mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-27 05:05:32 +03:00
9a026fc8d5
SipHash is highly HashDoS-resistent, initialized with a random seed at startup (i.e. non-deterministic) and usable for security-critical use cases with large enough parameters. We just use it because it's reasonably secure with parameters 1-3 while having excellent properties and not being significantly slower than before.
791 lines
26 KiB
C++
791 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Concepts.h>
|
|
#include <AK/Error.h>
|
|
#include <AK/ReverseIterator.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/Traits.h>
|
|
#include <AK/Types.h>
|
|
#include <AK/kmalloc.h>
|
|
|
|
namespace AK {
|
|
|
|
enum class HashSetResult {
|
|
InsertedNewEntry,
|
|
ReplacedExistingEntry,
|
|
KeptExistingEntry,
|
|
};
|
|
|
|
enum class HashSetExistingEntryBehavior {
|
|
Keep,
|
|
Replace,
|
|
};
|
|
|
|
// BucketState doubles as both an enum and a probe length value.
|
|
// - Free: empty bucket
|
|
// - Used (implicit, values 1..254): value-1 represents probe length
|
|
// - CalculateLength: same as Used but probe length > 253, so we calculate the actual probe length
|
|
enum class BucketState : u8 {
|
|
Free = 0,
|
|
CalculateLength = 255,
|
|
};
|
|
|
|
template<typename HashTableType, typename T, typename BucketType>
|
|
class HashTableIterator {
|
|
friend HashTableType;
|
|
|
|
public:
|
|
bool operator==(HashTableIterator const& other) const { return m_bucket == other.m_bucket; }
|
|
bool operator!=(HashTableIterator const& other) const { return m_bucket != other.m_bucket; }
|
|
T& operator*() { return *m_bucket->slot(); }
|
|
T* operator->() { return m_bucket->slot(); }
|
|
void operator++() { skip_to_next(); }
|
|
|
|
private:
|
|
void skip_to_next()
|
|
{
|
|
if (!m_bucket)
|
|
return;
|
|
do {
|
|
++m_bucket;
|
|
if (m_bucket == m_end_bucket) {
|
|
m_bucket = nullptr;
|
|
return;
|
|
}
|
|
} while (m_bucket->state == BucketState::Free);
|
|
}
|
|
|
|
HashTableIterator(BucketType* bucket, BucketType* end_bucket)
|
|
: m_bucket(bucket)
|
|
, m_end_bucket(end_bucket)
|
|
{
|
|
}
|
|
|
|
BucketType* m_bucket { nullptr };
|
|
BucketType* m_end_bucket { nullptr };
|
|
};
|
|
|
|
template<typename OrderedHashTableType, typename T, typename BucketType>
|
|
class OrderedHashTableIterator {
|
|
friend OrderedHashTableType;
|
|
|
|
public:
|
|
bool operator==(OrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
|
|
bool operator!=(OrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
|
|
T& operator*() { return *m_bucket->slot(); }
|
|
T* operator->() { return m_bucket->slot(); }
|
|
void operator++() { m_bucket = m_bucket->next; }
|
|
void operator--() { m_bucket = m_bucket->previous; }
|
|
|
|
private:
|
|
OrderedHashTableIterator(BucketType* bucket, BucketType*)
|
|
: m_bucket(bucket)
|
|
{
|
|
}
|
|
|
|
BucketType* m_bucket { nullptr };
|
|
};
|
|
|
|
template<typename OrderedHashTableType, typename T, typename BucketType>
|
|
class ReverseOrderedHashTableIterator {
|
|
friend OrderedHashTableType;
|
|
|
|
public:
|
|
bool operator==(ReverseOrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
|
|
bool operator!=(ReverseOrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
|
|
T& operator*() { return *m_bucket->slot(); }
|
|
T* operator->() { return m_bucket->slot(); }
|
|
void operator++() { m_bucket = m_bucket->previous; }
|
|
void operator--() { m_bucket = m_bucket->next; }
|
|
|
|
private:
|
|
ReverseOrderedHashTableIterator(BucketType* bucket)
|
|
: m_bucket(bucket)
|
|
{
|
|
}
|
|
|
|
BucketType* m_bucket { nullptr };
|
|
};
|
|
|
|
// A set datastructure based on a hash table with closed hashing.
|
|
// HashTable can optionally provide ordered iteration when IsOrdered = true.
