mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-11 09:18:05 +03:00
1682f0b760
SPDX License Identifiers are a more compact / standardized way of representing file license information. See: https://spdx.dev/resources/use/#identifiers This was done with the `ambr` search and replace tool. ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
128 lines
4.3 KiB
C++
128 lines
4.3 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "Color.h"
|
|
#include <math.h>
|
|
#include <xmmintrin.h>
|
|
|
|
#include <AK/SIMD.h>
|
|
|
|
#define GAMMA 2.2
|
|
|
|
// Most computer graphics are stored in the sRGB color space, which stores something close to
|
|
// the square root of the display intensity of each color channel. This is problematic for most
|
|
// operations that we want to perform on colors, since they typically assume that color scales
|
|
// linearly (e.g. rgb(127, 0, 0) is half as bright as rgb(255, 0, 0)). This causes incorrect
|
|
// results that look more gray than they should, to fix this we have to convert colors to the linear
|
|
// color space before performing these operations, then convert back before displaying.
|
|
//
|
|
// Conversion between linear and sRGB spaces are somewhat expensive to do on the CPU, so we instead
|
|
// interpret sRGB colors as gamma2.2 colors, which are close enough in most cases to be indistinguishable.
|
|
// Gamma 2.2 colors follow the simple rule of `display_intensity = pow(stored_intensity, 2.2)`.
|
|
// This module implements some fast color space transforms between the gamma2.2 and linear color spaces, plus
|
|
// some common primitive operations like blending.
|
|
//
|
|
// For a more in-depth overview of how gamma-adjustment works, check out:
|
|
// https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
|
|
|
|
namespace Gfx {
|
|
|
|
using AK::SIMD::f32x4;
|
|
|
|
#ifndef NO_FPU
|
|
|
|
# ifdef __SSE__
|
|
|
|
// Transform f32x4 from gamma2.2 space to linear space
|
|
// Assumes x is in range [0, 1]
|
|
// FIXME: Remove this hack once clang-11 is available as the default in Github Actions.
|
|
// This is apparently sometime mid-December. https://github.com/actions/virtual-environments/issues/2130
|
|
# if !defined(__clang__) || __clang_major__ >= 11
|
|
constexpr f32x4 gamma_to_linear4(f32x4 x)
|
|
# else
|
|
inline f32x4 gamma_to_linear4(f32x4 x)
|
|
# endif
|
|
{
|
|
return (0.8f + 0.2f * x) * x * x;
|
|
}
|
|
|
|
// Transform f32x4 from linear space to gamma2.2 space
|
|
// Assumes x is in range [0, 1]
|
|
inline f32x4 linear_to_gamma4(f32x4 x)
|
|
{
|
|
// Source for approximation: https://mimosa-pudica.net/fast-gamma/
|
|
constexpr float a = 0.00279491f;
|
|
constexpr float b = 1.15907984f;
|
|
float c = (b / sqrtf(1.0f + a)) - 1;
|
|
return ((b * __builtin_ia32_rsqrtps(x + a)) - c) * x;
|
|
}
|
|
|
|
// Linearize v1 and v2, lerp them by mix factor, then convert back.
|
|
// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
|
|
inline f32x4 gamma_accurate_lerp4(f32x4 v1, f32x4 v2, float mix)
|
|
{
|
|
return linear_to_gamma4(gamma_to_linear4(v1) * (1 - mix) + gamma_to_linear4(v2) * mix);
|
|
}
|
|
|
|
# endif
|
|
|
|
// Transform scalar from gamma2.2 space to linear space
|
|
// Assumes x is in range [0, 1]
|
|
constexpr float gamma_to_linear(float x)
|
|
{
|
|
return (0.8f + 0.2f * x) * x * x;
|
|
}
|
|
|
|
// Transform scalar from linear space to gamma2.2 space
|
|
// Assumes x is in range [0, 1]
|
|
inline float linear_to_gamma(float x)
|
|
{
|
|
// Source for approximation: https://mimosa-pudica.net/fast-gamma/
|
|
constexpr float a = 0.00279491;
|
|
constexpr float b = 1.15907984;
|
|
float c = (b / sqrtf(1 + a)) - 1;
|
|
return ((b / __builtin_sqrtf(x + a)) - c) * x;
|
|
}
|
|
|
|
// Linearize v1 and v2, lerp them by mix factor, then convert back.
|
|
// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
|
|
inline float gamma_accurate_lerp(float v1, float v2, float mix)
|
|
{
|
|
return linear_to_gamma(gamma_to_linear(v1) * (1 - mix) + gamma_to_linear(v2) * mix);
|
|
}
|
|
|
|
// Convert a and b to linear space, blend them by mix factor, then convert back.
|
|
// The output is entirely a when mix = 0 and entirely b when mix = 1
|
|
inline Color gamma_accurate_blend(Color a, Color b, float mix)
|
|
{
|
|
# ifdef __SSE__
|
|
f32x4 ac = {
|
|
(float)a.red(),
|
|
(float)a.green(),
|
|
(float)a.blue(),
|
|
};
|
|
f32x4 bc = {
|
|
(float)b.red(),
|
|
(float)b.green(),
|
|
(float)b.blue(),
|
|
};
|
|
f32x4 out = 255.f * gamma_accurate_lerp4(ac * (1.f / 255.f), bc * (1.f / 255.f), mix);
|
|
return Color(out[0], out[1], out[2]);
|
|
# else
|
|
return {
|
|
static_cast<u8>(255.f * gamma_accurate_lerp(a.red() / 255.f, b.red() / 255.f, mix)),
|
|
static_cast<u8>(255.f * gamma_accurate_lerp(a.green() / 255.f, b.green() / 255.f, mix)),
|
|
static_cast<u8>(255.f * gamma_accurate_lerp(a.blue() / 255.f, b.blue() / 255.f, mix)),
|
|
};
|
|
# endif
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|