ladybird/Kernel/Interrupts/APIC.cpp
Andreas Kling 79fa9765ca Kernel: Replace KResult and KResultOr<T> with Error and ErrorOr<T>
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.

Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
2021-11-08 01:10:53 +01:00

654 lines
22 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/Singleton.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/Arch/x86/ProcessorInfo.h>
#include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/SpuriousInterruptHandler.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Panic.h>
#include <Kernel/Sections.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
#define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
#define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
#define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)
#define APIC_ICR_DELIVERY_PENDING (1 << 12)
#define APIC_ENABLED (1 << 8)
#define APIC_BASE_MSR 0x1b
#define APIC_REGS_MSR_BASE 0x800
#define APIC_REG_ID 0x20
#define APIC_REG_EOI 0xb0
#define APIC_REG_LD 0xd0
#define APIC_REG_DF 0xe0
#define APIC_REG_SIV 0xf0
#define APIC_REG_TPR 0x80
#define APIC_REG_ICR_LOW 0x300
#define APIC_REG_ICR_HIGH 0x310
#define APIC_REG_LVT_TIMER 0x320
#define APIC_REG_LVT_THERMAL 0x330
#define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
#define APIC_REG_LVT_LINT0 0x350
#define APIC_REG_LVT_LINT1 0x360
#define APIC_REG_LVT_ERR 0x370
#define APIC_REG_TIMER_INITIAL_COUNT 0x380
#define APIC_REG_TIMER_CURRENT_COUNT 0x390
#define APIC_REG_TIMER_CONFIGURATION 0x3e0
namespace Kernel {
static Singleton<APIC> s_apic;
class APICIPIInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICIPIInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICIPIInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
auto* handler = new APICIPIInterruptHandler(interrupt_number);
handler->register_interrupt_handler();
}
virtual bool handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual StringView purpose() const override { return "IPI Handler"sv; }
virtual StringView controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
class APICErrInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICErrInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICErrInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
auto* handler = new APICErrInterruptHandler(interrupt_number);
handler->register_interrupt_handler();
}
virtual bool handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual StringView purpose() const override { return "SMP Error Handler"sv; }
virtual StringView controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
bool APIC::initialized()
{
return s_apic.is_initialized();
}
APIC& APIC::the()
{
VERIFY(APIC::initialized());
return *s_apic;
}
UNMAP_AFTER_INIT void APIC::initialize()
{
VERIFY(!APIC::initialized());
s_apic.ensure_instance();
}
PhysicalAddress APIC::get_base()
{
MSR msr(APIC_BASE_MSR);
auto base = msr.get();
return PhysicalAddress(base & 0xfffff000);
}
void APIC::set_base(const PhysicalAddress& base)
{
MSR msr(APIC_BASE_MSR);
u64 flags = 1 << 11;
if (m_is_x2)
flags |= 1 << 10;
msr.set(base.get() | flags);
}
void APIC::write_register(u32 offset, u32 value)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
msr.set(value);
} else {
*reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
}
}
u32 APIC::read_register(u32 offset)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
return (u32)msr.get();
}
return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
}
void APIC::set_lvt(u32 offset, u8 interrupt)
{
write_register(offset, read_register(offset) | interrupt);
}
void APIC::set_siv(u32 offset, u8 interrupt)
{
write_register(offset, read_register(offset) | interrupt | APIC_ENABLED);
}
void APIC::wait_for_pending_icr()
{
