(p_mcfg.get()));
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
u32 lower_addr = mcfg.descriptors[index].base_addr;
m_segments.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus });
klog() << "PCI: New PCI segment @ " << PhysicalAddress(lower_addr) << ", PCI buses (" << start_bus << "-" << end_bus << ")";
}
mcfg_region->unmap();
klog() << "PCI: MMIO segments - " << m_segments.size();
InterruptDisabler disabler;
enumerate_hardware([&](const Address& address, ID id) {
m_mapped_device_regions.append(make<DeviceConfigurationSpaceMapping>(address, m_segments.get(address.seg()).value()));
m_physical_ids.append({ address, id, get_capabilities(address) });
dbgln_if(PCI_DEBUG, "PCI: Mapping device @ pci ({}) {} {}", address, m_mapped_device_regions.last().vaddr(), m_mapped_device_regions.last().paddr());
});
}
Optional<VirtualAddress> MMIOAccess::get_device_configuration_space(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address);
for (auto& mapping : m_mapped_device_regions) {
auto checked_address = mapping.address();
dbgln_if(PCI_DEBUG, "PCI Device Configuration Space Mapping: Check if {} was requested", checked_address);
if (address.seg() == checked_address.seg()
&& address.bus() == checked_address.bus()
&& address.device() == checked_address.device()
&& address.function() == checked_address.function()) {
dbgln_if(PCI_DEBUG, "PCI Device Configuration Space Mapping: Found {}", checked_address);
return mapping.vaddr();
}
}
dbgln_if(PCI_DEBUG, "PCI: No device configuration space found for {}", address);
return {};
}
u8 MMIOAccess::read8_field(Address address, u32 field)
{
InterruptDisabler disabler;
ASSERT(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address);
return *((u8*)(get_device_configuration_space(address).value().get() + (field & 0xfff)));
}
u16 MMIOAccess::read16_field(Address address, u32 field)
{
InterruptDisabler disabler;
ASSERT(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address);
return *((u16*)(get_device_configuration_space(address).value().get() + (field & 0xfff)));
}
u32 MMIOAccess::read32_field(Address address, u32 field)
{
InterruptDisabler disabler;
ASSERT(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address);
return *((u32*)(get_device_configuration_space(address).value().get() + (field & 0xfff)));
}
void MMIOAccess::write8_field(Address address, u32 field, u8 value)
{
InterruptDisabler disabler;
ASSERT(field <= 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
*((u8*)(get_device_configuration_space(address).value().get() + (field & 0xfff))) = value;
}
void MMIOAccess::write16_field(Address address, u32 field, u16 value)
{
InterruptDisabler disabler;
ASSERT(field < 0xfff);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
*((u16*)(get_device_configuration_space(address).value().get() + (field & 0xfff))) = value;
}
void MMIOAccess::write32_field(Address address, u32 field, u32 value)
{
InterruptDisabler disabler;
ASSERT(field <= 0xffc);
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
*((u32*)(get_device_configuration_space(address).value().get() + (field & 0xfff))) = value;
}
void MMIOAccess::enumerate_hardware(Function<void(Address, ID)> callback)
{
for (u16 seg = 0; seg < m_segments.size(); seg++) {
dbgln_if(PCI_DEBUG, "PCI: Enumerating Memory mapped IO segment {}", seg);
// Single PCI host controller.
if ((early_read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, callback, true);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (early_read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
break;
enumerate_bus(-1, function, callback, false);
}
}
}
MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
: m_base_addr(segment_base_addr)
, m_start_bus(start_bus)
, m_end_bus(end_bus)
{
}
u8 MMIOSegment::get_start_bus() const
{
return m_start_bus;
}
u8 MMIOSegment::get_end_bus() const
{
return m_end_bus;
}
size_t MMIOSegment::get_size() const
{
return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
}
PhysicalAddress MMIOSegment::get_paddr() const
{
return m_base_addr;
}
}
}