ladybird/Userland/Libraries/LibGfx/JPGLoader.cpp
Linus Groh d60ebbbba6 Revert "Userland: static vs non-static constexpr variables"
This reverts commit 800ea8ea96.

Booting the system no longer worked after these changes.
2021-05-21 10:30:52 +01:00

1333 lines
48 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Bitmap.h>
#include <AK/ByteBuffer.h>
#include <AK/Debug.h>
#include <AK/HashMap.h>
#include <AK/LexicalPath.h>
#include <AK/MappedFile.h>
#include <AK/MemoryStream.h>
#include <AK/String.h>
#include <AK/Vector.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/JPGLoader.h>
#include <math.h>
#define JPG_INVALID 0X0000
#define JPG_APPN0 0XFFE0
#define JPG_APPN1 0XFFE1
#define JPG_APPN2 0XFFE2
#define JPG_APPN3 0XFFE3
#define JPG_APPN4 0XFFE4
#define JPG_APPN5 0XFFE5
#define JPG_APPN6 0XFFE6
#define JPG_APPN7 0XFFE7
#define JPG_APPN8 0XFFE8
#define JPG_APPN9 0XFFE9
#define JPG_APPNA 0XFFEA
#define JPG_APPNB 0XFFEB
#define JPG_APPNC 0XFFEC
#define JPG_APPND 0XFFED
#define JPG_APPNE 0xFFEE
#define JPG_APPNF 0xFFEF
#define JPG_RESERVED1 0xFFF1
#define JPG_RESERVED2 0xFFF2
#define JPG_RESERVED3 0xFFF3
#define JPG_RESERVED4 0xFFF4
#define JPG_RESERVED5 0xFFF5
#define JPG_RESERVED6 0xFFF6
#define JPG_RESERVED7 0xFFF7
#define JPG_RESERVED8 0xFFF8
#define JPG_RESERVED9 0xFFF9
#define JPG_RESERVEDA 0xFFFA
#define JPG_RESERVEDB 0xFFFB
#define JPG_RESERVEDC 0xFFFC
#define JPG_RESERVEDD 0xFFFD
#define JPG_RST0 0xFFD0
#define JPG_RST1 0xFFD1
#define JPG_RST2 0xFFD2
#define JPG_RST3 0xFFD3
#define JPG_RST4 0xFFD4
#define JPG_RST5 0xFFD5
#define JPG_RST6 0xFFD6
#define JPG_RST7 0xFFD7
#define JPG_DHP 0xFFDE
#define JPG_EXP 0xFFDF
#define JPG_DHT 0XFFC4
#define JPG_DQT 0XFFDB
#define JPG_EOI 0xFFD9
#define JPG_RST 0XFFDD
#define JPG_SOF0 0XFFC0
#define JPG_SOF2 0xFFC2
#define JPG_SOI 0XFFD8
#define JPG_SOS 0XFFDA
#define JPG_COM 0xFFFE
namespace Gfx {
constexpr static u8 zigzag_map[64] {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
using Marker = u16;
/**
* MCU means group of data units that are coded together. A data unit is an 8x8
* block of component data. In interleaved scans, number of non-interleaved data
* units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
* vertical subsampling factors of the component, respectively. A MacroBlock is
* an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
* we're done decoding the huffman stream.
*/
struct Macroblock {
union {
i32 y[64] = { 0 };
i32 r[64];
};
union {
i32 cb[64] = { 0 };
i32 g[64];
};
union {
i32 cr[64] = { 0 };
i32 b[64];
};
};
struct MacroblockMeta {
u32 total { 0 };
u32 padded_total { 0 };
u32 hcount { 0 };
u32 vcount { 0 };
u32 hpadded_count { 0 };
u32 vpadded_count { 0 };
};
struct ComponentSpec {
u8 serial_id { 255 }; // In the interval [0, 3).
u8 id { 0 };
u8 hsample_factor { 1 }; // Horizontal sampling factor.
u8 vsample_factor { 1 }; // Vertical sampling factor.
u8 ac_destination_id { 0 };
u8 dc_destination_id { 0 };
u8 qtable_id { 0 }; // Quantization table id.