|
|
// For a (more commonly required) map datastructure with key-value entries, see HashMap.
|
|
template<typename T, typename TraitsForT, bool IsOrdered>
|
|
class HashTable {
|
|
static constexpr size_t grow_capacity_at_least = 8;
|
|
static constexpr size_t grow_at_load_factor_percent = 80;
|
|
static constexpr size_t grow_capacity_increase_percent = 60;
|
|
|
|
struct Bucket {
|
|
BucketState state;
|
|
alignas(T) u8 storage[sizeof(T)];
|
|
T* slot() { return reinterpret_cast<T*>(storage); }
|
|
T const* slot() const { return reinterpret_cast<T const*>(storage); }
|
|
};
|
|
|
|
struct OrderedBucket {
|
|
OrderedBucket* previous;
|
|
OrderedBucket* next;
|
|
BucketState state;
|
|
alignas(T) u8 storage[sizeof(T)];
|
|
T* slot() { return reinterpret_cast<T*>(storage); }
|
|
T const* slot() const { return reinterpret_cast<T const*>(storage); }
|
|
};
|
|
|
|
using BucketType = Conditional<IsOrdered, OrderedBucket, Bucket>;
|
|
|
|
struct CollectionData {
|
|
};
|
|
|
|
struct OrderedCollectionData {
|
|
BucketType* head { nullptr };
|
|
BucketType* tail { nullptr };
|
|
};
|
|
|
|
using CollectionDataType = Conditional<IsOrdered, OrderedCollectionData, CollectionData>;
|
|
|
|
public:
|
|
HashTable() = default;
|
|
explicit HashTable(size_t capacity) { rehash(capacity); }
|
|
|
|
~HashTable()
|
|
{
|
|
if (!m_buckets)
|
|
return;
|
|
|
|
if constexpr (!IsTriviallyDestructible<T>) {
|
|
for (size_t i = 0; i < m_capacity; ++i) {
|
|
if (m_buckets[i].state != BucketState::Free)
|
|
m_buckets[i].slot()->~T();
|
|
}
|
|
}
|
|
|
|
kfree_sized(m_buckets, size_in_bytes(m_capacity));
|
|
}
|
|
|
|
HashTable(HashTable const& other)
|
|
{
|
|
rehash(other.capacity());
|
|
for (auto& it : other)
|
|
set(it);
|
|
}
|
|
|
|
HashTable& operator=(HashTable const& other)
|
|
{
|
|
HashTable temporary(other);
|
|
swap(*this, temporary);
|
|
return *this;
|
|
}
|
|
|
|
HashTable(HashTable&& other) noexcept
|
|
: m_buckets(other.m_buckets)
|
|
, m_collection_data(other.m_collection_data)
|
|
, m_size(other.m_size)
|
|
, m_capacity(other.m_capacity)
|
|
{
|
|
other.m_size = 0;
|
|
other.m_capacity = 0;
|
|
other.m_buckets = nullptr;
|
|
if constexpr (IsOrdered)
|
|
other.m_collection_data = { nullptr, nullptr };
|
|
}
|
|
|
|
HashTable& operator=(HashTable&& other) noexcept
|
|
{
|
|
HashTable temporary { move(other) };
|
|
swap(*this, temporary);
|
|
return *this;
|
|
}
|
|
|
|
friend void swap(HashTable& a, HashTable& b) noexcept
|
|
{
|
|
swap(a.m_buckets, b.m_buckets);
|
|
swap(a.m_size, b.m_size);
|
|
swap(a.m_capacity, b.m_capacity);
|
|
|
|
if constexpr (IsOrdered)
|
|
swap(a.m_collection_data, b.m_collection_data);
|
|
}
|
|
|
|
[[nodiscard]] bool is_empty() const { return m_size == 0; }
|
|
[[nodiscard]] size_t size() const { return m_size; }
|
|
[[nodiscard]] size_t capacity() const { return m_capacity; }
|
|
|
|
template<typename U, size_t N>
|
|
ErrorOr<void> try_set_from(U (&from_array)[N])
|
|
{
|
|
for (size_t i = 0; i < N; ++i)
|
|
TRY(try_set(from_array[i]));
|
|
return {};
|
|
}
|
|
template<typename U, size_t N>
|
|
void set_from(U (&from_array)[N])
|
|
{
|
|
MUST(try_set_from(from_array));
|
|
}
|
|
|
|
ErrorOr<void> try_ensure_capacity(size_t capacity)
|
|
{
|
|
// The user usually expects "capacity" to mean the number of values that can be stored in a
|
|
// container without it needing to reallocate. Our definition of "capacity" is the number of
|
|
// buckets we can store, but we reallocate earlier because of `grow_at_load_factor_percent`.
