ladybird/Userland/DevTools/UserspaceEmulator/SoftCPU.cpp
2022-12-07 13:18:48 +01:00

3235 lines
115 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "SoftCPU.h"
#include "Emulator.h"
#include <AK/Assertions.h>
#include <AK/BuiltinWrappers.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#if defined(AK_COMPILER_GCC)
# pragma GCC optimize("O3")
#endif
#define TODO_INSN() \
do { \
reportln("\n=={}== Unimplemented instruction: {}\n"sv, getpid(), __FUNCTION__); \
m_emulator.dump_backtrace(); \
_exit(0); \
} while (0)
#define FPU_INSTRUCTION(name) \
void SoftCPU::name(const X86::Instruction& insn) \
{ \
m_fpu.name(insn); \
}
#define VPU_INSTRUCTION(name) \
void SoftCPU::name(const X86::Instruction& insn) \
{ \
m_vpu.name(insn); \
}
#define DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(mnemonic, op) \
void SoftCPU::mnemonic##_RM8_1(const X86::Instruction& insn) \
{ \
generic_RM8_1(op<ValueWithShadow<u8>>, insn); \
} \
void SoftCPU::mnemonic##_RM8_CL(const X86::Instruction& insn) \
{ \
generic_RM8_CL(op<ValueWithShadow<u8>>, insn); \
} \
void SoftCPU::mnemonic##_RM8_imm8(const X86::Instruction& insn) \
{ \
generic_RM8_imm8<true, false>(op<ValueWithShadow<u8>>, insn); \
} \
void SoftCPU::mnemonic##_RM16_1(const X86::Instruction& insn) \
{ \
generic_RM16_1(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_RM16_CL(const X86::Instruction& insn) \
{ \
generic_RM16_CL(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) \
{ \
generic_RM16_unsigned_imm8<true>(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_RM32_1(const X86::Instruction& insn) \
{ \
generic_RM32_1(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_RM32_CL(const X86::Instruction& insn) \
{ \
generic_RM32_CL(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) \
{ \
generic_RM32_unsigned_imm8<true>(op<ValueWithShadow<u32>>, insn); \
}
namespace UserspaceEmulator {
template<typename T>
ALWAYS_INLINE void warn_if_uninitialized(T value_with_shadow, char const* message)
{
if (value_with_shadow.is_uninitialized()) [[unlikely]] {
reportln("\033[31;1mWarning! Use of uninitialized value: {}\033[0m\n"sv, message);
Emulator::the().dump_backtrace();
}
}
ALWAYS_INLINE void SoftCPU::warn_if_flags_tainted(char const* message) const
{
if (m_flags_tainted) [[unlikely]] {
reportln("\n=={}== \033[31;1mConditional depends on uninitialized data\033[0m ({})\n"sv, getpid(), message);
Emulator::the().dump_backtrace();
}
}
template<typename T, typename U>
constexpr T sign_extended_to(U value)
{
if (!(value & X86::TypeTrivia<U>::sign_bit))
return value;
return (X86::TypeTrivia<T>::mask & ~X86::TypeTrivia<U>::mask) | value;
}
SoftCPU::SoftCPU(Emulator& emulator)
: m_emulator(emulator)
, m_fpu(emulator, *this)
, m_vpu(emulator, *this)
{
PartAddressableRegister empty_reg;
explicit_bzero(&empty_reg, sizeof(empty_reg));
for (auto& gpr : m_gpr)
gpr = ValueWithShadow<PartAddressableRegister>::create_initialized(empty_reg);
m_segment[(int)X86::SegmentRegister::CS] = 0x1b;
m_segment[(int)X86::SegmentRegister::DS] = 0x23;
m_segment[(int)X86::SegmentRegister::ES] = 0x23;
m_segment[(int)X86::SegmentRegister::SS] = 0x23;
m_segment[(int)X86::SegmentRegister::FS] = 0x23;
m_segment[(int)X86::SegmentRegister::GS] = 0x2b;
}
void SoftCPU::dump() const
{
outln(" eax={:p} ebx={:p} ecx={:p} edx={:p} ebp={:p} esp={:p} esi={:p} edi={:p} o={:d} s={:d} z={:d} a={:d} p={:d} c={:d}",
eax(), ebx(), ecx(), edx(), ebp(), esp(), esi(), edi(), of(), sf(), zf(), af(), pf(), cf());
outln("#eax={:hex-dump} #ebx={:hex-dump} #ecx={:hex-dump} #edx={:hex-dump} #ebhex-dump={:hex-dump} #eshex-dump={:hex-dump} #esi={:hex-dump} #edi={:hex-dump} #f={}",
eax().shadow().span(), ebx().shadow().span(), ecx().shadow().span(), edx().shadow().span(), ebp().shadow().span(), esp().shadow().span(), esi().shadow().span(), edi().shadow().span(), m_flags_tainted);
fflush(stdout);
}
void SoftCPU::update_code_cache()
{
auto* region = m_emulator.mmu().find_region({ cs(), eip() });
VERIFY(region);
if (!region->is_executable()) {
reportln("SoftCPU::update_code_cache: Non-executable region @ {:p}"sv, eip());
Emulator::the().dump_backtrace();
TODO();
}
// FIXME: This cache needs to be invalidated if the code region is ever unmapped.
m_cached_code_region = region;
m_cached_code_base_ptr = region->data();
}
ValueWithShadow<u8> SoftCPU::read_memory8(X86::LogicalAddress address)
{
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read8(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory8: @{:#04x}:{:p} -> {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value;
}
ValueWithShadow<u16> SoftCPU::read_memory16(X86::LogicalAddress address)
{
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read16(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory16: @{:#04x}:{:p} -> {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value;
}
ValueWithShadow<u32> SoftCPU::read_memory32(X86::LogicalAddress address)
{
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read32(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory32: @{:#04x}:{:p} -> {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value;
}
ValueWithShadow<u64> SoftCPU::read_memory64(X86::LogicalAddress address)
{
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read64(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory64: @{:#04x}:{:p} -> {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value;
}
ValueWithShadow<u128> SoftCPU::read_memory128(X86::LogicalAddress address)
{
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read128(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory128: @{:#04x}:{:p} -> {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value;
}
ValueWithShadow<u256> SoftCPU::read_memory256(X86::LogicalAddress address)
{
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read256(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory256: @{:#04x}:{:p} -> {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value;
}
void SoftCPU::write_memory8(X86::LogicalAddress address, ValueWithShadow<u8> value)
{
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory8: @{:#04x}:{:p} <- {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write8(address, value);
}
void SoftCPU::write_memory16(X86::LogicalAddress address, ValueWithShadow<u16> value)
{
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory16: @{:#04x}:{:p} <- {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write16(address, value);
}
void SoftCPU::write_memory32(X86::LogicalAddress address, ValueWithShadow<u32> value)
{
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory32: @{:#04x}:{:p} <- {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write32(address, value);
}
void SoftCPU::write_memory64(X86::LogicalAddress address, ValueWithShadow<u64> value)
{
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory64: @{:#04x}:{:p} <- {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write64(address, value);
}
void SoftCPU::write_memory128(X86::LogicalAddress address, ValueWithShadow<u128> value)
{
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory128: @{:#04x}:{:p} <- {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write128(address, value);
}
void SoftCPU::write_memory256(X86::LogicalAddress address, ValueWithShadow<u256> value)
{
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory256: @{:#04x}:{:p} <- {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write256(address, value);
}
void SoftCPU::push_string(StringView string)
{
u32 space_to_allocate = round_up_to_power_of_two(string.length() + 1, 16);
set_esp({ esp().value() - space_to_allocate, esp().shadow() });
m_emulator.mmu().copy_to_vm(esp().value(), string.characters_without_null_termination(), string.length());
m_emulator.mmu().write8({ 0x23, esp().value() + string.length() }, shadow_wrap_as_initialized((u8)'\0'));
}
void SoftCPU::push_buffer(u8 const* data, size_t size)
{
set_esp({ esp().value() - size, esp().shadow() });
warn_if_uninitialized(esp(), "push_buffer");
m_emulator.mmu().copy_to_vm(esp().value(), data, size);
}
void SoftCPU::push32(ValueWithShadow<u32> value)
{
set_esp({ esp().value() - sizeof(u32), esp().shadow() });
warn_if_uninitialized(esp(), "push32");
write_memory32({ ss(), esp().value() }, value);
}
ValueWithShadow<u32> SoftCPU::pop32()
{
warn_if_uninitialized(esp(), "pop32");
auto value = read_memory32({ ss(), esp().value() });
set_esp({ esp().value() + sizeof(u32), esp().shadow() });
return value;
}
void SoftCPU::push16(ValueWithShadow<u16> value)
{
warn_if_uninitialized(esp(), "push16");
set_esp({ esp().value() - sizeof(u16), esp().shadow() });
write_memory16({ ss(), esp().value() }, value);
}
ValueWithShadow<u16> SoftCPU::pop16()
{
warn_if_uninitialized(esp(), "pop16");
auto value = read_memory16({ ss(), esp().value() });
set_esp({ esp().value() + sizeof(u16), esp().shadow() });
return value;
}
template<bool check_zf, typename Callback>
void SoftCPU::do_once_or_repeat(const X86::Instruction& insn, Callback callback)
{
if (!insn.has_rep_prefix())
return callback();
while (loop_index(insn.address_size()).value()) {
callback();
decrement_loop_index(insn.address_size());
if constexpr (check_zf) {
warn_if_flags_tainted("repz/repnz");
if (insn.rep_prefix() == X86::Prefix::REPZ && !zf())
break;
if (insn.rep_prefix() == X86::Prefix::REPNZ && zf())
break;
}
}
}
template<typename T>
ALWAYS_INLINE static T op_inc(SoftCPU& cpu, T data)
{
typename T::ValueType result;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("incl %%eax\n"
: "=a"(result)
: "a"(data.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("incw %%ax\n"
: "=a"(result)
: "a"(data.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("incb %%al\n"
: "=a"(result)
: "a"(data.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszap(new_flags);
cpu.taint_flags_from(data);
return shadow_wrap_with_taint_from(result, data);
}
template<typename T>
ALWAYS_INLINE static T op_dec(SoftCPU& cpu, T data)
{
typename T::ValueType result;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("decl %%eax\n"
: "=a"(result)
: "a"(data.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("decw %%ax\n"
: "=a"(result)
: "a"(data.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("decb %%al\n"
: "=a"(result)
: "a"(data.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszap(new_flags);
cpu.taint_flags_from(data);
return shadow_wrap_with_taint_from(result, data);
}
template<typename T>
ALWAYS_INLINE static T op_xor(SoftCPU& cpu, T const& dest, T const& src)
{
typename T::ValueType result;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("xorl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("xor %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("xorb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszpc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from(result, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_or(SoftCPU& cpu, T const& dest, T const& src)
{
typename T::ValueType result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("orl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("or %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("orb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszpc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from(result, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_sub(SoftCPU& cpu, T const& dest, T const& src)
{
typename T::ValueType result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("subl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("subw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("subb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from(result, dest, src);
}
template<typename T, bool cf>
ALWAYS_INLINE static T op_sbb_impl(SoftCPU& cpu, T const& dest, T const& src)
{
typename T::ValueType result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("sbbl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("sbbw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("sbbb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_sbb(SoftCPU& cpu, T& dest, T const& src)
{
cpu.warn_if_flags_tainted("sbb");
if (cpu.cf())
return op_sbb_impl<T, true>(cpu, dest, src);
return op_sbb_impl<T, false>(cpu, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_add(SoftCPU& cpu, T& dest, T const& src)
{
typename T::ValueType result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("addl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("addw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("addb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, dest, src);
}
template<typename T, bool cf>
ALWAYS_INLINE static T op_adc_impl(SoftCPU& cpu, T& dest, T const& src)
{
typename T::ValueType result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("adcl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("adcw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("adcb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_adc(SoftCPU& cpu, T& dest, T const& src)
{
cpu.warn_if_flags_tainted("adc");
if (cpu.cf())
return op_adc_impl<T, true>(cpu, dest, src);
return op_adc_impl<T, false>(cpu, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_and(SoftCPU& cpu, T const& dest, T const& src)