};
struct StartOfFrame {
// Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
enum class FrameType {
Baseline_DCT = 0,
Extended_Sequential_DCT = 1,
Progressive_DCT = 2,
Sequential_Lossless = 3,
Differential_Sequential_DCT = 5,
Differential_Progressive_DCT = 6,
Differential_Sequential_Lossless = 7,
Extended_Sequential_DCT_Arithmetic = 9,
Progressive_DCT_Arithmetic = 10,
Sequential_Lossless_Arithmetic = 11,
Differential_Sequential_DCT_Arithmetic = 13,
Differential_Progressive_DCT_Arithmetic = 14,
Differential_Sequential_Lossless_Arithmetic = 15,
};
FrameType type { FrameType::Baseline_DCT };
u8 precision { 0 };
u16 height { 0 };
u16 width { 0 };
};
struct HuffmanTableSpec {
u8 type { 0 };
u8 destination_id { 0 };
u8 code_counts[16] = { 0 };
Vector<u8> symbols;
Vector<u16> codes;
};
struct HuffmanStreamState {
Vector<u8> stream;
u8 bit_offset { 0 };
size_t byte_offset { 0 };
};
struct JPGLoadingContext {
enum State {
NotDecoded = 0,
Error,
FrameDecoded,
BitmapDecoded
};
State state { State::NotDecoded };
const u8* data { nullptr };
size_t data_size { 0 };
u32 luma_table[64] = { 0 };
u32 chroma_table[64] = { 0 };
StartOfFrame frame;
u8 hsample_factor { 0 };
u8 vsample_factor { 0 };
u8 component_count { 0 };
HashMap<u8, ComponentSpec> components;
RefPtr<Gfx::Bitmap> bitmap;
u16 dc_reset_interval { 0 };
HashMap<u8, HuffmanTableSpec> dc_tables;
HashMap<u8, HuffmanTableSpec> ac_tables;
HuffmanStreamState huffman_stream;
i32 previous_dc_values[3] = { 0 };
MacroblockMeta mblock_meta;
};
static void generate_huffman_codes(HuffmanTableSpec& table)
{
unsigned code = 0;
for (auto number_of_codes : table.code_counts) {
for (int i = 0; i < number_of_codes; i++)
table.codes.append(code++);
code <<= 1;
}
}
static Optional<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
{
if (count > (8 * sizeof(size_t))) {
dbgln_if(JPG_DEBUG, "Can't read {} bits at once!", count);
return {};
}
size_t value = 0;
while (count--) {
if (hstream.byte_offset >= hstream.stream.size()) {
dbgln_if(JPG_DEBUG, "Huffman stream exhausted. This could be an error!");
return {};
}
u8 current_byte = hstream.stream[hstream.byte_offset];
u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
hstream.bit_offset++;
value = (value << 1) | (size_t)current_bit;
if (hstream.bit_offset == 8) {
hstream.byte_offset++;
hstream.bit_offset = 0;
}
}
return value;
}
static Optional<u8> get_next_symbol(HuffmanStreamState& hstream, const HuffmanTableSpec& table)
{
unsigned code = 0;
size_t code_cursor = 0;
for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
auto result = read_huffman_bits(hstream);
if (!result.has_value())
return {};
code = (code << 1) | (i32)result.release_value();
for (int j = 0; j < table.code_counts[i]; j++) {
if (code == table.codes[code_cursor])
return table.symbols[code_cursor];
code_cursor++;
}
}
dbgln_if(JPG_DEBUG, "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!");
return {};
}
/**
* Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
* Depending on the sampling factors, we may not see triples of y, cb, cr in that
* order. If sample factors differ from one, we'll read more than one block of y-
* coefficients before we get to read a cb-cr block.
* In the function below, `hcursor` and `vcursor` denote the location of the block
* we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
* that iterate over the vertical and horizontal subsampling factors, respectively.
* When we finish one iteration of the innermost loop, we'll have the coefficients
* of one of the components of block at position `mb_index`. When the outermost loop
* finishes first iteration, we'll have all the luminance coefficients for all the
* macroblocks that share the chrominance data. Next two iterations (assuming that
* we are dealing with three components) will fill up the blocks with chroma data.
*/
static bool build_macroblocks(JPGLoadingContext& context, Vector<Macroblock>& macroblocks, u32 hcursor, u32 vcursor)
{
for (auto it = context.components.begin(); it != context.components.end(); ++it) {
ComponentSpec& component = it->value;
if (component.dc_destination_id >= context.dc_tables.size())
return false;
if (component.ac_destination_id >= context.ac_tables.size())
return false;
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[mb_index];
auto& dc_table = context.dc_tables.find(component.dc_destination_id)->value;
auto& ac_table = context.ac_tables.find(component.ac_destination_id)->value;
auto symbol_or_error = get_next_symbol(context.huffman_stream, dc_table);
if (!symbol_or_error.has_value())
return false;
// For DC coefficients, symbol encodes the length of the coefficient.
auto dc_length = symbol_or_error.release_value();
if (dc_length > 11) {
dbgln_if(JPG_DEBUG, "DC coefficient too long: {}!", dc_length);
return false;
}
auto coeff_or_error = read_huffman_bits(context.huffman_stream, dc_length);
if (!coeff_or_error.has_value())
return false;
// DC coefficients are encoded as the difference between previous and current DC values.
i32 dc_diff = coeff_or_error.release_value();
// If MSB in diff is 0, the difference is -ve. Otherwise +ve.