|
|
// This calculates the required internal capacity to store `capacity` number of values.
|
|
size_t required_capacity = capacity * 100 / grow_at_load_factor_percent + 1;
|
|
if (required_capacity <= m_capacity)
|
|
return {};
|
|
return try_rehash(required_capacity);
|
|
}
|
|
void ensure_capacity(size_t capacity)
|
|
{
|
|
MUST(try_ensure_capacity(capacity));
|
|
}
|
|
|
|
[[nodiscard]] bool contains(T const& value) const
|
|
{
|
|
return find(value) != end();
|
|
}
|
|
|
|
template<Concepts::HashCompatible<T> K>
|
|
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] bool contains(K const& value) const
|
|
{
|
|
return find(value) != end();
|
|
}
|
|
|
|
using Iterator = Conditional<IsOrdered,
|
|
OrderedHashTableIterator<HashTable, T, BucketType>,
|
|
HashTableIterator<HashTable, T, BucketType>>;
|
|
|
|
[[nodiscard]] Iterator begin()
|
|
{
|
|
if constexpr (IsOrdered)
|
|
return Iterator(m_collection_data.head, end_bucket());
|
|
|
|
for (size_t i = 0; i < m_capacity; ++i) {
|
|
if (m_buckets[i].state != BucketState::Free)
|
|
return Iterator(&m_buckets[i], end_bucket());
|
|
}
|
|
return end();
|
|
}
|
|
|
|
[[nodiscard]] Iterator end()
|
|
{
|
|
return Iterator(nullptr, nullptr);
|
|
}
|
|
|
|
using ConstIterator = Conditional<IsOrdered,
|
|
OrderedHashTableIterator<const HashTable, const T, BucketType const>,
|
|
HashTableIterator<const HashTable, const T, BucketType const>>;
|
|
|
|
[[nodiscard]] ConstIterator begin() const
|
|
{
|
|
if constexpr (IsOrdered)
|
|
return ConstIterator(m_collection_data.head, end_bucket());
|
|
|
|
for (size_t i = 0; i < m_capacity; ++i) {
|
|
if (m_buckets[i].state != BucketState::Free)
|
|
return ConstIterator(&m_buckets[i], end_bucket());
|
|
}
|
|
return end();
|
|
}
|
|
|
|
[[nodiscard]] ConstIterator end() const
|
|
{
|
|
return ConstIterator(nullptr, nullptr);
|
|
}
|
|
|
|
using ReverseIterator = Conditional<IsOrdered,
|
|
ReverseOrderedHashTableIterator<HashTable, T, BucketType>,
|
|
void>;
|
|
|
|
[[nodiscard]] ReverseIterator rbegin()
|
|
requires(IsOrdered)
|
|
{
|
|
return ReverseIterator(m_collection_data.tail);
|
|
}
|
|
|
|
[[nodiscard]] ReverseIterator rend()
|
|
requires(IsOrdered)
|
|
{
|
|
return ReverseIterator(nullptr);
|
|
}
|
|
|
|
auto in_reverse() { return ReverseWrapper::in_reverse(*this); }
|
|
|
|
using ReverseConstIterator = Conditional<IsOrdered,
|
|
ReverseOrderedHashTableIterator<HashTable const, T const, BucketType const>,
|
|
void>;
|
|
|
|
[[nodiscard]] ReverseConstIterator rbegin() const
|
|
requires(IsOrdered)
|
|
{
|
|
return ReverseConstIterator(m_collection_data.tail);
|
|
}
|
|
|
|
[[nodiscard]] ReverseConstIterator rend() const
|
|
requires(IsOrdered)
|
|
{
|
|
return ReverseConstIterator(nullptr);
|
|
}
|
|
|
|
auto in_reverse() const { return ReverseWrapper::in_reverse(*this); }
|
|
|
|
void clear()
|
|
{
|
|
*this = HashTable();
|
|
}
|
|
|
|
void clear_with_capacity()
|
|
{
|
|
if (m_capacity == 0)
|
|
return;
|
|
if constexpr (!IsTriviallyDestructible<T>) {
|
|
for (auto* bucket : *this)
|
|
bucket->~T();
|
|
}
|
|
__builtin_memset(m_buckets, 0, size_in_bytes(m_capacity));
|
|
m_size = 0;
|
|
|
|