{
typename T::ValueType result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("andl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("andw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("andb %%cl, %%al\n"
: "=a"(result)
: "a"(dest.value()), "c"(src.value()));
} else {
VERIFY_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszpc(new_flags);
cpu.taint_flags_from(dest, src);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, dest, src);
}
template<typename T>
ALWAYS_INLINE static void op_imul(SoftCPU& cpu, T const& dest, T const& src, T& result_high, T& result_low)
{
bool did_overflow = false;
if constexpr (sizeof(T) == 4) {
i64 result = (i64)src * (i64)dest;
result_low = result & 0xffffffff;
result_high = result >> 32;
did_overflow = (result > NumericLimits<T>::max() || result < NumericLimits<T>::min());
} else if constexpr (sizeof(T) == 2) {
i32 result = (i32)src * (i32)dest;
result_low = result & 0xffff;
result_high = result >> 16;
did_overflow = (result > NumericLimits<T>::max() || result < NumericLimits<T>::min());
} else if constexpr (sizeof(T) == 1) {
i16 result = (i16)src * (i16)dest;
result_low = result & 0xff;
result_high = result >> 8;
did_overflow = (result > NumericLimits<T>::max() || result < NumericLimits<T>::min());
}
if (did_overflow) {
cpu.set_cf(true);
cpu.set_of(true);
} else {
cpu.set_cf(false);
cpu.set_of(false);
}
}
template<typename T>
ALWAYS_INLINE static T op_shr(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("shrl %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("shrw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("shrb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(data, steps);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
template<typename T>
ALWAYS_INLINE static T op_shl(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("shll %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("shlw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("shlb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(data, steps);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
template<typename T>
ALWAYS_INLINE static T op_shrd(SoftCPU& cpu, T data, T extra_bits, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("shrd %%cl, %%edx, %%eax\n"
: "=a"(result)
: "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("shrd %%cl, %%dx, %%ax\n"
: "=a"(result)
: "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(data, steps);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
template<typename T>
ALWAYS_INLINE static T op_shld(SoftCPU& cpu, T data, T extra_bits, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("shld %%cl, %%edx, %%eax\n"
: "=a"(result)
: "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("shld %%cl, %%dx, %%ax\n"
: "=a"(result)
: "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
cpu.taint_flags_from(data, steps);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_AL_imm8(Op op, const X86::Instruction& insn)
{
auto dest = al();
auto src = shadow_wrap_as_initialized(insn.imm8());
auto result = op(*this, dest, src);
if (is_or && insn.imm8() == 0xff)
result.set_initialized();
if (update_dest)
set_al(result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_AX_imm16(Op op, const X86::Instruction& insn)
{
auto dest = ax();
auto src = shadow_wrap_as_initialized(insn.imm16());
auto result = op(*this, dest, src);
if (is_or && insn.imm16() == 0xffff)
result.set_initialized();
if (update_dest)
set_ax(result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_EAX_imm32(Op op, const X86::Instruction& insn)
{
auto dest = eax();
auto src = shadow_wrap_as_initialized(insn.imm32());
auto result = op(*this, dest, src);
if (is_or && insn.imm32() == 0xffffffff)
result.set_initialized();
if (update_dest)
set_eax(result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_imm16(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = shadow_wrap_as_initialized(insn.imm16());
auto result = op(*this, dest, src);
if (is_or && insn.imm16() == 0xffff)
result.set_initialized();
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = shadow_wrap_as_initialized<u16>(sign_extended_to<u16>(insn.imm8()));
auto result = op(*this, dest, src);
if (is_or && src.value() == 0xffff)
result.set_initialized();
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_unsigned_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = shadow_wrap_as_initialized(insn.imm8());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, bool dont_taint_for_same_operand, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_reg16(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = const_gpr16(insn.reg16());
auto result = op(*this, dest, src);
if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) {
result.set_initialized();
m_flags_tainted = false;
}
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_imm32(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = insn.imm32();
auto result = op(*this, dest, shadow_wrap_as_initialized(src));
if (is_or && src == 0xffffffff)
result.set_initialized();
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = sign_extended_to<u32>(insn.imm8());
auto result = op(*this, dest, shadow_wrap_as_initialized(src));
if (is_or && src == 0xffffffff)
result.set_initialized();
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_unsigned_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = shadow_wrap_as_initialized(insn.imm8());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, bool dont_taint_for_same_operand, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_reg32(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = const_gpr32(insn.reg32());
auto result = op(*this, dest, src);
if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) {
result.set_initialized();
m_flags_tainted = false;
}
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, bool is_or, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read8(*this, insn);
auto src = insn.imm8();
auto result = op(*this, dest, shadow_wrap_as_initialized(src));
if (is_or && src == 0xff)
result.set_initialized();
if (update_dest)
insn.modrm().write8(*this, insn, result);
}
template<bool update_dest, bool dont_taint_for_same_operand, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_reg8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read8(*this, insn);
auto src = const_gpr8(insn.reg8());
auto result = op(*this, dest, src);
if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) {
result.set_initialized();
m_flags_tainted = false;
}
if (update_dest)
insn.modrm().write8(*this, insn, result);
}
template<bool update_dest, bool dont_taint_for_same_operand, typename Op>
ALWAYS_INLINE void SoftCPU::generic_reg16_RM16(Op op, const X86::Instruction& insn)
{
auto dest = const_gpr16(insn.reg16());
auto src = insn.modrm().read16(*this, insn);
auto result = op(*this, dest, src);
if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) {
result.set_initialized();
m_flags_tainted = false;
}
if (update_dest)
gpr16(insn.reg16()) = result;
}
template<bool update_dest, bool dont_taint_for_same_operand, typename Op>
ALWAYS_INLINE void SoftCPU::generic_reg32_RM32(Op op, const X86::Instruction& insn)
{
auto dest = const_gpr32(insn.reg32());
auto src = insn.modrm().read32(*this, insn);
auto result = op(*this, dest, src);
if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) {
result.set_initialized();
m_flags_tainted = false;
}
if (update_dest)
gpr32(insn.reg32()) = result;
}
template<bool update_dest, bool dont_taint_for_same_operand, typename Op>
ALWAYS_INLINE void SoftCPU::generic_reg8_RM8(Op op, const X86::Instruction& insn)
{
auto dest = const_gpr8(insn.reg8());
auto src = insn.modrm().read8(*this, insn);
auto result = op(*this, dest, src);
if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) {
result.set_initialized();
m_flags_tainted = false;
}
if (update_dest)
gpr8(insn.reg8()) = result;
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_1(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, op(*this, data, shadow_wrap_as_initialized<u8>(1)));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_CL(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, op(*this, data, cl()));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_1(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, op(*this, data, shadow_wrap_as_initialized<u8>(1)));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_CL(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, op(*this, data, cl()));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_1(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, op(*this, data, shadow_wrap_as_initialized<u8>(1)));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_CL(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, op(*this, data, cl()));
}
void SoftCPU::AAA(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::AAD(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::AAM(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::AAS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::ARPL(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::BOUND(const X86::Instruction&) { TODO_INSN(); }
template<typename T>
ALWAYS_INLINE static T op_bsf(SoftCPU&, T value)
{
return { (typename T::ValueType)bit_scan_forward(value.value()), value.shadow() };
}
template<typename T>
ALWAYS_INLINE static T op_bsr(SoftCPU&, T value)
{
typename T::ValueType bit_index = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("bsrl %%eax, %%edx"
: "=d"(bit_index)
: "a"(value.value()));
}
if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("bsrw %%ax, %%dx"
: "=d"(bit_index)
: "a"(value.value()));
}
return shadow_wrap_with_taint_from(bit_index, value);
}
void SoftCPU::BSF_reg16_RM16(const X86::Instruction& insn)
{
auto src = insn.modrm().read16(*this, insn);
set_zf(!src.value());
if (src.value())
gpr16(insn.reg16()) = op_bsf(*this, src);
taint_flags_from(src);
}
void SoftCPU::BSF_reg32_RM32(const X86::Instruction& insn)
{
auto src = insn.modrm().read32(*this, insn);
set_zf(!src.value());
if (src.value()) {
gpr32(insn.reg32()) = op_bsf(*this, src);
taint_flags_from(src);
}
}
void SoftCPU::BSR_reg16_RM16(const X86::Instruction& insn)
{
auto src = insn.modrm().read16(*this, insn);
set_zf(!src.value());
if (src.value()) {
gpr16(insn.reg16()) = op_bsr(*this, src);
taint_flags_from(src);
}
}
void SoftCPU::BSR_reg32_RM32(const X86::Instruction& insn)
{
auto src = insn.modrm().read32(*this, insn);
set_zf(!src.value());
if (src.value()) {
gpr32(insn.reg32()) = op_bsr(*this, src);
taint_flags_from(src);
}
}
void SoftCPU::BSWAP_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = { __builtin_bswap32(gpr32(insn.reg32()).value()), __builtin_bswap32(gpr32(insn.reg32()).shadow_as_value()) };
}
template<typename T>
ALWAYS_INLINE static T op_bt(T value, T)
{
return value;
}
template<typename T>
ALWAYS_INLINE static T op_bts(T value, T bit_mask)
{
return value | bit_mask;
}
template<typename T>
ALWAYS_INLINE static T op_btr(T value, T bit_mask)
{
return value & ~bit_mask;
}
template<typename T>
ALWAYS_INLINE static T op_btc(T value, T bit_mask)
{
return value ^ bit_mask;
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM16_reg16(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
if (insn.modrm().is_register()) {
unsigned bit_index = cpu.const_gpr16(insn.reg16()).value() & (X86::TypeTrivia<u16>::bits - 1);
auto original = insn.modrm().read16(cpu, insn);
u16 bit_mask = 1 << bit_index;
u16 result = op(original.value(), bit_mask);
cpu.set_cf((original.value() & bit_mask) != 0);
cpu.taint_flags_from(cpu.gpr16(insn.reg16()), original);
if (should_update)
insn.modrm().write16(cpu, insn, shadow_wrap_with_taint_from(result, cpu.gpr16(insn.reg16()), original));
return;
}
// FIXME: Is this supposed to perform a full 16-bit read/modify/write?
unsigned bit_offset_in_array = cpu.const_gpr16(insn.reg16()).value() / 8;
unsigned bit_offset_in_byte = cpu.const_gpr16(insn.reg16()).value() & 7;
auto address = insn.modrm().resolve(cpu, insn);
address.set_offset(address.offset() + bit_offset_in_array);
auto dest = cpu.read_memory8(address);
u8 bit_mask = 1 << bit_offset_in_byte;
u8 result = op(dest.value(), bit_mask);
cpu.set_cf((dest.value() & bit_mask) != 0);
cpu.taint_flags_from(cpu.gpr16(insn.reg16()), dest);
if (should_update)
cpu.write_memory8(address, shadow_wrap_with_taint_from(result, cpu.gpr16(insn.reg16()), dest));
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM32_reg32(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
if (insn.modrm().is_register()) {
unsigned bit_index = cpu.const_gpr32(insn.reg32()).value() & (X86::TypeTrivia<u32>::bits - 1);
auto original = insn.modrm().read32(cpu, insn);
u32 bit_mask = 1 << bit_index;
u32 result = op(original.value(), bit_mask);
cpu.set_cf((original.value() & bit_mask) != 0);
cpu.taint_flags_from(cpu.gpr32(insn.reg32()), original);
if (should_update)
insn.modrm().write32(cpu, insn, shadow_wrap_with_taint_from(result, cpu.gpr32(insn.reg32()), original));
return;
}
// FIXME: Is this supposed to perform a full 32-bit read/modify/write?