if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
dc_diff -= (1 << dc_length) - 1;
i32* select_component = component.serial_id == 0 ? block.y : (component.serial_id == 1 ? block.cb : block.cr);
auto& previous_dc = context.previous_dc_values[component.serial_id];
select_component[0] = previous_dc += dc_diff;
// Compute the AC coefficients.
for (int j = 1; j < 64;) {
symbol_or_error = get_next_symbol(context.huffman_stream, ac_table);
if (!symbol_or_error.has_value())
return false;
// AC symbols encode 2 pieces of information, the high 4 bits represent
// number of zeroes to be stuffed before reading the coefficient. Low 4
// bits represent the magnitude of the coefficient.
auto ac_symbol = symbol_or_error.release_value();
if (ac_symbol == 0)
break;
// ac_symbol = 0xF0 means we need to skip 16 zeroes.
u8 run_length = ac_symbol == 0xF0 ? 16 : ac_symbol >> 4;
j += run_length;
if (j >= 64) {
dbgln_if(JPG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", j, run_length);
return false;
}
u8 coeff_length = ac_symbol & 0x0F;
if (coeff_length > 10) {
dbgln_if(JPG_DEBUG, "AC coefficient too long: {}!", coeff_length);
return false;
}
if (coeff_length != 0) {
coeff_or_error = read_huffman_bits(context.huffman_stream, coeff_length);
if (!coeff_or_error.has_value())
return false;
i32 ac_coefficient = coeff_or_error.release_value();
if (ac_coefficient < (1 << (coeff_length - 1)))
ac_coefficient -= (1 << coeff_length) - 1;
select_component[zigzag_map[j++]] = ac_coefficient;
}
}
}
}
}
return true;
}
static Optional<Vector<Macroblock>> decode_huffman_stream(JPGLoadingContext& context)
{
Vector<Macroblock> macroblocks;
macroblocks.resize(context.mblock_meta.padded_total);
if constexpr (JPG_DEBUG) {
dbgln("Image width: {}", context.frame.width);
dbgln("Image height: {}", context.frame.height);
dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
}
// Compute huffman codes for DC and AC tables.
for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it)
generate_huffman_codes(it->value);
for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it)
generate_huffman_codes(it->value);
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
if (context.dc_reset_interval > 0) {
if (i % context.dc_reset_interval == 0) {
context.previous_dc_values[0] = 0;
context.previous_dc_values[1] = 0;
context.previous_dc_values[2] = 0;
// Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
// the 0th bit of the next byte.
if (context.huffman_stream.byte_offset < context.huffman_stream.stream.size()) {
if (context.huffman_stream.bit_offset > 0) {
context.huffman_stream.bit_offset = 0;
context.huffman_stream.byte_offset++;
}
// Skip the restart marker (RSTn).
context.huffman_stream.byte_offset++;
}
}
}
if (!build_macroblocks(context, macroblocks, hcursor, vcursor)) {
if constexpr (JPG_DEBUG) {
dbgln("Failed to build Macroblock {}", i);
dbgln("Huffman stream byte offset {}", context.huffman_stream.byte_offset);
dbgln("Huffman stream bit offset {}", context.huffman_stream.bit_offset);
}
return {};
}
}
}
return macroblocks;
}
static inline bool bounds_okay(const size_t cursor, const size_t delta, const size_t bound)
{
return (delta + cursor) < bound;
}
static inline bool is_valid_marker(const Marker marker)
{
if (marker >= JPG_APPN0 && marker <= JPG_APPNF) {
if (marker != JPG_APPN0)
dbgln_if(JPG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
return true;
}
if (marker >= JPG_RESERVED1 && marker <= JPG_RESERVEDD)
return true;
if (marker >= JPG_RST0 && marker <= JPG_RST7)
return true;
switch (marker) {
case JPG_COM:
case JPG_DHP:
case JPG_EXP:
case JPG_DHT:
case JPG_DQT:
case JPG_RST:
case JPG_SOF0:
case JPG_SOI:
case JPG_SOS:
return true;
}
if (marker >= 0xFFC0 && marker <= 0xFFCF) {
if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
dbgln_if(JPG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
return false;
}
}
return false;
}
static inline u16 read_be_word(InputMemoryStream& stream)
{
BigEndian<u16> tmp;
stream >> tmp;
return tmp;
}
static inline Marker read_marker_at_cursor(InputMemoryStream& stream)
{
u16 marker = read_be_word(stream);
if (stream.handle_any_error())
return JPG_INVALID;
if (is_valid_marker(marker))
return marker;
if (marker != 0xFFFF)
return JPG_INVALID;
u8 next;
do {
stream >> next;
if (stream.handle_any_error() || next == 0x00)
return JPG_INVALID;
} while (next == 0xFF);
marker = 0xFF00 | (u16)next;
return is_valid_marker(marker) ? marker : JPG_INVALID;
}
static bool read_start_of_scan(InputMemoryStream& stream, JPGLoadingContext& context)
{
if (context.state < JPGLoadingContext::State::FrameDecoded) {
dbgln_if(JPG_DEBUG, "{}: SOS found before reading a SOF!", stream.offset());
return false;