while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
IO::delay(200);
}
}
void APIC::write_icr(const ICRReg& icr)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (APIC_REG_ICR_LOW >> 4));
msr.set(icr.x2_value());
} else {
write_register(APIC_REG_ICR_HIGH, icr.x_high());
write_register(APIC_REG_ICR_LOW, icr.x_low());
}
}
#define APIC_LVT_TIMER_ONESHOT 0
#define APIC_LVT_TIMER_PERIODIC (1 << 17)
#define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)
#define APIC_LVT_MASKED (1 << 16)
#define APIC_LVT_TRIGGER_LEVEL (1 << 14)
#define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))
extern "C" void apic_ap_start(void);
extern "C" u16 apic_ap_start_size;
extern "C" u32 ap_cpu_init_stacks;
extern "C" u32 ap_cpu_init_processor_info_array;
extern "C" u32 ap_cpu_init_cr0;
extern "C" u32 ap_cpu_init_cr3;
extern "C" u32 ap_cpu_init_cr4;
extern "C" u32 ap_cpu_gdtr;
extern "C" u32 ap_cpu_idtr;
void APIC::eoi()
{
write_register(APIC_REG_EOI, 0x0);
}
u8 APIC::spurious_interrupt_vector()
{
return IRQ_APIC_SPURIOUS;
}
#define APIC_INIT_VAR_PTR(tpe, vaddr, varname) \
reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
+ reinterpret_cast<ptrdiff_t>(&varname) \
- reinterpret_cast<ptrdiff_t>(&apic_ap_start))
UNMAP_AFTER_INIT bool APIC::init_bsp()
{
// FIXME: Use the ACPI MADT table
if (!MSR::have())
return false;
// check if we support local apic
CPUID id(1);
if ((id.edx() & (1 << 9)) == 0)
return false;
if (id.ecx() & (1 << 21))
m_is_x2 = true;
PhysicalAddress apic_base = get_base();
dbgln_if(APIC_DEBUG, "Initializing {}APIC, base: {}", m_is_x2 ? "x2" : "x", apic_base);
set_base(apic_base);
if (!m_is_x2) {
auto region_or_error = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Memory::Region::Access::ReadWrite);
if (region_or_error.is_error()) {
dbgln("APIC: Failed to allocate memory for APIC base");
return false;
}
m_apic_base = region_or_error.release_value();
}
auto rsdp = ACPI::StaticParsing::find_rsdp();
if (!rsdp.has_value()) {
dbgln("APIC: RSDP not found");
return false;
}
auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
if (!madt_address.has_value()) {
dbgln("APIC: MADT table not found");
return false;
}
auto madt = Memory::map_typed<ACPI::Structures::MADT>(madt_address.value());
size_t entry_index = 0;
size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
auto* madt_entry = madt->entries;
while (entries_length > 0) {
size_t entry_length = madt_entry->length;
if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, xAPIC ID: {}, flags: {:#08x}", entry_index, plapic_entry->acpi_processor_id, plapic_entry->apic_id, plapic_entry->flags);
m_processor_cnt++;
if ((plapic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
} else if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::Local_x2APIC) {
// Only used for APID IDs >= 255
auto* plx2apic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalX2APIC*)madt_entry;
dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, x2APIC ID: {}, flags: {:#08x}", entry_index, plx2apic_entry->acpi_processor_id, plx2apic_entry->apic_id, plx2apic_entry->flags);
m_processor_cnt++;
if ((plx2apic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
}
madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
entries_length -= entry_length;
entry_index++;
}
if (m_processor_enabled_cnt < 1)
m_processor_enabled_cnt = 1;
if (m_processor_cnt < 1)
m_processor_cnt = 1;
dbgln("APIC processors found: {}, enabled: {}", m_processor_cnt, m_processor_enabled_cnt);
enable(0);
return true;
}
UNMAP_AFTER_INIT static NonnullOwnPtr<Memory::Region> create_identity_mapped_region(PhysicalAddress paddr, size_t size)
{
auto maybe_vmobject = Memory::AnonymousVMObject::try_create_for_physical_range(paddr, size);
// FIXME: Would be nice to be able to return a ErrorOr from here.