unsigned bit_offset_in_array = cpu.const_gpr32(insn.reg32()).value() / 8;
unsigned bit_offset_in_byte = cpu.const_gpr32(insn.reg32()).value() & 7;
auto address = insn.modrm().resolve(cpu, insn);
address.set_offset(address.offset() + bit_offset_in_array);
auto dest = cpu.read_memory8(address);
u8 bit_mask = 1 << bit_offset_in_byte;
u8 result = op(dest.value(), bit_mask);
cpu.set_cf((dest.value() & bit_mask) != 0);
cpu.taint_flags_from(cpu.gpr32(insn.reg32()), dest);
if (should_update)
cpu.write_memory8(address, shadow_wrap_with_taint_from(result, cpu.gpr32(insn.reg32()), dest));
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM16_imm8(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
unsigned bit_index = insn.imm8() & (X86::TypeTrivia<u16>::mask);
// FIXME: Support higher bit indices
VERIFY(bit_index < 16);
auto original = insn.modrm().read16(cpu, insn);
u16 bit_mask = 1 << bit_index;
auto result = op(original.value(), bit_mask);
cpu.set_cf((original.value() & bit_mask) != 0);
cpu.taint_flags_from(original);
if (should_update)
insn.modrm().write16(cpu, insn, shadow_wrap_with_taint_from(result, original));
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM32_imm8(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
unsigned bit_index = insn.imm8() & (X86::TypeTrivia<u32>::mask);
// FIXME: Support higher bit indices
VERIFY(bit_index < 32);
auto original = insn.modrm().read32(cpu, insn);
u32 bit_mask = 1 << bit_index;
auto result = op(original.value(), bit_mask);
cpu.set_cf((original.value() & bit_mask) != 0);
cpu.taint_flags_from(original);
if (should_update)
insn.modrm().write32(cpu, insn, shadow_wrap_with_taint_from(result, original));
}
#define DEFINE_GENERIC_BTx_INSN_HANDLERS(mnemonic, op, update_dest) \
void SoftCPU::mnemonic##_RM32_reg32(const X86::Instruction& insn) \
{ \
BTx_RM32_reg32<update_dest>(*this, insn, op<u32>); \
} \
void SoftCPU::mnemonic##_RM16_reg16(const X86::Instruction& insn) \
{ \
BTx_RM16_reg16<update_dest>(*this, insn, op<u16>); \
} \
void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) \
{ \
BTx_RM32_imm8<update_dest>(*this, insn, op<u32>); \
} \
void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) \
{ \
BTx_RM16_imm8<update_dest>(*this, insn, op<u16>); \
}
DEFINE_GENERIC_BTx_INSN_HANDLERS(BTS, op_bts, true);
DEFINE_GENERIC_BTx_INSN_HANDLERS(BTR, op_btr, true);
DEFINE_GENERIC_BTx_INSN_HANDLERS(BTC, op_btc, true);
DEFINE_GENERIC_BTx_INSN_HANDLERS(BT, op_bt, false);
void SoftCPU::CALL_FAR_mem16(const X86::Instruction&)
{
TODO();
}
void SoftCPU::CALL_FAR_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CALL_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CALL_RM32(const X86::Instruction& insn)
{
auto address = insn.modrm().read32(*this, insn);
push32(shadow_wrap_as_initialized(eip()));
warn_if_uninitialized(address, "call rm32");
set_eip(address.value());
// FIXME: this won't catch at the moment due to us not having a way to set
// the watch point
m_emulator.call_callback(address.value());
}
void SoftCPU::CALL_imm16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CALL_imm16_imm16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CALL_imm16_imm32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CALL_imm32(const X86::Instruction& insn)
{
push32(shadow_wrap_as_initialized(eip()));
set_eip(eip() + (i32)insn.imm32());
// FIXME: this won't catch at the moment due to us not having a way to set
// the watch point
m_emulator.call_callback(eip() + (i32)insn.imm32());
}
void SoftCPU::CBW(const X86::Instruction&)
{
set_ah(shadow_wrap_with_taint_from<u8>((al().value() & 0x80) ? 0xff : 0x00, al()));
}
void SoftCPU::CDQ(const X86::Instruction&)
{
if (eax().value() & 0x80000000)
set_edx(shadow_wrap_with_taint_from<u32>(0xffffffff, eax()));
else
set_edx(shadow_wrap_with_taint_from<u32>(0, eax()));
}
void SoftCPU::CLC(const X86::Instruction&)
{
set_cf(false);
}
void SoftCPU::CLD(const X86::Instruction&)
{
set_df(false);
}
void SoftCPU::CLI(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CLTS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::CMC(const X86::Instruction&)
{
set_cf(!cf());
}
void SoftCPU::CMOVcc_reg16_RM16(const X86::Instruction& insn)
{
warn_if_flags_tainted("cmovcc reg16, rm16");
if (evaluate_condition(insn.cc()))
gpr16(insn.reg16()) = insn.modrm().read16(*this, insn);
}
void SoftCPU::CMOVcc_reg32_RM32(const X86::Instruction& insn)
{
warn_if_flags_tainted("cmovcc reg32, rm32");
if (evaluate_condition(insn.cc()))
gpr32(insn.reg32()) = insn.modrm().read32(*this, insn);
}
template<typename T>
ALWAYS_INLINE static void do_cmps(SoftCPU& cpu, const X86::Instruction& insn)
{
auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
cpu.do_once_or_repeat<true>(insn, [&] {
auto src = cpu.read_memory<T>({ src_segment, cpu.source_index(insn.address_size()).value() });
auto dest = cpu.read_memory<T>({ cpu.es(), cpu.destination_index(insn.address_size()).value() });
op_sub(cpu, dest, src);
cpu.step_source_index(insn.address_size(), sizeof(T));
cpu.step_destination_index(insn.address_size(), sizeof(T));
});
}
void SoftCPU::CMPSB(const X86::Instruction& insn)
{
do_cmps<u8>(*this, insn);
}
void SoftCPU::CMPSD(const X86::Instruction& insn)
{
do_cmps<u32>(*this, insn);
}
void SoftCPU::CMPSW(const X86::Instruction& insn)
{
do_cmps<u16>(*this, insn);
}
void SoftCPU::CMPXCHG_RM16_reg16(const X86::Instruction& insn)
{
auto current = insn.modrm().read16(*this, insn);
taint_flags_from(current, ax());
if (current.value() == ax().value()) {
set_zf(true);
insn.modrm().write16(*this, insn, const_gpr16(insn.reg16()));
} else {
set_zf(false);
set_ax(current);
}
}
void SoftCPU::CMPXCHG_RM32_reg32(const X86::Instruction& insn)
{
auto current = insn.modrm().read32(*this, insn);
taint_flags_from(current, eax());
if (current.value() == eax().value()) {
set_zf(true);
insn.modrm().write32(*this, insn, const_gpr32(insn.reg32()));
} else {
set_zf(false);
set_eax(current);
}
}
void SoftCPU::CMPXCHG_RM8_reg8(const X86::Instruction& insn)
{
auto current = insn.modrm().read8(*this, insn);
taint_flags_from(current, al());
if (current.value() == al().value()) {
set_zf(true);
insn.modrm().write8(*this, insn, const_gpr8(insn.reg8()));
} else {
set_zf(false);
set_al(current);
}
}
void SoftCPU::CPUID(const X86::Instruction&)
{
if (eax().value() == 0) {
set_eax(shadow_wrap_as_initialized<u32>(1));
set_ebx(shadow_wrap_as_initialized<u32>(0x6c6c6548));
set_edx(shadow_wrap_as_initialized<u32>(0x6972466f));
set_ecx(shadow_wrap_as_initialized<u32>(0x73646e65));
return;
}
if (eax().value() == 1) {
u32 stepping = 0;
u32 model = 1;
u32 family = 3;
u32 type = 0;
set_eax(shadow_wrap_as_initialized<u32>(stepping | (model << 4) | (family << 8) | (type << 12)));
set_ebx(shadow_wrap_as_initialized<u32>(0));
set_edx(shadow_wrap_as_initialized<u32>((1 << 15))); // Features (CMOV)
set_ecx(shadow_wrap_as_initialized<u32>(0));
return;
}
dbgln("Unhandled CPUID with eax={:p}", eax().value());
}
void SoftCPU::CWD(const X86::Instruction&)
{
set_dx(shadow_wrap_with_taint_from<u16>((ax().value() & 0x8000) ? 0xffff : 0x0000, ax()));
}
void SoftCPU::CWDE(const X86::Instruction&)
{
set_eax(shadow_wrap_with_taint_from(sign_extended_to<u32>(ax().value()), ax()));
}
void SoftCPU::DAA(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::DAS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::DEC_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_dec(*this, insn.modrm().read16(*this, insn)));
}
void SoftCPU::DEC_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_dec(*this, insn.modrm().read32(*this, insn)));
}
void SoftCPU::DEC_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, op_dec(*this, insn.modrm().read8(*this, insn)));
}
void SoftCPU::DEC_reg16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_dec(*this, const_gpr16(insn.reg16()));
}
void SoftCPU::DEC_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_dec(*this, const_gpr32(insn.reg32()));
}
void SoftCPU::DIV_RM16(const X86::Instruction& insn)
{
auto divisor = insn.modrm().read16(*this, insn);
if (divisor.value() == 0) {
reportln("Divide by zero"sv);
TODO();
}
u32 dividend = ((u32)dx().value() << 16) | ax().value();
auto quotient = dividend / divisor.value();
if (quotient > NumericLimits<u16>::max()) {
reportln("Divide overflow"sv);
TODO();
}
auto remainder = dividend % divisor.value();
auto original_ax = ax();
set_ax(shadow_wrap_with_taint_from<u16>(quotient, original_ax, dx()));
set_dx(shadow_wrap_with_taint_from<u16>(remainder, original_ax, dx()));
}
void SoftCPU::DIV_RM32(const X86::Instruction& insn)
{
auto divisor = insn.modrm().read32(*this, insn);
if (divisor.value() == 0) {
reportln("Divide by zero"sv);
TODO();
}
u64 dividend = ((u64)edx().value() << 32) | eax().value();
auto quotient = dividend / divisor.value();
if (quotient > NumericLimits<u32>::max()) {
reportln("Divide overflow"sv);
TODO();
}
auto remainder = dividend % divisor.value();
auto original_eax = eax();
set_eax(shadow_wrap_with_taint_from<u32>(quotient, original_eax, edx(), divisor));
set_edx(shadow_wrap_with_taint_from<u32>(remainder, original_eax, edx(), divisor));
}
void SoftCPU::DIV_RM8(const X86::Instruction& insn)
{
auto divisor = insn.modrm().read8(*this, insn);
if (divisor.value() == 0) {
reportln("Divide by zero"sv);
TODO();
}
u16 dividend = ax().value();
auto quotient = dividend / divisor.value();
if (quotient > NumericLimits<u8>::max()) {
reportln("Divide overflow"sv);
TODO();
}
auto remainder = dividend % divisor.value();
auto original_ax = ax();
set_al(shadow_wrap_with_taint_from<u8>(quotient, original_ax, divisor));
set_ah(shadow_wrap_with_taint_from<u8>(remainder, original_ax, divisor));
}
void SoftCPU::ENTER16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::ENTER32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::ESCAPE(const X86::Instruction&)
{
reportln("FIXME: x87 floating-point support"sv);
m_emulator.dump_backtrace();
TODO();
}
FPU_INSTRUCTION(FADD_RM32);
FPU_INSTRUCTION(FMUL_RM32);
FPU_INSTRUCTION(FCOM_RM32);