}
u16 bytes_to_read = read_be_word(stream);
if (stream.handle_any_error())
return false;
bytes_to_read -= 2;
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
return false;
u8 component_count = 0;
stream >> component_count;
if (stream.handle_any_error())
return false;
if (component_count != context.component_count) {
dbgln_if(JPG_DEBUG, "{}: Unsupported number of components: {}!", stream.offset(), component_count);
return false;
}
for (int i = 0; i < component_count; i++) {
ComponentSpec* component = nullptr;
u8 component_id = 0;
stream >> component_id;
if (stream.handle_any_error())
return false;
auto it = context.components.find(component_id);
if (it != context.components.end()) {
component = &it->value;
if (i != component->serial_id) {
dbgln("JPEG decode failed (i != component->serial_id)");
return false;
}
} else {
dbgln_if(JPG_DEBUG, "{}: Unsupported component id: {}!", stream.offset(), component_id);
return false;
}
u8 table_ids = 0;
stream >> table_ids;
if (stream.handle_any_error())
return false;
component->dc_destination_id = table_ids >> 4;
component->ac_destination_id = table_ids & 0x0F;
if (context.dc_tables.size() != context.ac_tables.size()) {
dbgln_if(JPG_DEBUG, "{}: DC & AC table count mismatch!", stream.offset());
return false;
}
if (!context.dc_tables.contains(component->dc_destination_id)) {
dbgln_if(JPG_DEBUG, "DC table (id: {}) does not exist!", component->dc_destination_id);
return false;
}
if (!context.ac_tables.contains(component->ac_destination_id)) {
dbgln_if(JPG_DEBUG, "AC table (id: {}) does not exist!", component->ac_destination_id);
return false;
}
}
u8 spectral_selection_start = 0;
stream >> spectral_selection_start;
if (stream.handle_any_error())
return false;
u8 spectral_selection_end = 0;
stream >> spectral_selection_end;
if (stream.handle_any_error())
return false;
u8 successive_approximation = 0;
stream >> successive_approximation;
if (stream.handle_any_error())
return false;
// The three values should be fixed for baseline JPEGs utilizing sequential DCT.
if (spectral_selection_start != 0 || spectral_selection_end != 63 || successive_approximation != 0) {
dbgln_if(JPG_DEBUG, "{}: ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation: {}!",
stream.offset(),
spectral_selection_start,
spectral_selection_end,
successive_approximation);
return false;
}
return true;
}
static bool read_reset_marker(InputMemoryStream& stream, JPGLoadingContext& context)
{
u16 bytes_to_read = read_be_word(stream);
if (stream.handle_any_error())
return false;
bytes_to_read -= 2;
if (bytes_to_read != 2) {
dbgln_if(JPG_DEBUG, "{}: Malformed reset marker found!", stream.offset());
return false;
}
context.dc_reset_interval = read_be_word(stream);
if (stream.handle_any_error())
return false;
return true;
}
static bool read_huffman_table(InputMemoryStream& stream, JPGLoadingContext& context)
{
i32 bytes_to_read = read_be_word(stream);
if (stream.handle_any_error())
return false;
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
return false;
bytes_to_read -= 2;
while (bytes_to_read > 0) {
HuffmanTableSpec table;
u8 table_info = 0;
stream >> table_info;
if (stream.handle_any_error())
return false;
u8 table_type = table_info >> 4;
u8 table_destination_id = table_info & 0x0F;
if (table_type > 1) {
dbgln_if(JPG_DEBUG, "{}: Unrecognized huffman table: {}!", stream.offset(), table_type);
return false;
}
if (table_destination_id > 1) {
dbgln_if(JPG_DEBUG, "{}: Invalid huffman table destination id: {}!", stream.offset(), table_destination_id);
return false;
}
table.type = table_type;
table.destination_id = table_destination_id;
u32 total_codes = 0;
// Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
for (int i = 0; i < 16; i++) {
u8 count = 0;
stream >> count;
if (stream.handle_any_error())
return false;
total_codes += count;
table.code_counts[i] = count;
}
table.codes.ensure_capacity(total_codes);
// Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
for (u32 i = 0; i < total_codes; i++) {
u8 symbol = 0;
stream >> symbol;
if (stream.handle_any_error())
return false;
table.symbols.append(symbol);
}
if (stream.handle_any_error())
return false;
auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
huffman_table.set(table.destination_id, table);
VERIFY(huffman_table.size() <= 2);
bytes_to_read -= 1 + 16 + total_codes;
}
if (bytes_to_read != 0) {
dbgln_if(JPG_DEBUG, "{}: Extra bytes detected in huffman header!", stream.offset());
return false;
}
return true;
}
static inline bool validate_luma_and_modify_context(const ComponentSpec& luma, JPGLoadingContext& context)
{
if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
// For easy reference to relevant sample factors.