VERIFY(!maybe_vmobject.is_error());
auto region_or_error = MM.allocate_kernel_region_with_vmobject(
Memory::VirtualRange { VirtualAddress { static_cast<FlatPtr>(paddr.get()) }, size },
maybe_vmobject.release_value(),
{},
Memory::Region::Access::ReadWriteExecute);
VERIFY(!region_or_error.is_error());
return region_or_error.release_value();
}
UNMAP_AFTER_INIT void APIC::do_boot_aps()
{
VERIFY(m_processor_enabled_cnt > 1);
u32 aps_to_enable = m_processor_enabled_cnt - 1;
// Copy the APIC startup code and variables to P0x00008000
// Also account for the data appended to:
// * aps_to_enable u32 values for ap_cpu_init_stacks
// * aps_to_enable u32 values for ap_cpu_init_processor_info_array
auto apic_startup_region = create_identity_mapped_region(PhysicalAddress(0x8000), Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))));
memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
// Allocate enough stacks for all APs
Vector<OwnPtr<Memory::Region>> apic_ap_stacks;
for (u32 i = 0; i < aps_to_enable; i++) {
auto stack_region_or_error = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
if (stack_region_or_error.is_error()) {
dbgln("APIC: Failed to allocate stack for AP #{}", i);
return;
}
auto stack_region = stack_region_or_error.release_value();
stack_region->set_stack(true);
apic_ap_stacks.append(move(stack_region));
}
// Store pointers to all stacks for the APs to use
auto ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
VERIFY(aps_to_enable == apic_ap_stacks.size());
for (size_t i = 0; i < aps_to_enable; i++) {
ap_stack_array[i] = apic_ap_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
dbgln_if(APIC_DEBUG, "APIC: CPU[{}] stack at {}", i + 1, VirtualAddress { ap_stack_array[i] });
}
// Allocate Processor structures for all APs and store the pointer to the data
m_ap_processor_info.resize(aps_to_enable);
for (size_t i = 0; i < aps_to_enable; i++)
m_ap_processor_info[i] = make<Processor>();
auto ap_processor_info_array = &ap_stack_array[aps_to_enable];
for (size_t i = 0; i < aps_to_enable; i++) {
ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
dbgln_if(APIC_DEBUG, "APIC: CPU[{}] processor at {}", i + 1, VirtualAddress { ap_processor_info_array[i] });
}
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);
// Store the BSP's CR3 value for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();
// Store the BSP's GDT and IDT for the APs to use
const auto& gdtr = Processor::current().get_gdtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
const auto& idtr = get_idtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);
// Store the BSP's CR0 and CR4 values for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();
// Create an idle thread for each processor. We have to do this here
// because we won't be able to send FlushTLB messages, so we have to
// have all memory set up for the threads so that when the APs are
// starting up, they can access all the memory properly
m_ap_idle_threads.resize(aps_to_enable);
for (u32 i = 0; i < aps_to_enable; i++)
m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);
dbgln_if(APIC_DEBUG, "APIC: Starting {} AP(s)", aps_to_enable);
// INIT
write_icr({ 0, 0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
IO::delay(10 * 1000);
for (int i = 0; i < 2; i++) {
// SIPI
write_icr({ 0x08, 0, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); // start execution at P8000
IO::delay(200);
}
// Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
dbgln_if(APIC_DEBUG, "APIC: Waiting for {} AP(s) to finish initialization...", aps_to_enable);
do {
// Wait a little bit
IO::delay(200);
} while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
}
dbgln_if(APIC_DEBUG, "APIC: {} processors are initialized and running", m_processor_enabled_cnt);
// NOTE: Since this region is identity-mapped, we have to unmap it manually to prevent the virtual
// address range from leaking into the general virtual range allocator.
apic_startup_region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
}
UNMAP_AFTER_INIT void APIC::boot_aps()
{
if (m_processor_enabled_cnt <= 1)
return;
// We split this into another call because do_boot_aps() will cause
// MM calls upon exit, and we don't want to call smp_enable before that
do_boot_aps();
// Enable SMP, which means IPIs may now be sent
Processor::smp_enable();
dbgln_if(APIC_DEBUG, "All processors initialized and waiting, trigger all to continue");
// Now trigger all APs to continue execution (need to do this after
// the regions have been freed so that we don't trigger IPIs
m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
}
UNMAP_AFTER_INIT void APIC::enable(u32 cpu)
{
VERIFY(m_is_x2 || cpu < 8);
u32 apic_id;
if (m_is_x2) {
dbgln_if(APIC_DEBUG, "Enable x2APIC on CPU #{}", cpu);
// We need to enable x2 mode on each core independently
set_base(get_base());
apic_id = read_register(APIC_REG_ID);
} else {
dbgln_if(APIC_DEBUG, "Setting logical xAPIC ID for CPU #{}", cpu);