if constexpr (IsOrdered)
|
|
m_collection_data = { nullptr, nullptr };
|
|
}
|
|
|
|
template<typename U = T>
|
|
ErrorOr<HashSetResult> try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
|
|
{
|
|
if (should_grow())
|
|
TRY(try_rehash(m_capacity * (100 + grow_capacity_increase_percent) / 100));
|
|
|
|
return write_value(forward<U>(value), existing_entry_behavior);
|
|
}
|
|
template<typename U = T>
|
|
HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
|
|
{
|
|
return MUST(try_set(forward<U>(value), existing_entry_behavior));
|
|
}
|
|
|
|
template<typename TUnaryPredicate>
|
|
[[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate)
|
|
{
|
|
return Iterator(lookup_with_hash(hash, move(predicate)), end_bucket());
|
|
}
|
|
|
|
[[nodiscard]] Iterator find(T const& value)
|
|
{
|
|
return find(TraitsForT::hash(value), [&](auto& entry) { return TraitsForT::equals(entry, value); });
|
|
}
|
|
|
|
template<typename TUnaryPredicate>
|
|
[[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const
|
|
{
|
|
return ConstIterator(lookup_with_hash(hash, move(predicate)), end_bucket());
|
|
}
|
|
|
|
[[nodiscard]] ConstIterator find(T const& value) const
|
|
{
|
|
return find(TraitsForT::hash(value), [&](auto& entry) { return TraitsForT::equals(entry, value); });
|
|
}
|
|
// FIXME: Support for predicates, while guaranteeing that the predicate call
|
|
// does not call a non trivial constructor each time invoked
|
|
template<Concepts::HashCompatible<T> K>
|
|
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value)
|
|
{
|
|
return find(Traits<K>::hash(value), [&](auto& entry) { return Traits<T>::equals(entry, value); });
|
|
}
|
|
|
|
template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
|
|
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate)
|
|
{
|
|
return find(Traits<K>::hash(value), move(predicate));
|
|
}
|
|
|
|
template<Concepts::HashCompatible<T> K>
|
|
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value) const
|
|
{
|
|
return find(Traits<K>::hash(value), [&](auto& entry) { return Traits<T>::equals(entry, value); });
|
|
}
|
|
|
|
template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
|
|
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const
|
|
{
|
|
return find(Traits<K>::hash(value), move(predicate));
|
|
}
|
|
|
|
bool remove(T const& value)
|
|
{
|
|
auto it = find(value);
|
|
if (it != end()) {
|
|
remove(it);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<Concepts::HashCompatible<T> K>
|
|
requires(IsSame<TraitsForT, Traits<T>>) bool remove(K const& value)
|
|
{
|
|
auto it = find(value);
|
|
if (it != end()) {
|
|
remove(it);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// This invalidates the iterator
|
|
void remove(Iterator& iterator)
|
|
{
|
|
auto* bucket = iterator.m_bucket;
|
|
VERIFY(bucket);
|
|
delete_bucket(*bucket);
|
|
iterator.m_bucket = nullptr;
|
|
}
|
|
|
|
template<typename TUnaryPredicate>
|
|
bool remove_all_matching(TUnaryPredicate const& predicate)
|
|
{
|
|
bool has_removed_anything = false;
|
|
for (size_t i = 0; i < m_capacity; ++i) {
|
|
auto& bucket = m_buckets[i];
|
|