context.hsample_factor = luma.hsample_factor;
context.vsample_factor = luma.vsample_factor;
if constexpr (JPG_DEBUG) {
dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
}
return true;
}
return false;
}
static inline void set_macroblock_metadata(JPGLoadingContext& context)
{
context.mblock_meta.hcount = (context.frame.width + 7) / 8;
context.mblock_meta.vcount = (context.frame.height + 7) / 8;
context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
}
static bool read_start_of_frame(InputMemoryStream& stream, JPGLoadingContext& context)
{
if (context.state == JPGLoadingContext::FrameDecoded) {
dbgln_if(JPG_DEBUG, "{}: SOF repeated!", stream.offset());
return false;
}
i32 bytes_to_read = read_be_word(stream);
if (stream.handle_any_error())
return false;
bytes_to_read -= 2;
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
return false;
stream >> context.frame.precision;
if (stream.handle_any_error())
return false;
if (context.frame.precision != 8) {
dbgln_if(JPG_DEBUG, "{}: SOF precision != 8!", stream.offset());
return false;
}
context.frame.height = read_be_word(stream);
if (stream.handle_any_error())
return false;
context.frame.width = read_be_word(stream);
if (stream.handle_any_error())
return false;
if (!context.frame.width || !context.frame.height) {
dbgln_if(JPG_DEBUG, "{}: ERROR! Image height: {}, Image width: {}!", stream.offset(), context.frame.height, context.frame.width);
return false;
}
if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
return false;
}
set_macroblock_metadata(context);
stream >> context.component_count;
if (stream.handle_any_error())
return false;
if (context.component_count != 1 && context.component_count != 3) {
dbgln_if(JPG_DEBUG, "{}: Unsupported number of components in SOF: {}!", stream.offset(), context.component_count);
return false;
}
for (u8 i = 0; i < context.component_count; i++) {
ComponentSpec component;
component.serial_id = i;
stream >> component.id;
if (stream.handle_any_error())
return false;
u8 subsample_factors = 0;
stream >> subsample_factors;
if (stream.handle_any_error())
return false;
component.hsample_factor = subsample_factors >> 4;
component.vsample_factor = subsample_factors & 0x0F;
if (component.serial_id == 0) {
// By convention, downsampling is applied only on chroma components. So we should
// hope to see the maximum sampling factor in the luma component.
if (!validate_luma_and_modify_context(component, context)) {
dbgln_if(JPG_DEBUG, "{}: Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
stream.offset(),
component.hsample_factor,
component.vsample_factor);
return false;
}
} else {
if (component.hsample_factor != 1 || component.vsample_factor != 1) {
dbgln_if(JPG_DEBUG, "{}: Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
stream.offset(),
component.hsample_factor,
component.vsample_factor);
return false;
}
}
stream >> component.qtable_id;
if (stream.handle_any_error())
return false;
if (component.qtable_id > 1) {
dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), component.qtable_id);
return false;
}
context.components.set(component.id, component);
}
return true;
}
static bool read_quantization_table(InputMemoryStream& stream, JPGLoadingContext& context)
{
i32 bytes_to_read = read_be_word(stream);
if (stream.handle_any_error())
return false;
bytes_to_read -= 2;
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
return false;
while (bytes_to_read > 0) {
u8 info_byte = 0;
stream >> info_byte;
if (stream.handle_any_error())
return false;
u8 element_unit_hint = info_byte >> 4;
if (element_unit_hint > 1) {
dbgln_if(JPG_DEBUG, "{}: Unsupported unit hint in quantization table: {}!", stream.offset(), element_unit_hint);
return false;
}
u8 table_id = info_byte & 0x0F;
if (table_id > 1) {
dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), table_id);
return false;
}
u32* table = table_id == 0 ? context.luma_table : context.chroma_table;
for (int i = 0; i < 64; i++) {
if (element_unit_hint == 0) {