FPU_INSTRUCTION(FCOMP_RM32);
FPU_INSTRUCTION(FSUB_RM32);
FPU_INSTRUCTION(FSUBR_RM32);
FPU_INSTRUCTION(FDIV_RM32);
FPU_INSTRUCTION(FDIVR_RM32);
FPU_INSTRUCTION(FLD_RM32);
FPU_INSTRUCTION(FXCH);
FPU_INSTRUCTION(FST_RM32);
FPU_INSTRUCTION(FNOP);
FPU_INSTRUCTION(FSTP_RM32);
FPU_INSTRUCTION(FLDENV);
FPU_INSTRUCTION(FCHS);
FPU_INSTRUCTION(FABS);
FPU_INSTRUCTION(FTST);
FPU_INSTRUCTION(FXAM);
FPU_INSTRUCTION(FLDCW);
FPU_INSTRUCTION(FLD1);
FPU_INSTRUCTION(FLDL2T);
FPU_INSTRUCTION(FLDL2E);
FPU_INSTRUCTION(FLDPI);
FPU_INSTRUCTION(FLDLG2);
FPU_INSTRUCTION(FLDLN2);
FPU_INSTRUCTION(FLDZ);
FPU_INSTRUCTION(FNSTENV);
FPU_INSTRUCTION(F2XM1);
FPU_INSTRUCTION(FYL2X);
FPU_INSTRUCTION(FPTAN);
FPU_INSTRUCTION(FPATAN);
FPU_INSTRUCTION(FXTRACT);
FPU_INSTRUCTION(FPREM1);
FPU_INSTRUCTION(FDECSTP);
FPU_INSTRUCTION(FINCSTP);
FPU_INSTRUCTION(FNSTCW);
FPU_INSTRUCTION(FPREM);
FPU_INSTRUCTION(FYL2XP1);
FPU_INSTRUCTION(FSQRT);
FPU_INSTRUCTION(FSINCOS);
FPU_INSTRUCTION(FRNDINT);
FPU_INSTRUCTION(FSCALE);
FPU_INSTRUCTION(FSIN);
FPU_INSTRUCTION(FCOS);
FPU_INSTRUCTION(FIADD_RM32);
FPU_INSTRUCTION(FCMOVB);
FPU_INSTRUCTION(FIMUL_RM32);
FPU_INSTRUCTION(FCMOVE);
FPU_INSTRUCTION(FICOM_RM32);
FPU_INSTRUCTION(FCMOVBE);
FPU_INSTRUCTION(FICOMP_RM32);
FPU_INSTRUCTION(FCMOVU);
FPU_INSTRUCTION(FISUB_RM32);
FPU_INSTRUCTION(FISUBR_RM32);
FPU_INSTRUCTION(FUCOMPP);
FPU_INSTRUCTION(FIDIV_RM32);
FPU_INSTRUCTION(FIDIVR_RM32);
FPU_INSTRUCTION(FILD_RM32);
FPU_INSTRUCTION(FCMOVNB);
FPU_INSTRUCTION(FISTTP_RM32);
FPU_INSTRUCTION(FCMOVNE);
FPU_INSTRUCTION(FIST_RM32);
FPU_INSTRUCTION(FCMOVNBE);
FPU_INSTRUCTION(FISTP_RM32);
FPU_INSTRUCTION(FCMOVNU);
FPU_INSTRUCTION(FNENI);
FPU_INSTRUCTION(FNDISI);
FPU_INSTRUCTION(FNCLEX);
FPU_INSTRUCTION(FNINIT);
FPU_INSTRUCTION(FNSETPM);
FPU_INSTRUCTION(FLD_RM80);
FPU_INSTRUCTION(FUCOMI);
FPU_INSTRUCTION(FCOMI);
FPU_INSTRUCTION(FSTP_RM80);
FPU_INSTRUCTION(FADD_RM64);
FPU_INSTRUCTION(FMUL_RM64);
FPU_INSTRUCTION(FCOM_RM64);
FPU_INSTRUCTION(FCOMP_RM64);
FPU_INSTRUCTION(FSUB_RM64);
FPU_INSTRUCTION(FSUBR_RM64);
FPU_INSTRUCTION(FDIV_RM64);
FPU_INSTRUCTION(FDIVR_RM64);
FPU_INSTRUCTION(FLD_RM64);
FPU_INSTRUCTION(FFREE);
FPU_INSTRUCTION(FISTTP_RM64);
FPU_INSTRUCTION(FST_RM64);
FPU_INSTRUCTION(FSTP_RM64);
FPU_INSTRUCTION(FRSTOR);
FPU_INSTRUCTION(FUCOM);
FPU_INSTRUCTION(FUCOMP);
FPU_INSTRUCTION(FNSAVE);
FPU_INSTRUCTION(FNSTSW);
FPU_INSTRUCTION(FIADD_RM16);
FPU_INSTRUCTION(FADDP);
FPU_INSTRUCTION(FIMUL_RM16);
FPU_INSTRUCTION(FMULP);
FPU_INSTRUCTION(FICOM_RM16);
FPU_INSTRUCTION(FICOMP_RM16);
FPU_INSTRUCTION(FCOMPP);
FPU_INSTRUCTION(FISUB_RM16);
FPU_INSTRUCTION(FSUBRP);
FPU_INSTRUCTION(FISUBR_RM16);
FPU_INSTRUCTION(FSUBP);
FPU_INSTRUCTION(FIDIV_RM16);
FPU_INSTRUCTION(FDIVRP);
FPU_INSTRUCTION(FIDIVR_RM16);
FPU_INSTRUCTION(FDIVP);
FPU_INSTRUCTION(FILD_RM16);
FPU_INSTRUCTION(FFREEP);
FPU_INSTRUCTION(FISTTP_RM16);
FPU_INSTRUCTION(FIST_RM16);
FPU_INSTRUCTION(FISTP_RM16);
FPU_INSTRUCTION(FBLD_M80);
FPU_INSTRUCTION(FNSTSW_AX);
FPU_INSTRUCTION(FILD_RM64);
FPU_INSTRUCTION(FUCOMIP);
FPU_INSTRUCTION(FBSTP_M80);
FPU_INSTRUCTION(FCOMIP);
FPU_INSTRUCTION(FISTP_RM64);
void SoftCPU::HLT(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IDIV_RM16(const X86::Instruction& insn)
{
auto divisor_with_shadow = insn.modrm().read16(*this, insn);
auto divisor = (i16)divisor_with_shadow.value();
if (divisor == 0) {
reportln("Divide by zero"sv);
TODO();
}
i32 dividend = (i32)(((u32)dx().value() << 16) | (u32)ax().value());
i32 result = dividend / divisor;
if (result > NumericLimits<i16>::max() || result < NumericLimits<i16>::min()) {
reportln("Divide overflow"sv);
TODO();
}
auto original_ax = ax();
set_ax(shadow_wrap_with_taint_from<u16>(result, original_ax, dx(), divisor_with_shadow));
set_dx(shadow_wrap_with_taint_from<u16>(dividend % divisor, original_ax, dx(), divisor_with_shadow));
}
void SoftCPU::IDIV_RM32(const X86::Instruction& insn)
{
auto divisor_with_shadow = insn.modrm().read32(*this, insn);
auto divisor = (i32)divisor_with_shadow.value();
if (divisor == 0) {
reportln("Divide by zero"sv);
TODO();
}
i64 dividend = (i64)(((u64)edx().value() << 32) | (u64)eax().value());
i64 result = dividend / divisor;
if (result > NumericLimits<i32>::max() || result < NumericLimits<i32>::min()) {
reportln("Divide overflow"sv);
TODO();
}
auto original_eax = eax();
set_eax(shadow_wrap_with_taint_from<u32>(result, original_eax, edx(), divisor_with_shadow));
set_edx(shadow_wrap_with_taint_from<u32>(dividend % divisor, original_eax, edx(), divisor_with_shadow));
}
void SoftCPU::IDIV_RM8(const X86::Instruction& insn)
{
auto divisor_with_shadow = insn.modrm().read8(*this, insn);
auto divisor = (i8)divisor_with_shadow.value();
if (divisor == 0) {
reportln("Divide by zero"sv);
TODO();
}
i16 dividend = ax().value();
i16 result = dividend / divisor;
if (result > NumericLimits<i8>::max() || result < NumericLimits<i8>::min()) {
reportln("Divide overflow"sv);
TODO();
}
auto original_ax = ax();
set_al(shadow_wrap_with_taint_from<u8>(result, divisor_with_shadow, original_ax));
set_ah(shadow_wrap_with_taint_from<u8>(dividend % divisor, divisor_with_shadow, original_ax));
}
void SoftCPU::IMUL_RM16(const X86::Instruction& insn)
{
i16 result_high;
i16 result_low;
auto src = insn.modrm().read16(*this, insn);
op_imul<i16>(*this, src.value(), ax().value(), result_high, result_low);
gpr16(X86::RegisterDX) = shadow_wrap_with_taint_from<u16>(result_high, src, ax());
gpr16(X86::RegisterAX) = shadow_wrap_with_taint_from<u16>(result_low, src, ax());
}
void SoftCPU::IMUL_RM32(const X86::Instruction& insn)
{
i32 result_high;
i32 result_low;
auto src = insn.modrm().read32(*this, insn);
op_imul<i32>(*this, src.value(), eax().value(), result_high, result_low);
gpr32(X86::RegisterEDX) = shadow_wrap_with_taint_from<u32>(result_high, src, eax());
gpr32(X86::RegisterEAX) = shadow_wrap_with_taint_from<u32>(result_low, src, eax());
}
void SoftCPU::IMUL_RM8(const X86::Instruction& insn)
{
i8 result_high;
i8 result_low;
auto src = insn.modrm().read8(*this, insn);
op_imul<i8>(*this, src.value(), al().value(), result_high, result_low);
gpr8(X86::RegisterAH) = shadow_wrap_with_taint_from<u8>(result_high, src, al());
gpr8(X86::RegisterAL) = shadow_wrap_with_taint_from<u8>(result_low, src, al());
}
void SoftCPU::IMUL_reg16_RM16(const X86::Instruction& insn)
{
i16 result_high;
i16 result_low;
auto src = insn.modrm().read16(*this, insn);
op_imul<i16>(*this, gpr16(insn.reg16()).value(), src.value(), result_high, result_low);
gpr16(insn.reg16()) = shadow_wrap_with_taint_from<u16>(result_low, src, gpr16(insn.reg16()));
}
void SoftCPU::IMUL_reg16_RM16_imm16(const X86::Instruction& insn)
{
i16 result_high;
i16 result_low;
auto src = insn.modrm().read16(*this, insn);
op_imul<i16>(*this, src.value(), insn.imm16(), result_high, result_low);
gpr16(insn.reg16()) = shadow_wrap_with_taint_from<u16>(result_low, src);
}
void SoftCPU::IMUL_reg16_RM16_imm8(const X86::Instruction& insn)
{
i16 result_high;
i16 result_low;
auto src = insn.modrm().read16(*this, insn);
op_imul<i16>(*this, src.value(), sign_extended_to<i16>(insn.imm8()), result_high, result_low);
gpr16(insn.reg16()) = shadow_wrap_with_taint_from<u16>(result_low, src);
}
void SoftCPU::IMUL_reg32_RM32(const X86::Instruction& insn)
{
i32 result_high;
i32 result_low;
auto src = insn.modrm().read32(*this, insn);
op_imul<i32>(*this, gpr32(insn.reg32()).value(), src.value(), result_high, result_low);
gpr32(insn.reg32()) = shadow_wrap_with_taint_from<u32>(result_low, src, gpr32(insn.reg32()));
}
void SoftCPU::IMUL_reg32_RM32_imm32(const X86::Instruction& insn)
{
i32 result_high;
i32 result_low;
auto src = insn.modrm().read32(*this, insn);
op_imul<i32>(*this, src.value(), insn.imm32(), result_high, result_low);
gpr32(insn.reg32()) = shadow_wrap_with_taint_from<u32>(result_low, src);
}
void SoftCPU::IMUL_reg32_RM32_imm8(const X86::Instruction& insn)
{
i32 result_high;
i32 result_low;
auto src = insn.modrm().read32(*this, insn);
op_imul<i32>(*this, src.value(), sign_extended_to<i32>(insn.imm8()), result_high, result_low);
gpr32(insn.reg32()) = shadow_wrap_with_taint_from<u32>(result_low, src);
}
void SoftCPU::INC_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_inc(*this, insn.modrm().read16(*this, insn)));
}
void SoftCPU::INC_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_inc(*this, insn.modrm().read32(*this, insn)));
}
void SoftCPU::INC_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, op_inc(*this, insn.modrm().read8(*this, insn)));
}
void SoftCPU::INC_reg16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_inc(*this, const_gpr16(insn.reg16()));
}
void SoftCPU::INC_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_inc(*this, const_gpr32(insn.reg32()));
}
void SoftCPU::INSB(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::INSD(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::INSW(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::INT1(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::INT3(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::INTO(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::INT_imm8(const X86::Instruction& insn)
{
VERIFY(insn.imm8() == 0x82);
// FIXME: virt_syscall should take ValueWithShadow and whine about uninitialized arguments
set_eax(shadow_wrap_as_initialized(m_emulator.virt_syscall(eax().value(), edx().value(), ecx().value(), ebx().value())));
}
void SoftCPU::INVLPG(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IN_AL_DX(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IN_AL_imm8(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IN_AX_DX(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IN_AX_imm8(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IN_EAX_DX(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IN_EAX_imm8(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::IRET(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::JCXZ_imm8(const X86::Instruction& insn)
{
switch (insn.address_size()) {
case X86::AddressSize::Size32:
warn_if_uninitialized(ecx(), "jecxz imm8");
if (ecx().value() == 0)