if (bucket.state == BucketState::Free || !predicate(*bucket.slot()))
|
|
continue;
|
|
|
|
delete_bucket(bucket);
|
|
has_removed_anything = true;
|
|
|
|
// If a bucket was shifted up, reevaluate this bucket index
|
|
if (bucket.state != BucketState::Free)
|
|
--i;
|
|
}
|
|
return has_removed_anything;
|
|
}
|
|
|
|
T take_last()
|
|
requires(IsOrdered)
|
|
{
|
|
VERIFY(!is_empty());
|
|
T element = move(*m_collection_data.tail->slot());
|
|
delete_bucket(*m_collection_data.tail);
|
|
return element;
|
|
}
|
|
|
|
T take_first()
|
|
requires(IsOrdered)
|
|
{
|
|
VERIFY(!is_empty());
|
|
T element = move(*m_collection_data.head->slot());
|
|
delete_bucket(*m_collection_data.head);
|
|
return element;
|
|
}
|
|
|
|
[[nodiscard]] Vector<T> values() const
|
|
{
|
|
Vector<T> list;
|
|
list.ensure_capacity(size());
|
|
for (auto& value : *this)
|
|
list.unchecked_append(value);
|
|
return list;
|
|
}
|
|
|
|
private:
|
|
bool should_grow() const { return ((m_size + 1) * 100) >= (m_capacity * grow_at_load_factor_percent); }
|
|
static constexpr size_t size_in_bytes(size_t capacity) { return sizeof(BucketType) * capacity; }
|
|
|
|
BucketType* end_bucket()
|
|
{
|
|
if constexpr (IsOrdered)
|
|
return m_collection_data.tail;
|
|
else
|
|
return &m_buckets[m_capacity];
|
|
}
|
|
BucketType const* end_bucket() const
|
|
{
|
|
return const_cast<HashTable*>(this)->end_bucket();
|
|
}
|
|
|
|
ErrorOr<void> try_rehash(size_t new_capacity)
|
|
{
|
|
new_capacity = max(new_capacity, m_capacity + grow_capacity_at_least);
|
|
new_capacity = kmalloc_good_size(size_in_bytes(new_capacity)) / sizeof(BucketType);
|
|
VERIFY(new_capacity >= size());
|
|
|
|
auto* old_buckets = m_buckets;
|
|
auto old_buckets_size = size_in_bytes(m_capacity);
|
|
Iterator old_iter = begin();
|
|
|
|
auto* new_buckets = kcalloc(1, size_in_bytes(new_capacity));
|
|
if (!new_buckets)
|
|
return Error::from_errno(ENOMEM);
|
|
|
|
m_buckets = static_cast<BucketType*>(new_buckets);
|
|
m_capacity = new_capacity;
|
|
|
|
if constexpr (IsOrdered)
|
|
m_collection_data = { nullptr, nullptr };
|
|
|
|
if (!old_buckets)
|
|
return {};
|
|
|
|
m_size = 0;
|
|
for (auto it = move(old_iter); it != end(); ++it) {
|
|
write_value(move(*it), HashSetExistingEntryBehavior::Keep);
|
|
it->~T();
|
|
}
|
|
|
|
kfree_sized(old_buckets, old_buckets_size);
|
|
return {};
|
|
}
|
|
void rehash(size_t new_capacity)
|
|
{
|
|
MUST(try_rehash(new_capacity));
|
|
}
|
|
|
|
template<typename TUnaryPredicate>
|
|
[[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const
|
|
{
|
|
if (is_empty())
|
|
return nullptr;
|
|
|
|
hash %= m_capacity;
|
|
for (;;) {
|
|
auto* bucket = &m_buckets[hash];
|
|
if (bucket->state == BucketState::Free)
|
|
return nullptr;
|
|
if (predicate(*bucket->slot()))
|
|
return bucket;
|
|
if (++hash == m_capacity) [[unlikely]]
|
|
hash = 0;
|
|
}
|
|
}
|
|
|
|
size_t used_bucket_probe_length(BucketType const& bucket) const
|
|
{
|
|
VERIFY(bucket.state != BucketState::Free);
|
|
|
|
if (bucket.state == BucketState::CalculateLength) {
|
|
size_t ideal_bucket_index = TraitsForT::hash(*bucket.slot()) % m_capacity;
|
|
|
|
VERIFY(&bucket >= m_buckets);
|
|