u8 tmp = 0;
stream >> tmp;
if (stream.handle_any_error())
return false;
table[zigzag_map[i]] = tmp;
} else {
table[zigzag_map[i]] = read_be_word(stream);
if (stream.handle_any_error())
return false;
}
}
if (stream.handle_any_error())
return false;
bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
}
if (bytes_to_read != 0) {
dbgln_if(JPG_DEBUG, "{}: Invalid length for one or more quantization tables!", stream.offset());
return false;
}
return true;
}
static bool skip_marker_with_length(InputMemoryStream& stream)
{
u16 bytes_to_skip = read_be_word(stream);
bytes_to_skip -= 2;
if (stream.handle_any_error())
return false;
stream.discard_or_error(bytes_to_skip);
return !stream.handle_any_error();
}
static void dequantize(JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (auto it = context.components.begin(); it != context.components.end(); ++it) {
auto& component = it->value;
const u32* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table;
for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[mb_index];
int* block_component = component.serial_id == 0 ? block.y : (component.serial_id == 1 ? block.cb : block.cr);
for (u32 k = 0; k < 64; k++)
block_component[k] *= table[k];
}
}
}
}
}
}
static void inverse_dct(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
static const float m0 = 2.0 * cos(1.0 / 16.0 * 2.0 * M_PI);
static const float m1 = 2.0 * cos(2.0 / 16.0 * 2.0 * M_PI);
static const float m3 = 2.0 * cos(2.0 / 16.0 * 2.0 * M_PI);
static const float m5 = 2.0 * cos(3.0 / 16.0 * 2.0 * M_PI);
static const float m2 = m0 - m5;
static const float m4 = m0 + m5;
static const float s0 = cos(0.0 / 16.0 * M_PI) / sqrt(8);
static const float s1 = cos(1.0 / 16.0 * M_PI) / 2.0;
static const float s2 = cos(2.0 / 16.0 * M_PI) / 2.0;
static const float s3 = cos(3.0 / 16.0 * M_PI) / 2.0;
static const float s4 = cos(4.0 / 16.0 * M_PI) / 2.0;
static const float s5 = cos(5.0 / 16.0 * M_PI) / 2.0;
static const float s6 = cos(6.0 / 16.0 * M_PI) / 2.0;
static const float s7 = cos(7.0 / 16.0 * M_PI) / 2.0;
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (auto it = context.components.begin(); it != context.components.end(); ++it) {
auto& component = it->value;
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[mb_index];
i32* block_component = component.serial_id == 0 ? block.y : (component.serial_id == 1 ? block.cb : block.cr);
for (u32 k = 0; k < 8; ++k) {
const float g0 = block_component[0 * 8 + k] * s0;
const float g1 = block_component[4 * 8 + k] * s4;
const float g2 = block_component[2 * 8 + k] * s2;
const float g3 = block_component[6 * 8 + k] * s6;
const float g4 = block_component[5 * 8 + k] * s5;
const float g5 = block_component[1 * 8 + k] * s1;
const float g6 = block_component[7 * 8 + k] * s7;
const float g7 = block_component[3 * 8 + k] * s3;
const float f0 = g0;
const float f1 = g1;
const float f2 = g2;
const float f3 = g3;
const float f4 = g4 - g7;
const float f5 = g5 + g6;
const float f6 = g5 - g6;
const float f7 = g4 + g7;
const float e0 = f0;
const float e1 = f1;
const float e2 = f2 - f3;
const float e3 = f2 + f3;
const float e4 = f4;
const float e5 = f5 - f7;
const float e6 = f6;
const float e7 = f5 + f7;
const float e8 = f4 + f6;
const float d0 = e0;
const float d1 = e1;
const float d2 = e2 * m1;
const float d3 = e3;
const float d4 = e4 * m2;
const float d5 = e5 * m3;
const float d6 = e6 * m4;
const float d7 = e7;
const float d8 = e8 * m5;
const float c0 = d0 + d1;
const float c1 = d0 - d1;
const float c2 = d2 - d3;
const float c3 = d3;
const float c4 = d4 + d8;
const float c5 = d5 + d7;
const float c6 = d6 - d8;
const float c7 = d7;
const float c8 = c5 - c6;
const float b0 = c0 + c3;
const float b1 = c1 + c2;
const float b2 = c1 - c2;
const float b3 = c0 - c3;
const float b4 = c4 - c8;
const float b5 = c8;
const float b6 = c6 - c7;
const float b7 = c7;
block_component[0 * 8 + k] = b0 + b7;
block_component[1 * 8 + k] = b1 + b6;
block_component[2 * 8 + k] = b2 + b5;