set_eip(eip() + (i8)insn.imm8());
break;
case X86::AddressSize::Size16:
warn_if_uninitialized(cx(), "jcxz imm8");
if (cx().value() == 0)
set_eip(eip() + (i8)insn.imm8());
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftCPU::JMP_FAR_mem16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::JMP_FAR_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::JMP_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::JMP_RM32(const X86::Instruction& insn)
{
set_eip(insn.modrm().read32(*this, insn).value());
}
void SoftCPU::JMP_imm16(const X86::Instruction& insn)
{
set_eip(eip() + (i16)insn.imm16());
}
void SoftCPU::JMP_imm16_imm16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::JMP_imm16_imm32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::JMP_imm32(const X86::Instruction& insn)
{
set_eip(eip() + (i32)insn.imm32());
}
void SoftCPU::JMP_short_imm8(const X86::Instruction& insn)
{
set_eip(eip() + (i8)insn.imm8());
}
void SoftCPU::Jcc_NEAR_imm(const X86::Instruction& insn)
{
warn_if_flags_tainted("jcc near imm32");
if (evaluate_condition(insn.cc()))
set_eip(eip() + (i32)insn.imm32());
}
void SoftCPU::Jcc_imm8(const X86::Instruction& insn)
{
warn_if_flags_tainted("jcc imm8");
if (evaluate_condition(insn.cc()))
set_eip(eip() + (i8)insn.imm8());
}
void SoftCPU::LAHF(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LAR_reg16_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LAR_reg32_RM32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LDS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LDS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LEAVE16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LEAVE32(const X86::Instruction&)
{
auto new_ebp = read_memory32({ ss(), ebp().value() });
set_esp({ ebp().value() + 4, ebp().shadow() });
set_ebp(new_ebp);
}
void SoftCPU::LEA_reg16_mem16(const X86::Instruction& insn)
{
// FIXME: Respect shadow values
gpr16(insn.reg16()) = shadow_wrap_as_initialized<u16>(insn.modrm().resolve(*this, insn).offset());
}
void SoftCPU::LEA_reg32_mem32(const X86::Instruction& insn)
{
// FIXME: Respect shadow values
gpr32(insn.reg32()) = shadow_wrap_as_initialized<u32>(insn.modrm().resolve(*this, insn).offset());
}
void SoftCPU::LES_reg16_mem16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LES_reg32_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LFS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LFS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LGDT(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LGS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LGS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LIDT(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LLDT_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LMSW_RM16(const X86::Instruction&) { TODO_INSN(); }
template<typename T>
ALWAYS_INLINE static void do_lods(SoftCPU& cpu, const X86::Instruction& insn)
{
auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
cpu.do_once_or_repeat<true>(insn, [&] {
auto src = cpu.read_memory<T>({ src_segment, cpu.source_index(insn.address_size()).value() });
cpu.gpr<T>(X86::RegisterAL) = src;
cpu.step_source_index(insn.address_size(), sizeof(T));
});
}
void SoftCPU::LODSB(const X86::Instruction& insn)
{
do_lods<u8>(*this, insn);
}
void SoftCPU::LODSD(const X86::Instruction& insn)
{
do_lods<u32>(*this, insn);
}
void SoftCPU::LODSW(const X86::Instruction& insn)
{
do_lods<u16>(*this, insn);
}
void SoftCPU::LOOPNZ_imm8(const X86::Instruction& insn)
{
warn_if_flags_tainted("loopnz");
switch (insn.address_size()) {
case X86::AddressSize::Size32:
set_ecx({ ecx().value() - 1, ecx().shadow() });
if (ecx().value() != 0 && !zf())
set_eip(eip() + (i8)insn.imm8());
break;
case X86::AddressSize::Size16:
set_cx({ (u16)(cx().value() - 1), cx().shadow() });
if (cx().value() != 0 && !zf())
set_eip(eip() + (i8)insn.imm8());
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftCPU::LOOPZ_imm8(const X86::Instruction& insn)
{
warn_if_flags_tainted("loopz");
switch (insn.address_size()) {
case X86::AddressSize::Size32:
set_ecx({ ecx().value() - 1, ecx().shadow() });
if (ecx().value() != 0 && zf())
set_eip(eip() + (i8)insn.imm8());
break;
case X86::AddressSize::Size16:
set_cx({ (u16)(cx().value() - 1), cx().shadow() });
if (cx().value() != 0 && zf())
set_eip(eip() + (i8)insn.imm8());
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftCPU::LOOP_imm8(const X86::Instruction& insn)
{
switch (insn.address_size()) {
case X86::AddressSize::Size32:
set_ecx({ ecx().value() - 1, ecx().shadow() });
if (ecx().value() != 0)
set_eip(eip() + (i8)insn.imm8());
break;
case X86::AddressSize::Size16:
set_cx({ (u16)(cx().value() - 1), cx().shadow() });
if (cx().value() != 0)
set_eip(eip() + (i8)insn.imm8());
break;
default:
VERIFY_NOT_REACHED();
}
}
void SoftCPU::LSL_reg16_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LSL_reg32_RM32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LSS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LSS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::LTR_RM16(const X86::Instruction&) { TODO_INSN(); }
template<typename T>
ALWAYS_INLINE static void do_movs(SoftCPU& cpu, const X86::Instruction& insn)
{
auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
cpu.do_once_or_repeat<false>(insn, [&] {
auto src = cpu.read_memory<T>({ src_segment, cpu.source_index(insn.address_size()).value() });
cpu.write_memory<T>({ cpu.es(), cpu.destination_index(insn.address_size()).value() }, src);
cpu.step_source_index(insn.address_size(), sizeof(T));
cpu.step_destination_index(insn.address_size(), sizeof(T));
});
}
void SoftCPU::MOVSB(const X86::Instruction& insn)
{
do_movs<u8>(*this, insn);
}
void SoftCPU::MOVSD(const X86::Instruction& insn)
{
do_movs<u32>(*this, insn);
}
void SoftCPU::MOVSW(const X86::Instruction& insn)
{
do_movs<u16>(*this, insn);
}
void SoftCPU::MOVSX_reg16_RM8(const X86::Instruction& insn)
{
auto src = insn.modrm().read8(*this, insn);
gpr16(insn.reg16()) = shadow_wrap_with_taint_from<u16>(sign_extended_to<u16>(src.value()), src);
}
void SoftCPU::MOVSX_reg32_RM16(const X86::Instruction& insn)
{
auto src = insn.modrm().read16(*this, insn);
gpr32(insn.reg32()) = shadow_wrap_with_taint_from<u32>(sign_extended_to<u32>(src.value()), src);
}
void SoftCPU::MOVSX_reg32_RM8(const X86::Instruction& insn)
{
auto src = insn.modrm().read8(*this, insn);
gpr32(insn.reg32()) = shadow_wrap_with_taint_from<u32>(sign_extended_to<u32>(src.value()), src);
}
void SoftCPU::MOVZX_reg16_RM8(const X86::Instruction& insn)
{
auto src = insn.modrm().read8(*this, insn);
gpr16(insn.reg16()) = ValueWithShadow<u16>(src.value(), 0x0100 | (src.shadow_as_value() & 0xff));
}
void SoftCPU::MOVZX_reg32_RM16(const X86::Instruction& insn)
{
auto src = insn.modrm().read16(*this, insn);
gpr32(insn.reg32()) = ValueWithShadow<u32>(src.value(), 0x01010000 | (src.shadow_as_value() & 0xffff));
}
void SoftCPU::MOVZX_reg32_RM8(const X86::Instruction& insn)
{
auto src = insn.modrm().read8(*this, insn);
gpr32(insn.reg32()) = ValueWithShadow<u32>(src.value(), 0x01010100 | (src.shadow_as_value() & 0xff));
}
void SoftCPU::MOV_AL_moff8(const X86::Instruction& insn)
{
set_al(read_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }));
}
void SoftCPU::MOV_AX_moff16(const X86::Instruction& insn)
{
set_ax(read_memory16({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }));
}
void SoftCPU::MOV_CR_reg32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::MOV_DR_reg32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::MOV_EAX_moff32(const X86::Instruction& insn)
{
set_eax(read_memory32({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }));
}
void SoftCPU::MOV_RM16_imm16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, shadow_wrap_as_initialized(insn.imm16()));
}
void SoftCPU::MOV_RM16_reg16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, const_gpr16(insn.reg16()));
}
void SoftCPU::MOV_RM16_seg(X86::Instruction const& insn)
{
insn.modrm().write16(*this, insn, shadow_wrap_as_initialized(m_segment[to_underlying(insn.segment_register())]));
}
void SoftCPU::MOV_RM32_imm32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, shadow_wrap_as_initialized(insn.imm32()));
}
void SoftCPU::MOV_RM32_reg32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, const_gpr32(insn.reg32()));
}
void SoftCPU::MOV_RM8_imm8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, shadow_wrap_as_initialized(insn.imm8()));
}
void SoftCPU::MOV_RM8_reg8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, const_gpr8(insn.reg8()));
}
void SoftCPU::MOV_moff16_AX(const X86::Instruction& insn)
{
write_memory16({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, ax());
}
void SoftCPU::MOV_moff32_EAX(const X86::Instruction& insn)
{
write_memory32({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, eax());
}
void SoftCPU::MOV_moff8_AL(const X86::Instruction& insn)
{
write_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, al());
}
void SoftCPU::MOV_reg16_RM16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = insn.modrm().read16(*this, insn);
}
void SoftCPU::MOV_reg16_imm16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = shadow_wrap_as_initialized(insn.imm16());
}
void SoftCPU::MOV_reg32_CR(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::MOV_reg32_DR(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::MOV_reg32_RM32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = insn.modrm().read32(*this, insn);
}
void SoftCPU::MOV_reg32_imm32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = shadow_wrap_as_initialized(insn.imm32());
}
void SoftCPU::MOV_reg8_RM8(const X86::Instruction& insn)
{
gpr8(insn.reg8()) = insn.modrm().read8(*this, insn);
}
void SoftCPU::MOV_reg8_imm8(const X86::Instruction& insn)
{
gpr8(insn.reg8()) = shadow_wrap_as_initialized(insn.imm8());
}
void SoftCPU::write_segment_register(X86::SegmentRegister segment_register, ValueWithShadow<u16> value)
{
// FIXME: Validate the segment selector and raise exception if necessary.