size_t actual_bucket_index = &bucket - m_buckets;
|
|
|
|
if (actual_bucket_index < ideal_bucket_index)
|
|
return m_capacity + actual_bucket_index - ideal_bucket_index;
|
|
return actual_bucket_index - ideal_bucket_index;
|
|
}
|
|
|
|
return static_cast<u8>(bucket.state) - 1;
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr BucketState bucket_state_for_probe_length(size_t probe_length)
|
|
{
|
|
if (probe_length > 253)
|
|
return BucketState::CalculateLength;
|
|
return static_cast<BucketState>(probe_length + 1);
|
|
}
|
|
|
|
template<typename U = T>
|
|
HashSetResult write_value(U&& value, HashSetExistingEntryBehavior existing_entry_behavior)
|
|
{
|
|
auto update_collection_for_new_bucket = [&](BucketType& bucket) {
|
|
if constexpr (IsOrdered) {
|
|
if (!m_collection_data.head) [[unlikely]] {
|
|
m_collection_data.head = &bucket;
|
|
} else {
|
|
bucket.previous = m_collection_data.tail;
|
|
m_collection_data.tail->next = &bucket;
|
|
}
|
|
m_collection_data.tail = &bucket;
|
|
}
|
|
};
|
|
auto update_collection_for_swapped_buckets = [&](BucketType* left_bucket, BucketType* right_bucket) {
|
|
if constexpr (IsOrdered) {
|
|
if (m_collection_data.head == left_bucket)
|
|
m_collection_data.head = right_bucket;
|
|
else if (m_collection_data.head == right_bucket)
|
|
m_collection_data.head = left_bucket;
|
|
if (m_collection_data.tail == left_bucket)
|
|
m_collection_data.tail = right_bucket;
|
|
else if (m_collection_data.tail == right_bucket)
|
|
m_collection_data.tail = left_bucket;
|
|
|
|
if (left_bucket->previous) {
|
|
if (left_bucket->previous == left_bucket)
|
|
left_bucket->previous = right_bucket;
|
|
left_bucket->previous->next = left_bucket;
|
|
}
|
|
if (left_bucket->next) {
|
|
if (left_bucket->next == left_bucket)
|
|
left_bucket->next = right_bucket;
|
|
left_bucket->next->previous = left_bucket;
|
|
}
|
|
|
|
if (right_bucket->previous && right_bucket->previous != left_bucket)
|
|
right_bucket->previous->next = right_bucket;
|
|
if (right_bucket->next && right_bucket->next != left_bucket)
|
|
right_bucket->next->previous = right_bucket;
|
|
}
|
|
};
|
|
|
|
auto bucket_index = TraitsForT::hash(value) % m_capacity;
|
|
size_t probe_length = 0;
|
|
for (;;) {
|
|
auto* bucket = &m_buckets[bucket_index];
|
|
|
|
// We found a free bucket, write to it and stop
|
|
if (bucket->state == BucketState::Free) {
|
|
new (bucket->slot()) T(forward<U>(value));
|
|
bucket->state = bucket_state_for_probe_length(probe_length);
|
|
update_collection_for_new_bucket(*bucket);
|
|
++m_size;
|
|
return HashSetResult::InsertedNewEntry;
|
|
}
|
|
|
|
// The bucket is already used, does it have an identical value?
|
|
if (TraitsForT::equals(*bucket->slot(), static_cast<T const&>(value))) {
|
|
if (existing_entry_behavior == HashSetExistingEntryBehavior::Replace) {
|
|
(*bucket->slot()) = forward<U>(value);
|
|
return HashSetResult::ReplacedExistingEntry;
|
|
}
|
|
return HashSetResult::KeptExistingEntry;
|
|
}
|
|
|
|
// Robin hood: if our probe length is larger (poor) than this bucket's (rich), steal its position!
|
|
// This ensures that we will always traverse buckets in order of probe length.