block_component[3 * 8 + k] = b3 + b4;
block_component[4 * 8 + k] = b3 - b4;
block_component[5 * 8 + k] = b2 - b5;
block_component[6 * 8 + k] = b1 - b6;
block_component[7 * 8 + k] = b0 - b7;
}
for (u32 l = 0; l < 8; ++l) {
const float g0 = block_component[l * 8 + 0] * s0;
const float g1 = block_component[l * 8 + 4] * s4;
const float g2 = block_component[l * 8 + 2] * s2;
const float g3 = block_component[l * 8 + 6] * s6;
const float g4 = block_component[l * 8 + 5] * s5;
const float g5 = block_component[l * 8 + 1] * s1;
const float g6 = block_component[l * 8 + 7] * s7;
const float g7 = block_component[l * 8 + 3] * s3;
const float f0 = g0;
const float f1 = g1;
const float f2 = g2;
const float f3 = g3;
const float f4 = g4 - g7;
const float f5 = g5 + g6;
const float f6 = g5 - g6;
const float f7 = g4 + g7;
const float e0 = f0;
const float e1 = f1;
const float e2 = f2 - f3;
const float e3 = f2 + f3;
const float e4 = f4;
const float e5 = f5 - f7;
const float e6 = f6;
const float e7 = f5 + f7;
const float e8 = f4 + f6;
const float d0 = e0;
const float d1 = e1;
const float d2 = e2 * m1;
const float d3 = e3;
const float d4 = e4 * m2;
const float d5 = e5 * m3;
const float d6 = e6 * m4;
const float d7 = e7;
const float d8 = e8 * m5;
const float c0 = d0 + d1;
const float c1 = d0 - d1;
const float c2 = d2 - d3;
const float c3 = d3;
const float c4 = d4 + d8;
const float c5 = d5 + d7;
const float c6 = d6 - d8;
const float c7 = d7;
const float c8 = c5 - c6;
const float b0 = c0 + c3;
const float b1 = c1 + c2;
const float b2 = c1 - c2;
const float b3 = c0 - c3;
const float b4 = c4 - c8;
const float b5 = c8;
const float b6 = c6 - c7;
const float b7 = c7;
block_component[l * 8 + 0] = b0 + b7;
block_component[l * 8 + 1] = b1 + b6;
block_component[l * 8 + 2] = b2 + b5;
block_component[l * 8 + 3] = b3 + b4;
block_component[l * 8 + 4] = b3 - b4;
block_component[l * 8 + 5] = b2 - b5;
block_component[l * 8 + 6] = b1 - b6;
block_component[l * 8 + 7] = b0 - b7;
}
}
}
}
}
}
}
static void ycbcr_to_rgb(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
const Macroblock& chroma = macroblocks[chroma_block_index];
// Overflows are intentional.
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
i32* y = macroblocks[mb_index].y;
i32* cb = macroblocks[mb_index].cb;
i32* cr = macroblocks[mb_index].cr;
for (u8 i = 7; i < 8; --i) {
for (u8 j = 7; j < 8; --j) {
const u8 pixel = i * 8 + j;
const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128;
int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128;
int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128;
y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r);
cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g);
cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b);
}
}
}
}
}
}
}
static bool compose_bitmap(JPGLoadingContext& context, const Vector<Macroblock>& macroblocks)
{
context.bitmap = Bitmap::create_purgeable(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height });
if (!context.bitmap)
return false;
for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
const u32 block_row = y / 8;
const u32 pixel_row = y % 8;
for (u32 x = 0; x < context.frame.width; x++) {
const u32 block_column = x / 8;
auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
const u32 pixel_column = x % 8;
const u32 pixel_index = pixel_row * 8 + pixel_column;
const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
context.bitmap->set_pixel(x, y, color);
}
}
return true;
}
static bool parse_header(InputMemoryStream& stream, JPGLoadingContext& context)
{
auto marker = read_marker_at_cursor(stream);
if (stream.handle_any_error())
return false;
if (marker != JPG_SOI) {
dbgln_if(JPG_DEBUG, "{}: SOI not found: {:x}!", stream.offset(), marker);
return false;
}
for (;;) {
marker = read_marker_at_cursor(stream);
if (stream.handle_any_error())
return false;
// Set frame type if the marker marks a new frame.
if (marker >= 0xFFC0 && marker <= 0xFFCF) {
// Ignore interleaved markers.