// Use the CPU# as logical apic id
VERIFY(cpu <= 8);
write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (cpu << 24));
// read it back to make sure it's actually set
apic_id = read_register(APIC_REG_LD) >> 24;
}
dbgln_if(APIC_DEBUG, "CPU #{} apic id: {}", cpu, apic_id);
Processor::current().info().set_apic_id(apic_id);
dbgln_if(APIC_DEBUG, "Enabling local APIC for CPU #{}, logical APIC ID: {}", cpu, apic_id);
if (cpu == 0) {
SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);
APICErrInterruptHandler::initialize(IRQ_APIC_ERR);
// register IPI interrupt vector
APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
}
if (!m_is_x2) {
// local destination mode (flat mode), not supported in x2 mode
write_register(APIC_REG_DF, 0xf0000000);
}
// set error interrupt vector
set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
// set spurious interrupt vector
set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);
write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);
write_register(APIC_REG_TPR, 0);
}
Thread* APIC::get_idle_thread(u32 cpu) const
{
VERIFY(cpu > 0);
return m_ap_idle_threads[cpu - 1];
}
UNMAP_AFTER_INIT void APIC::init_finished(u32 cpu)
{
// This method is called once the boot stack is no longer needed
VERIFY(cpu > 0);
VERIFY(cpu < m_processor_enabled_cnt);
// Since we're waiting on other APs here, we shouldn't have the
// scheduler lock
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
// Notify the BSP that we are done initializing. It will unmap the startup data at P8000
m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
dbgln_if(APIC_DEBUG, "APIC: CPU #{} initialized, waiting for all others", cpu);
// The reason we're making all APs wait until the BSP signals them is that
// we don't want APs to trigger IPIs (e.g. through MM) while the BSP
// is unable to process them
while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
IO::delay(200);
}
dbgln_if(APIC_DEBUG, "APIC: CPU #{} continues, all others are initialized", cpu);
// do_boot_aps() freed memory, so we need to update our tlb
Processor::flush_entire_tlb_local();
// Now enable all the interrupts
APIC::the().enable(cpu);
}
void APIC::broadcast_ipi()
{
dbgln_if(APIC_SMP_DEBUG, "SMP: Broadcast IPI from CPU #{}", Processor::current_id());
wait_for_pending_icr();
write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, 0xffffffff, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
}
void APIC::send_ipi(u32 cpu)
{
dbgln_if(APIC_SMP_DEBUG, "SMP: Send IPI from CPU #{} to CPU #{}", Processor::current_id(), cpu);
VERIFY(cpu != Processor::current_id());
VERIFY(cpu < Processor::count());
wait_for_pending_icr();
write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, m_is_x2 ? Processor::by_id(cpu).info().apic_id() : cpu, ICRReg::Fixed, m_is_x2 ? ICRReg::Physical : ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand });
}
UNMAP_AFTER_INIT APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
{
if (!m_apic_base && !m_is_x2)
return nullptr;
// We should only initialize and calibrate the APIC timer once on the BSP!
VERIFY(Processor::is_bootstrap_processor());
VERIFY(!m_apic_timer);
m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
return m_apic_timer;
}
void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
{
u32 flags = 0;
switch (timer_mode) {
case TimerMode::OneShot:
flags |= APIC_LVT_TIMER_ONESHOT;
break;
case TimerMode::Periodic:
flags |= APIC_LVT_TIMER_PERIODIC;
break;
case TimerMode::TSCDeadline:
flags |= APIC_LVT_TIMER_TSCDEADLINE;
break;
}
if (!enable)
flags |= APIC_LVT_MASKED;
write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);
u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
config &= ~0xf; // clear divisor (bits 0-3)
switch (get_timer_divisor()) {
case 1:
config |= (1 << 3) | 3;
break;
case 2:
break;
case 4:
config |= 1;
break;
case 8:
config |= 2;
break;
case 16:
config |= 3;
break;
case 32:
config |= (1 << 3);
break;
case 64:
config |= (1 << 3) | 1;
break;
case 128:
config |= (1 << 3) | 2;
break;
default:
VERIFY_NOT_REACHED();
}
write_register(APIC_REG_TIMER_CONFIGURATION, config);
if (timer_mode == TimerMode::Periodic)
write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
}
u32 APIC::get_timer_current_count()
{
return read_register(APIC_REG_TIMER_CURRENT_COUNT);
}
u32 APIC::get_timer_divisor()
{
return 16;
}
bool APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
{
dbgln_if(APIC_SMP_DEBUG, "APIC IPI on CPU #{}", Processor::current_id());
return true;
}
bool APICIPIInterruptHandler::eoi()
{
dbgln_if(APIC_SMP_DEBUG, "SMP: IPI EOI");
APIC::the().eoi();
return true;
}
bool APICErrInterruptHandler::handle_interrupt(const RegisterState&)
{
dbgln("APIC: SMP error on CPU #{}", Processor::current_id());
return true;
}
bool APICErrInterruptHandler::eoi()
{
APIC::the().eoi();
return true;
}
bool HardwareTimer<GenericInterruptHandler>::eoi()
{
APIC::the().eoi();
return true;
}
}