|
|
auto target_probe_length = used_bucket_probe_length(*bucket);
|
|
if (probe_length > target_probe_length) {
|
|
// Copy out bucket
|
|
BucketType bucket_to_move = move(*bucket);
|
|
update_collection_for_swapped_buckets(bucket, &bucket_to_move);
|
|
|
|
// Write new bucket
|
|
new (bucket->slot()) T(forward<U>(value));
|
|
bucket->state = bucket_state_for_probe_length(probe_length);
|
|
probe_length = target_probe_length;
|
|
if constexpr (IsOrdered)
|
|
bucket->next = nullptr;
|
|
update_collection_for_new_bucket(*bucket);
|
|
++m_size;
|
|
|
|
// Find a free bucket, swapping with smaller probe length buckets along the way
|
|
for (;;) {
|
|
if (++bucket_index == m_capacity) [[unlikely]]
|
|
bucket_index = 0;
|
|
bucket = &m_buckets[bucket_index];
|
|
++probe_length;
|
|
|
|
if (bucket->state == BucketState::Free) {
|
|
*bucket = move(bucket_to_move);
|
|
bucket->state = bucket_state_for_probe_length(probe_length);
|
|
update_collection_for_swapped_buckets(&bucket_to_move, bucket);
|
|
break;
|
|
}
|
|
|
|
target_probe_length = used_bucket_probe_length(*bucket);
|
|
if (probe_length > target_probe_length) {
|
|
swap(bucket_to_move, *bucket);
|
|
bucket->state = bucket_state_for_probe_length(probe_length);
|
|
probe_length = target_probe_length;
|
|
update_collection_for_swapped_buckets(&bucket_to_move, bucket);
|
|
}
|
|
}
|
|
|
|
return HashSetResult::InsertedNewEntry;
|
|
}
|
|
|
|
// Try next bucket
|
|
if (++bucket_index == m_capacity) [[unlikely]]
|
|
bucket_index = 0;
|
|
++probe_length;
|
|
}
|
|
}
|
|
|
|
void delete_bucket(auto& bucket)
|
|
{
|
|
VERIFY(bucket.state != BucketState::Free);
|
|
|
|
// Delete the bucket
|
|
bucket.slot()->~T();
|
|
if constexpr (IsOrdered) {
|
|
if (bucket.previous)
|
|
bucket.previous->next = bucket.next;
|
|
else
|
|
m_collection_data.head = bucket.next;
|
|
if (bucket.next)
|
|
bucket.next->previous = bucket.previous;
|
|
else
|
|
m_collection_data.tail = bucket.previous;
|
|
bucket.previous = nullptr;
|
|
bucket.next = nullptr;
|
|
}
|
|
--m_size;
|
|
|
|
// If we deleted a bucket, we need to make sure to shift up all buckets after it to ensure
|
|
// that we can still probe for buckets with collisions, and we automatically optimize the
|
|
// probe lengths. To do so, we shift the following buckets up until we reach a free bucket,
|
|
// or a bucket with a probe length of 0 (the ideal index for that bucket).
|
|
auto update_bucket_neighbors = [&](BucketType* bucket) {
|
|
if constexpr (IsOrdered) {
|
|
if (bucket->previous)
|
|
bucket->previous->next = bucket;
|
|
else
|
|
m_collection_data.head = bucket;
|
|
if (bucket->next)
|
|
bucket->next->previous = bucket;
|
|
else
|
|
m_collection_data.tail = bucket;
|
|
}
|
|
};
|
|
|
|
VERIFY(&bucket >= m_buckets);
|
|
size_t shift_to_index = &bucket - m_buckets;
|
|
VERIFY(shift_to_index < m_capacity);
|
|
size_t shift_from_index = shift_to_index;
|
|
for (;;) {
|
|
if (++shift_from_index == m_capacity) [[unlikely]]
|
|
shift_from_index = 0;
|
|
|
|
auto* shift_from_bucket = &m_buckets[shift_from_index];
|
|
if (shift_from_bucket->state == BucketState::Free)
|
|
break;
|
|
|
|
auto shift_from_probe_length = used_bucket_probe_length(*shift_from_bucket);
|
|
if (shift_from_probe_length == 0)
|
|
break;
|
|
|
|
auto* shift_to_bucket = &m_buckets[shift_to_index];
|
|
*shift_to_bucket = move(*shift_from_bucket);
|
|
if constexpr (IsOrdered) {
|
|
shift_from_bucket->previous = nullptr;
|
|
shift_from_bucket->next = nullptr;
|
|
}
|
|
shift_to_bucket->state = bucket_state_for_probe_length(shift_from_probe_length - 1);
|
|
update_bucket_neighbors(shift_to_bucket);
|
|
|
|
if (++shift_to_index == m_capacity) [[unlikely]]
|
|
shift_to_index = 0;
|
|
}
|
|
|
|
// Mark last bucket as free
|
|
m_buckets[shift_to_index].state = BucketState::Free;
|
|
}
|
|
|
|
BucketType* m_buckets { nullptr };
|
|
|
|
[[no_unique_address]] CollectionDataType m_collection_data;
|
|
size_t m_size { 0 };
|
|
size_t m_capacity { 0 };
|
|
};
|
|
}
|
|
|
|
#if USING_AK_GLOBALLY
|
|
using AK::HashSetResult;
|
|
using AK::HashTable;
|
|
using AK::OrderedHashTable;
|
|
#endif
|