// FIXME: Complain if uninitialized data is moved into a segment register.
m_segment[to_underlying(segment_register)] = value.value();
}
void SoftCPU::MOV_seg_RM16(X86::Instruction const& insn)
{
write_segment_register(insn.segment_register(), insn.modrm().read16(*this, insn));
}
void SoftCPU::MOV_seg_RM32(X86::Instruction const& insn)
{
// NOTE: This instruction performs a 32-bit read but only the bottom 16 bits are used since segment registers are 16-bit.
auto value = insn.modrm().read32(*this, insn);
write_segment_register(insn.segment_register(), ValueWithShadow<u16>(value.value(), value.shadow_as_value()));
}
void SoftCPU::MUL_RM16(const X86::Instruction& insn)
{
auto src = insn.modrm().read16(*this, insn);
u32 result = (u32)ax().value() * (u32)src.value();
auto original_ax = ax();
set_ax(shadow_wrap_with_taint_from<u16>(result & 0xffff, src, original_ax));
set_dx(shadow_wrap_with_taint_from<u16>(result >> 16, src, original_ax));
taint_flags_from(src, original_ax);
set_cf(dx().value() != 0);
set_of(dx().value() != 0);
}
void SoftCPU::MUL_RM32(const X86::Instruction& insn)
{
auto src = insn.modrm().read32(*this, insn);
u64 result = (u64)eax().value() * (u64)src.value();
auto original_eax = eax();
set_eax(shadow_wrap_with_taint_from<u32>(result, src, original_eax));
set_edx(shadow_wrap_with_taint_from<u32>(result >> 32, src, original_eax));
taint_flags_from(src, original_eax);
set_cf(edx().value() != 0);
set_of(edx().value() != 0);
}
void SoftCPU::MUL_RM8(const X86::Instruction& insn)
{
auto src = insn.modrm().read8(*this, insn);
u16 result = (u16)al().value() * src.value();
auto original_al = al();
set_ax(shadow_wrap_with_taint_from(result, src, original_al));
taint_flags_from(src, original_al);
set_cf((result & 0xff00) != 0);
set_of((result & 0xff00) != 0);
}
void SoftCPU::NEG_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_sub<ValueWithShadow<u16>>(*this, shadow_wrap_as_initialized<u16>(0), insn.modrm().read16(*this, insn)));
}
void SoftCPU::NEG_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_sub<ValueWithShadow<u32>>(*this, shadow_wrap_as_initialized<u32>(0), insn.modrm().read32(*this, insn)));
}
void SoftCPU::NEG_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, op_sub<ValueWithShadow<u8>>(*this, shadow_wrap_as_initialized<u8>(0), insn.modrm().read8(*this, insn)));
}
void SoftCPU::NOP(const X86::Instruction&)
{
}
void SoftCPU::NOT_RM16(const X86::Instruction& insn)
{
auto data = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, ValueWithShadow<u16>(~data.value(), data.shadow()));
}
void SoftCPU::NOT_RM32(const X86::Instruction& insn)
{
auto data = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, ValueWithShadow<u32>(~data.value(), data.shadow()));
}
void SoftCPU::NOT_RM8(const X86::Instruction& insn)
{
auto data = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, ValueWithShadow<u8>(~data.value(), data.shadow()));
}
void SoftCPU::OUTSB(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUTSD(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUTSW(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUT_DX_AL(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUT_DX_AX(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUT_DX_EAX(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUT_imm8_AL(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUT_imm8_AX(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::OUT_imm8_EAX(const X86::Instruction&) { TODO_INSN(); }
FPU_INSTRUCTION(PACKSSDW_mm1_mm2m64);
FPU_INSTRUCTION(PACKSSWB_mm1_mm2m64);
FPU_INSTRUCTION(PACKUSWB_mm1_mm2m64);
FPU_INSTRUCTION(PADDB_mm1_mm2m64);
FPU_INSTRUCTION(PADDW_mm1_mm2m64);
FPU_INSTRUCTION(PADDD_mm1_mm2m64);
FPU_INSTRUCTION(PADDSB_mm1_mm2m64);
FPU_INSTRUCTION(PADDSW_mm1_mm2m64);
FPU_INSTRUCTION(PADDUSB_mm1_mm2m64);
FPU_INSTRUCTION(PADDUSW_mm1_mm2m64);
FPU_INSTRUCTION(PAND_mm1_mm2m64);
FPU_INSTRUCTION(PANDN_mm1_mm2m64);
FPU_INSTRUCTION(PCMPEQB_mm1_mm2m64);
FPU_INSTRUCTION(PCMPEQW_mm1_mm2m64);
FPU_INSTRUCTION(PCMPEQD_mm1_mm2m64);
FPU_INSTRUCTION(PCMPGTB_mm1_mm2m64);
FPU_INSTRUCTION(PCMPGTW_mm1_mm2m64);
FPU_INSTRUCTION(PCMPGTD_mm1_mm2m64);
FPU_INSTRUCTION(PMADDWD_mm1_mm2m64);
FPU_INSTRUCTION(PMULHW_mm1_mm2m64);
FPU_INSTRUCTION(PMULLW_mm1_mm2m64);
void SoftCPU::POPA(const X86::Instruction&)
{
set_di(pop16());
set_si(pop16());
set_bp(pop16());
pop16();
set_bx(pop16());
set_dx(pop16());
set_cx(pop16());
set_ax(pop16());
}
void SoftCPU::POPAD(const X86::Instruction&)
{
set_edi(pop32());
set_esi(pop32());
set_ebp(pop32());
pop32();
set_ebx(pop32());
set_edx(pop32());
set_ecx(pop32());
set_eax(pop32());
}
void SoftCPU::POPF(const X86::Instruction&)
{
auto popped_value = pop16();
m_eflags &= ~0xffff;
m_eflags |= popped_value.value();
taint_flags_from(popped_value);
}
void SoftCPU::POPFD(const X86::Instruction&)
{
auto popped_value = pop32();
m_eflags &= ~0x00fcffff;
m_eflags |= popped_value.value() & 0x00fcffff;
taint_flags_from(popped_value);
}
void SoftCPU::POP_DS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::POP_ES(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::POP_FS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::POP_GS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::POP_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, pop16());
}
void SoftCPU::POP_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, pop32());
}
void SoftCPU::POP_SS(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::POP_reg16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = pop16();
}
void SoftCPU::POP_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = pop32();
}
FPU_INSTRUCTION(POR_mm1_mm2m64);
FPU_INSTRUCTION(PSLLW_mm1_mm2m64);
FPU_INSTRUCTION(PSLLW_mm1_imm8);
FPU_INSTRUCTION(PSLLD_mm1_mm2m64);
FPU_INSTRUCTION(PSLLD_mm1_imm8);
FPU_INSTRUCTION(PSLLQ_mm1_mm2m64);
FPU_INSTRUCTION(PSLLQ_mm1_imm8);
FPU_INSTRUCTION(PSRAW_mm1_mm2m64);
FPU_INSTRUCTION(PSRAW_mm1_imm8);
FPU_INSTRUCTION(PSRAD_mm1_mm2m64);
FPU_INSTRUCTION(PSRAD_mm1_imm8);
FPU_INSTRUCTION(PSRLW_mm1_mm2m64);
FPU_INSTRUCTION(PSRLW_mm1_imm8);
FPU_INSTRUCTION(PSRLD_mm1_mm2m64);
FPU_INSTRUCTION(PSRLD_mm1_imm8);
FPU_INSTRUCTION(PSRLQ_mm1_mm2m64);
FPU_INSTRUCTION(PSRLQ_mm1_imm8);
FPU_INSTRUCTION(PSUBB_mm1_mm2m64);
FPU_INSTRUCTION(PSUBW_mm1_mm2m64);
FPU_INSTRUCTION(PSUBD_mm1_mm2m64);
FPU_INSTRUCTION(PSUBSB_mm1_mm2m64);
FPU_INSTRUCTION(PSUBSW_mm1_mm2m64);
FPU_INSTRUCTION(PSUBUSB_mm1_mm2m64);
FPU_INSTRUCTION(PSUBUSW_mm1_mm2m64);
FPU_INSTRUCTION(PUNPCKHBW_mm1_mm2m64);
FPU_INSTRUCTION(PUNPCKHWD_mm1_mm2m64);
FPU_INSTRUCTION(PUNPCKHDQ_mm1_mm2m64);
FPU_INSTRUCTION(PUNPCKLBW_mm1_mm2m32);
FPU_INSTRUCTION(PUNPCKLWD_mm1_mm2m32);
FPU_INSTRUCTION(PUNPCKLDQ_mm1_mm2m32);
void SoftCPU::PUSHA(const X86::Instruction&)
{
auto temp = sp();
push16(ax());
push16(cx());
push16(dx());
push16(bx());
push16(temp);
push16(bp());
push16(si());
push16(di());
}
void SoftCPU::PUSHAD(const X86::Instruction&)
{
auto temp = esp();
push32(eax());
push32(ecx());
push32(edx());
push32(ebx());
push32(temp);
push32(ebp());
push32(esi());
push32(edi());
}
void SoftCPU::PUSHF(const X86::Instruction&)
{
// FIXME: Respect shadow flags when they exist!
push16(shadow_wrap_as_initialized<u16>(m_eflags & 0xffff));
}
void SoftCPU::PUSHFD(const X86::Instruction&)
{
// FIXME: Respect shadow flags when they exist!