if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
}
}
switch (marker) {
case JPG_INVALID:
case JPG_RST0:
case JPG_RST1:
case JPG_RST2:
case JPG_RST3:
case JPG_RST4:
case JPG_RST5:
case JPG_RST6:
case JPG_RST7:
case JPG_SOI:
case JPG_EOI:
dbgln_if(JPG_DEBUG, "{}: Unexpected marker {:x}!", stream.offset(), marker);
return false;
case JPG_SOF0:
if (!read_start_of_frame(stream, context))
return false;
context.state = JPGLoadingContext::FrameDecoded;
break;
case JPG_DQT:
if (!read_quantization_table(stream, context))
return false;
break;
case JPG_RST:
if (!read_reset_marker(stream, context))
return false;
break;
case JPG_DHT:
if (!read_huffman_table(stream, context))
return false;
break;
case JPG_SOS:
return read_start_of_scan(stream, context);
default:
if (!skip_marker_with_length(stream)) {
dbgln_if(JPG_DEBUG, "{}: Error skipping marker: {:x}!", stream.offset(), marker);
return false;
}
break;
}
}
VERIFY_NOT_REACHED();
}
static bool scan_huffman_stream(InputMemoryStream& stream, JPGLoadingContext& context)
{
u8 last_byte;
u8 current_byte = 0;
stream >> current_byte;
if (stream.handle_any_error())
return false;
for (;;) {
last_byte = current_byte;
stream >> current_byte;
if (stream.handle_any_error()) {
dbgln_if(JPG_DEBUG, "{}: EOI not found!", stream.offset());
return false;
}
if (last_byte == 0xFF) {
if (current_byte == 0xFF)
continue;
if (current_byte == 0x00) {
stream >> current_byte;
if (stream.handle_any_error())
return false;
context.huffman_stream.stream.append(last_byte);
continue;
}
Marker marker = 0xFF00 | current_byte;
if (marker == JPG_EOI)
return true;
if (marker >= JPG_RST0 && marker <= JPG_RST7) {
context.huffman_stream.stream.append(marker);
stream >> current_byte;
if (stream.handle_any_error())
return false;
continue;
}
dbgln_if(JPG_DEBUG, "{}: Invalid marker: {:x}!", stream.offset(), marker);
return false;
} else {
context.huffman_stream.stream.append(last_byte);
}
}
VERIFY_NOT_REACHED();
}
static bool decode_jpg(JPGLoadingContext& context)
{
InputMemoryStream stream { { context.data, context.data_size } };
if (!parse_header(stream, context))
return false;
if (!scan_huffman_stream(stream, context))
return false;
auto result = decode_huffman_stream(context);
if (!result.has_value()) {
dbgln_if(JPG_DEBUG, "{}: Failed to decode Macroblocks!", stream.offset());
return false;
}
auto macroblocks = result.release_value();
dequantize(context, macroblocks);
inverse_dct(context, macroblocks);
ycbcr_to_rgb(context, macroblocks);
if (!compose_bitmap(context, macroblocks))
return false;
return true;
}
static RefPtr<Gfx::Bitmap> load_jpg_impl(const u8* data, size_t data_size)
{
JPGLoadingContext context;
context.data = data;
context.data_size = data_size;
if (!decode_jpg(context))
return nullptr;
return context.bitmap;
}
RefPtr<Gfx::Bitmap> load_jpg(String const& path)
{
auto file_or_error = MappedFile::map(path);
if (file_or_error.is_error())
return nullptr;
auto bitmap = load_jpg_impl((const u8*)file_or_error.value()->data(), file_or_error.value()->size());
if (bitmap)
bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded JPG: {}", bitmap->size(), LexicalPath::canonicalized_path(path)));
return bitmap;
}
RefPtr<Gfx::Bitmap> load_jpg_from_memory(const u8* data, size_t length)
{
auto bitmap = load_jpg_impl(data, length);
if (bitmap)
bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded jpg: <memory>", bitmap->size()));
return bitmap;
}
JPGImageDecoderPlugin::JPGImageDecoderPlugin(const u8* data, size_t size)
{
m_context = make<JPGLoadingContext>();
m_context->data = data;
m_context->data_size = size;
m_context->huffman_stream.stream.ensure_capacity(50 * KiB);
}
JPGImageDecoderPlugin::~JPGImageDecoderPlugin()
{
}
IntSize JPGImageDecoderPlugin::size()
{
if (m_context->state == JPGLoadingContext::State::Error)
return {};
if (m_context->state >= JPGLoadingContext::State::FrameDecoded)
return { m_context->frame.width, m_context->frame.height };
return {};
}
RefPtr<Gfx::Bitmap> JPGImageDecoderPlugin::bitmap()
{
if (m_context->state == JPGLoadingContext::State::Error)
return nullptr;
if (m_context->state < JPGLoadingContext::State::BitmapDecoded) {
if (!decode_jpg(*m_context)) {
m_context->state = JPGLoadingContext::State::Error;
return nullptr;
}
m_context->state = JPGLoadingContext::State::BitmapDecoded;
}
return m_context->bitmap;
}
void JPGImageDecoderPlugin::set_volatile()
{
if (m_context->bitmap)
m_context->bitmap->set_volatile();
}
bool JPGImageDecoderPlugin::set_nonvolatile()
{
if (!m_context->bitmap)
return false;
return m_context->bitmap->set_nonvolatile();
}
bool JPGImageDecoderPlugin::sniff()
{
return m_context->data_size > 3
&& m_context->data[0] == 0xFF
&& m_context->data[1] == 0xD8
&& m_context->data[2] == 0xFF;
}
bool JPGImageDecoderPlugin::is_animated()
{
return false;
}
size_t JPGImageDecoderPlugin::loop_count()
{
return 0;
}
size_t JPGImageDecoderPlugin::frame_count()
{
return 1;
}
ImageFrameDescriptor JPGImageDecoderPlugin::frame(size_t i)
{
if (i > 0) {
return { bitmap(), 0 };
}
return {};
}
}