push32(shadow_wrap_as_initialized(m_eflags & 0x00fcffff));
}
void SoftCPU::PUSH_CS(X86::Instruction const&)
{
push16(shadow_wrap_as_initialized(cs()));
}
void SoftCPU::PUSH_DS(X86::Instruction const&)
{
push16(shadow_wrap_as_initialized(ds()));
}
void SoftCPU::PUSH_ES(X86::Instruction const&)
{
push16(shadow_wrap_as_initialized(es()));
}
void SoftCPU::PUSH_FS(X86::Instruction const&)
{
push16(shadow_wrap_as_initialized(fs()));
}
void SoftCPU::PUSH_GS(X86::Instruction const&)
{
push16(shadow_wrap_as_initialized(gs()));
}
void SoftCPU::PUSH_RM16(const X86::Instruction& insn)
{
push16(insn.modrm().read16(*this, insn));
}
void SoftCPU::PUSH_RM32(const X86::Instruction& insn)
{
push32(insn.modrm().read32(*this, insn));
}
void SoftCPU::PUSH_SP_8086_80186(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::PUSH_SS(X86::Instruction const&)
{
push16(shadow_wrap_as_initialized(ss()));
}
void SoftCPU::PUSH_imm16(const X86::Instruction& insn)
{
push16(shadow_wrap_as_initialized(insn.imm16()));
}
void SoftCPU::PUSH_imm32(const X86::Instruction& insn)
{
push32(shadow_wrap_as_initialized(insn.imm32()));
}
void SoftCPU::PUSH_imm8(const X86::Instruction& insn)
{
VERIFY(!insn.has_operand_size_override_prefix());
push32(shadow_wrap_as_initialized<u32>(sign_extended_to<i32>(insn.imm8())));
}
void SoftCPU::PUSH_reg16(const X86::Instruction& insn)
{
push16(gpr16(insn.reg16()));
}
void SoftCPU::PUSH_reg32(const X86::Instruction& insn)
{
push32(gpr32(insn.reg32()));
}
FPU_INSTRUCTION(PXOR_mm1_mm2m64);
template<typename T, bool cf>
ALWAYS_INLINE static T op_rcl_impl(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("rcll %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("rclw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("rclb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
cpu.taint_flags_from(data, steps);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
template<typename T>
ALWAYS_INLINE static T op_rcl(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
cpu.warn_if_flags_tainted("rcl");
if (cpu.cf())
return op_rcl_impl<T, true>(cpu, data, steps);
return op_rcl_impl<T, false>(cpu, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(RCL, op_rcl)
template<typename T, bool cf>
ALWAYS_INLINE static T op_rcr_impl(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("rcrl %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("rcrw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("rcrb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
template<typename T>
ALWAYS_INLINE static T op_rcr(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
cpu.warn_if_flags_tainted("rcr");
if (cpu.cf())
return op_rcr_impl<T, true>(cpu, data, steps);
return op_rcr_impl<T, false>(cpu, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(RCR, op_rcr)
void SoftCPU::RDTSC(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::RET(const X86::Instruction& insn)
{
VERIFY(!insn.has_operand_size_override_prefix());
auto ret_address = pop32();
warn_if_uninitialized(ret_address, "ret");
set_eip(ret_address.value());
m_emulator.return_callback(ret_address.value());
}
void SoftCPU::RETF(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::RETF_imm16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::RET_imm16(const X86::Instruction& insn)
{
VERIFY(!insn.has_operand_size_override_prefix());
auto ret_address = pop32();
warn_if_uninitialized(ret_address, "ret imm16");
set_eip(ret_address.value());
set_esp({ esp().value() + insn.imm16(), esp().shadow() });
m_emulator.return_callback(ret_address.value());
}
template<typename T>
ALWAYS_INLINE static T op_rol(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("roll %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("rolw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("rolb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(ROL, op_rol)
template<typename T>
ALWAYS_INLINE static T op_ror(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("rorl %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("rorw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("rorb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(ROR, op_ror)
void SoftCPU::SAHF(const X86::Instruction&)
{
// FIXME: Respect shadow flags once they exists!
set_al(shadow_wrap_as_initialized<u8>(eflags() & 0xff));
}
void SoftCPU::SALC(const X86::Instruction&)
{
// FIXME: Respect shadow flags once they exists!
set_al(shadow_wrap_as_initialized<u8>(cf() ? 0xff : 0x00));
}
template<typename T>
static T op_sar(SoftCPU& cpu, T data, ValueWithShadow<u8> steps)
{
if (steps.value() == 0)
return shadow_wrap_with_taint_from(data.value(), data, steps);
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(typename T::ValueType) == 4) {
asm volatile("sarl %%cl, %%eax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 2) {
asm volatile("sarw %%cl, %%ax\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
} else if constexpr (sizeof(typename T::ValueType) == 1) {
asm volatile("sarb %%cl, %%al\n"
: "=a"(result)
: "a"(data.value()), "c"(steps.value()));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return shadow_wrap_with_taint_from<typename T::ValueType>(result, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SAR, op_sar)
template<typename T>
ALWAYS_INLINE static void do_scas(SoftCPU& cpu, const X86::Instruction& insn)
{
cpu.do_once_or_repeat<true>(insn, [&] {
auto src = cpu.const_gpr<T>(X86::RegisterAL);
auto dest = cpu.read_memory<T>({ cpu.es(), cpu.destination_index(insn.address_size()).value() });
op_sub(cpu, dest, src);
cpu.step_destination_index(insn.address_size(), sizeof(T));
});
}
void SoftCPU::SCASB(const X86::Instruction& insn)
{
do_scas<u8>(*this, insn);
}
void SoftCPU::SCASD(const X86::Instruction& insn)
{
do_scas<u32>(*this, insn);
}
void SoftCPU::SCASW(const X86::Instruction& insn)
{
do_scas<u16>(*this, insn);
}
void SoftCPU::SETcc_RM8(const X86::Instruction& insn)
{
warn_if_flags_tainted("setcc");
insn.modrm().write8(*this, insn, shadow_wrap_as_initialized<u8>(evaluate_condition(insn.cc())));
}
void SoftCPU::SGDT(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::SHLD_RM16_reg16_CL(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shld(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), cl()));
}
void SoftCPU::SHLD_RM16_reg16_imm8(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shld(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), shadow_wrap_as_initialized(insn.imm8())));
}
void SoftCPU::SHLD_RM32_reg32_CL(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shld(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), cl()));
}
void SoftCPU::SHLD_RM32_reg32_imm8(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shld(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), shadow_wrap_as_initialized(insn.imm8())));
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SHL, op_shl)
void SoftCPU::SHRD_RM16_reg16_CL(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shrd(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), cl()));
}
void SoftCPU::SHRD_RM16_reg16_imm8(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shrd(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), shadow_wrap_as_initialized(insn.imm8())));
}
void SoftCPU::SHRD_RM32_reg32_CL(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shrd(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), cl()));
}
void SoftCPU::SHRD_RM32_reg32_imm8(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shrd(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), shadow_wrap_as_initialized(insn.imm8())));
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SHR, op_shr)
void SoftCPU::SIDT(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::SLDT_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::SMSW_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::STC(const X86::Instruction&)
{
set_cf(true);
}
void SoftCPU::STD(const X86::Instruction&)
{
set_df(true);
}
void SoftCPU::STI(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::STOSB(const X86::Instruction& insn)
{
if (insn.has_rep_prefix() && !df()) {
// Fast path for 8-bit forward memory fill.
if (m_emulator.mmu().fast_fill_memory8({ es(), destination_index(insn.address_size()).value() }, ecx().value(), al())) {
switch (insn.address_size()) {
case X86::AddressSize::Size32:
// FIXME: Should an uninitialized ECX taint EDI here?
set_edi({ (u32)(edi().value() + ecx().value()), edi().shadow() });
set_ecx(shadow_wrap_as_initialized<u32>(0));
break;
case X86::AddressSize::Size16:
// FIXME: Should an uninitialized CX taint DI here?
set_di({ (u16)(di().value() + cx().value()), di().shadow() });
set_cx(shadow_wrap_as_initialized<u16>(0));
break;
default:
VERIFY_NOT_REACHED();
}
return;
}
}
do_once_or_repeat<false>(insn, [&] {
write_memory8({ es(), destination_index(insn.address_size()).value() }, al());
step_destination_index(insn.address_size(), 1);
});
}
void SoftCPU::STOSD(const X86::Instruction& insn)
{
if (insn.has_rep_prefix() && !df()) {
// Fast path for 32-bit forward memory fill.
if (m_emulator.mmu().fast_fill_memory32({ es(), destination_index(insn.address_size()).value() }, ecx().value(), eax())) {
switch (insn.address_size()) {
case X86::AddressSize::Size32:
// FIXME: Should an uninitialized ECX taint EDI here?
set_edi({ (u32)(edi().value() + (ecx().value() * sizeof(u32))), edi().shadow() });
set_ecx(shadow_wrap_as_initialized<u32>(0));
break;
case X86::AddressSize::Size16:
// FIXME: Should an uninitialized CX taint DI here?
set_di({ (u16)(di().value() + (cx().value() * sizeof(u32))), di().shadow() });
set_cx(shadow_wrap_as_initialized<u16>(0));
break;
default:
VERIFY_NOT_REACHED();
}
return;
}
}
do_once_or_repeat<false>(insn, [&] {
write_memory32({ es(), destination_index(insn.address_size()).value() }, eax());
step_destination_index(insn.address_size(), 4);
});
}
void SoftCPU::STOSW(const X86::Instruction& insn)
{
do_once_or_repeat<false>(insn, [&] {
write_memory16({ es(), destination_index(insn.address_size()).value() }, ax());
step_destination_index(insn.address_size(), 2);
});
}
void SoftCPU::STR_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::UD0(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::UD1(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::UD2(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::VERR_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::VERW_RM16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::WAIT(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::WBINVD(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::XADD_RM16_reg16(const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = const_gpr16(insn.reg16());
auto result = op_add(*this, dest, src);
gpr16(insn.reg16()) = dest;
insn.modrm().write16(*this, insn, result);
}
void SoftCPU::XADD_RM32_reg32(const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = const_gpr32(insn.reg32());
auto result = op_add(*this, dest, src);
gpr32(insn.reg32()) = dest;
insn.modrm().write32(*this, insn, result);
}
void SoftCPU::XADD_RM8_reg8(const X86::Instruction& insn)
{
auto dest = insn.modrm().read8(*this, insn);
auto src = const_gpr8(insn.reg8());
auto result = op_add(*this, dest, src);
gpr8(insn.reg8()) = dest;
insn.modrm().write8(*this, insn, result);
}
void SoftCPU::XCHG_AX_reg16(const X86::Instruction& insn)
{
auto temp = gpr16(insn.reg16());
gpr16(insn.reg16()) = ax();
set_ax(temp);
}
void SoftCPU::XCHG_EAX_reg32(const X86::Instruction& insn)
{
auto temp = gpr32(insn.reg32());
gpr32(insn.reg32()) = eax();
set_eax(temp);
}
void SoftCPU::XCHG_reg16_RM16(const X86::Instruction& insn)
{
auto temp = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, const_gpr16(insn.reg16()));
gpr16(insn.reg16()) = temp;
}
void SoftCPU::XCHG_reg32_RM32(const X86::Instruction& insn)
{
auto temp = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, const_gpr32(insn.reg32()));
gpr32(insn.reg32()) = temp;
}
void SoftCPU::XCHG_reg8_RM8(const X86::Instruction& insn)
{
auto temp = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, const_gpr8(insn.reg8()));
gpr8(insn.reg8()) = temp;
}
void SoftCPU::XLAT(const X86::Instruction& insn)
{
u32 offset;
switch (insn.address_size()) {
case X86::AddressSize::Size32:
warn_if_uninitialized(ebx(), "xlat ebx");
offset = ebx().value() + al().value();
break;
case X86::AddressSize::Size16:
warn_if_uninitialized(bx(), "xlat bx");
offset = bx().value() + al().value();
break;
default:
VERIFY_NOT_REACHED();
}
warn_if_uninitialized(al(), "xlat al");
set_al(read_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), offset }));
}
#define DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(mnemonic, op, update_dest, is_zero_idiom_if_both_operands_same, is_or) \
void SoftCPU::mnemonic##_AL_imm8(const X86::Instruction& insn) \
{ \
generic_AL_imm8<update_dest, is_or>(op<ValueWithShadow<u8>>, insn); \
} \
void SoftCPU::mnemonic##_AX_imm16(const X86::Instruction& insn) \
{ \
generic_AX_imm16<update_dest, is_or>(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_EAX_imm32(const X86::Instruction& insn) \
{ \
generic_EAX_imm32<update_dest, is_or>(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_RM16_imm16(const X86::Instruction& insn) \
{ \
generic_RM16_imm16<update_dest, is_or>(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_RM16_reg16(const X86::Instruction& insn) \
{ \
generic_RM16_reg16<update_dest, is_zero_idiom_if_both_operands_same>(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_RM32_imm32(const X86::Instruction& insn) \
{ \
generic_RM32_imm32<update_dest, is_or>(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_RM32_reg32(const X86::Instruction& insn) \
{ \
generic_RM32_reg32<update_dest, is_zero_idiom_if_both_operands_same>(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_RM8_imm8(const X86::Instruction& insn) \
{ \
generic_RM8_imm8<update_dest, is_or>(op<ValueWithShadow<u8>>, insn); \
} \
void SoftCPU::mnemonic##_RM8_reg8(const X86::Instruction& insn) \
{ \
generic_RM8_reg8<update_dest, is_zero_idiom_if_both_operands_same>(op<ValueWithShadow<u8>>, insn); \
}
#define DEFINE_GENERIC_INSN_HANDLERS(mnemonic, op, update_dest, is_zero_idiom_if_both_operands_same, is_or) \
DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(mnemonic, op, update_dest, is_zero_idiom_if_both_operands_same, is_or) \
void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) \
{ \
generic_RM16_imm8<update_dest, is_or>(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) \
{ \
generic_RM32_imm8<update_dest, is_or>(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_reg16_RM16(const X86::Instruction& insn) \
{ \
generic_reg16_RM16<update_dest, is_zero_idiom_if_both_operands_same>(op<ValueWithShadow<u16>>, insn); \
} \
void SoftCPU::mnemonic##_reg32_RM32(const X86::Instruction& insn) \
{ \
generic_reg32_RM32<update_dest, is_zero_idiom_if_both_operands_same>(op<ValueWithShadow<u32>>, insn); \
} \
void SoftCPU::mnemonic##_reg8_RM8(const X86::Instruction& insn) \
{ \
generic_reg8_RM8<update_dest, is_zero_idiom_if_both_operands_same>(op<ValueWithShadow<u8>>, insn); \
}
DEFINE_GENERIC_INSN_HANDLERS(XOR, op_xor, true, true, false)
DEFINE_GENERIC_INSN_HANDLERS(OR, op_or, true, false, true)
DEFINE_GENERIC_INSN_HANDLERS(ADD, op_add, true, false, false)
DEFINE_GENERIC_INSN_HANDLERS(ADC, op_adc, true, false, false)
DEFINE_GENERIC_INSN_HANDLERS(SUB, op_sub, true, true, false)
DEFINE_GENERIC_INSN_HANDLERS(SBB, op_sbb, true, false, false)
DEFINE_GENERIC_INSN_HANDLERS(AND, op_and, true, false, false)
DEFINE_GENERIC_INSN_HANDLERS(CMP, op_sub, false, false, false)
DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(TEST, op_and, false, false, false)
FPU_INSTRUCTION(MOVQ_mm1_mm2m64);
FPU_INSTRUCTION(MOVQ_mm1m64_mm2);
FPU_INSTRUCTION(MOVD_mm1_rm32);
FPU_INSTRUCTION(MOVQ_mm1_rm64); // long mode
FPU_INSTRUCTION(MOVD_rm32_mm2);
FPU_INSTRUCTION(MOVQ_rm64_mm2); // long mode
FPU_INSTRUCTION(EMMS);
void SoftCPU::CMPXCHG8B_m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::RDRAND_reg(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::RDSEED_reg(X86::Instruction const&) { TODO_INSN(); }
VPU_INSTRUCTION(PREFETCHTNTA);
VPU_INSTRUCTION(PREFETCHT0);
VPU_INSTRUCTION(PREFETCHT1);
VPU_INSTRUCTION(PREFETCHT2);
VPU_INSTRUCTION(LDMXCSR);
VPU_INSTRUCTION(STMXCSR);
VPU_INSTRUCTION(MOVUPS_xmm1_xmm2m128);
VPU_INSTRUCTION(MOVSS_xmm1_xmm2m32);
VPU_INSTRUCTION(MOVUPS_xmm1m128_xmm2);
VPU_INSTRUCTION(MOVSS_xmm1m32_xmm2);
VPU_INSTRUCTION(MOVLPS_xmm1_xmm2m64);
VPU_INSTRUCTION(MOVLPS_m64_xmm2);
VPU_INSTRUCTION(UNPCKLPS_xmm1_xmm2m128);
VPU_INSTRUCTION(UNPCKHPS_xmm1_xmm2m128);
VPU_INSTRUCTION(MOVHPS_xmm1_xmm2m64);
VPU_INSTRUCTION(MOVHPS_m64_xmm2);
VPU_INSTRUCTION(MOVAPS_xmm1_xmm2m128);
VPU_INSTRUCTION(MOVAPS_xmm1m128_xmm2);
VPU_INSTRUCTION(CVTTPS2PI_mm1_xmm2m64);
VPU_INSTRUCTION(CVTTSS2SI_r32_xmm2m32);
VPU_INSTRUCTION(CVTPI2PS_xmm1_mm2m64);
VPU_INSTRUCTION(CVTSI2SS_xmm1_rm32);
VPU_INSTRUCTION(MOVNTPS_xmm1m128_xmm2);
VPU_INSTRUCTION(CVTPS2PI_xmm1_mm2m64);
VPU_INSTRUCTION(CVTSS2SI_r32_xmm2m32);
VPU_INSTRUCTION(UCOMISS_xmm1_xmm2m32);
VPU_INSTRUCTION(COMISS_xmm1_xmm2m32);
VPU_INSTRUCTION(MOVMSKPS_reg_xmm);
VPU_INSTRUCTION(SQRTPS_xmm1_xmm2m128);
VPU_INSTRUCTION(SQRTSS_xmm1_xmm2m32);
VPU_INSTRUCTION(RSQRTPS_xmm1_xmm2m128);
VPU_INSTRUCTION(RSQRTSS_xmm1_xmm2m32);
VPU_INSTRUCTION(RCPPS_xmm1_xmm2m128);
VPU_INSTRUCTION(RCPSS_xmm1_xmm2m32);
VPU_INSTRUCTION(ANDPS_xmm1_xmm2m128);
VPU_INSTRUCTION(ANDNPS_xmm1_xmm2m128);
VPU_INSTRUCTION(ORPS_xmm1_xmm2m128);
VPU_INSTRUCTION(XORPS_xmm1_xmm2m128);
VPU_INSTRUCTION(ADDPS_xmm1_xmm2m128);
VPU_INSTRUCTION(ADDSS_xmm1_xmm2m32);
VPU_INSTRUCTION(MULPS_xmm1_xmm2m128);
VPU_INSTRUCTION(MULSS_xmm1_xmm2m32);
VPU_INSTRUCTION(SUBPS_xmm1_xmm2m128);
VPU_INSTRUCTION(SUBSS_xmm1_xmm2m32);
VPU_INSTRUCTION(MINPS_xmm1_xmm2m128);
VPU_INSTRUCTION(MINSS_xmm1_xmm2m32);
VPU_INSTRUCTION(DIVPS_xmm1_xmm2m128);
VPU_INSTRUCTION(DIVSS_xmm1_xmm2m32);
VPU_INSTRUCTION(MAXPS_xmm1_xmm2m128);
VPU_INSTRUCTION(MAXSS_xmm1_xmm2m32);
VPU_INSTRUCTION(PSHUFW_mm1_mm2m64_imm8);
VPU_INSTRUCTION(CMPPS_xmm1_xmm2m128_imm8);
VPU_INSTRUCTION(CMPSS_xmm1_xmm2m32_imm8);
VPU_INSTRUCTION(PINSRW_mm1_r32m16_imm8);
VPU_INSTRUCTION(PINSRW_xmm1_r32m16_imm8);
VPU_INSTRUCTION(PEXTRW_reg_mm1_imm8);
VPU_INSTRUCTION(PEXTRW_reg_xmm1_imm8);
VPU_INSTRUCTION(SHUFPS_xmm1_xmm2m128_imm8);
VPU_INSTRUCTION(PMOVMSKB_reg_mm1);
VPU_INSTRUCTION(PMOVMSKB_reg_xmm1);
VPU_INSTRUCTION(PMINUB_mm1_mm2m64);
VPU_INSTRUCTION(PMINUB_xmm1_xmm2m128);
VPU_INSTRUCTION(PMAXUB_mm1_mm2m64);
VPU_INSTRUCTION(PMAXUB_xmm1_xmm2m128);
VPU_INSTRUCTION(PAVGB_mm1_mm2m64);
VPU_INSTRUCTION(PAVGB_xmm1_xmm2m128);
VPU_INSTRUCTION(PAVGW_mm1_mm2m64);
VPU_INSTRUCTION(PAVGW_xmm1_xmm2m128);
VPU_INSTRUCTION(PMULHUW_mm1_mm2m64);
VPU_INSTRUCTION(PMULHUW_xmm1_xmm2m64);
VPU_INSTRUCTION(MOVNTQ_m64_mm1);
VPU_INSTRUCTION(PMINSB_mm1_mm2m64);
VPU_INSTRUCTION(PMINSB_xmm1_xmm2m128);
VPU_INSTRUCTION(PMAXSB_mm1_mm2m64);
VPU_INSTRUCTION(PMAXSB_xmm1_xmm2m128);
VPU_INSTRUCTION(PSADBB_mm1_mm2m64);
VPU_INSTRUCTION(PSADBB_xmm1_xmm2m128);
VPU_INSTRUCTION(MASKMOVQ_mm1_mm2m64);
void SoftCPU::MOVUPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVUPD_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVSD_xmm1m32_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVLPD_xmm1_m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVLPD_m64_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::UNPCKLPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::UNPCKHPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVHPD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVAPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVAPD_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTPI2PD_xmm1_mm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTSI2SD_xmm1_rm32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTTPD2PI_mm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTTSS2SI_r32_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTPD2PI_xmm1_mm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTSD2SI_xmm1_rm64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::UCOMISD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::COMISD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVMSKPD_reg_xmm(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::SQRTPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::SQRTSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::ANDPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::ANDNPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::ORPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::XORPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::ADDPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::ADDSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MULPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MULSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTPS2PD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTPD2PS_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTSS2SD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTSD2SS_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTDQ2PS_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTPS2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTTPS2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::SUBPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); };
void SoftCPU::SUBSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); };
void SoftCPU::MINPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MINSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::DIVPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::DIVSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MAXPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MAXSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PUNPCKLQDQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PUNPCKHQDQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVDQA_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVDQU_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSHUFD_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSHUFHW_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSHUFLW_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSRLQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSRLDQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSLLQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSLLDQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVD_rm32_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVDQA_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVDQU_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CMPPD_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CMPSD_xmm1_xmm2m32_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::SHUFPD_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PADDQ_mm1_mm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVQ_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVQ2DQ_xmm_mm(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::MOVDQ2Q_mm_xmm(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTTPD2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTPD2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::CVTDQ2PD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PMULUDQ_mm1_mm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PMULUDQ_mm1_mm2m128(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::PSUBQ_mm1_mm2m64(X86::Instruction const&) { TODO_INSN(); }
void SoftCPU::wrap_0xC0(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xC1_16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xC1_32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xD0(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xD1_16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xD1_32(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xD2(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xD3_16(const X86::Instruction&) { TODO_INSN(); }
void SoftCPU::wrap_0xD3_32(const X86::Instruction&) { TODO_INSN(); }
}