ladybird/Userland/Libraries/LibGfx/Line.h
Tom 499c33ae0c LibGfx: Add a Line class and a Rect<T>::RelativeLocation class
These helpers will be useful in preparation for supporting multiple
displays, e.g. to measure distances to other screens or figure out
where rectangles are located relative to each other.
2021-06-20 14:57:26 +02:00

156 lines
4.2 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Optional.h>
#include <AK/StdLibExtras.h>
#include <LibGfx/Forward.h>
#include <LibGfx/Point.h>
#include <LibGfx/Rect.h>
#include <math.h>
#include <stdlib.h>
namespace Gfx {
template<typename T>
class Line {
public:
Line() { }
Line(Point<T> a, Point<T> b)
: m_a(a)
, m_b(b)
{
}
template<typename U>
Line(U a, U b)
: m_a(a)
, m_b(b)
{
}
template<typename U>
explicit Line(Line<U> const& other)
: m_a(other.a())
, m_b(other.b())
{
}
bool intersects(Line const& other) const
{
return intersected(other).has_value();
}
Optional<Point<T>> intersected(Line const& other) const
{
auto cross_product = [](Point<T> const& p1, Point<T> const& p2) {
return p1.x() * p2.y() - p1.y() * p2.x();
};
auto r = m_b - m_a;
auto s = other.m_b - other.m_a;
auto delta_a = other.m_a - m_a;
auto num = cross_product(delta_a, r);
auto denom = cross_product(r, s);
if (denom == 0) {
if (num == 0) {
// Lines are collinear, check if line ends are touching
if (m_a == other.m_a || m_a == other.m_b)
return m_a;
if (m_b == other.m_a || m_b == other.m_b)
return m_b;
// Check if they're overlapping
if (!(m_b.x() - m_a.x() < 0 && m_b.x() - other.m_a.x() < 0 && other.m_b.x() - m_a.x() && other.m_b.x() - other.m_a.x())) {
// Overlapping
// TODO find center point?
}
if (!(m_b.y() - m_a.y() < 0 && m_b.y() - other.m_a.y() < 0 && other.m_b.y() - m_a.y() && other.m_b.y() - other.m_a.y())) {
// Overlapping
// TODO find center point?
}
return {};
} else {
// Lines are parallel and not intersecting
return {};
}
}
auto u = static_cast<float>(num) / static_cast<float>(denom);
if (u < 0.0f || u > 1.0f) {
// Lines are not parallel and don't intersect
return {};
}
auto t = static_cast<float>(cross_product(delta_a, s)) / static_cast<float>(denom);
if (t < 0.0f || t > 1.0f) {
// Lines are not parallel and don't intersect
return {};
}
// TODO: round if we're dealing with int
return Point<T> { m_a.x() + static_cast<T>(t * r.x()), m_a.y() + static_cast<T>(t * r.y()) };
}
float length() const
{
return m_a.distance_from(m_b);
}
Point<T> closest_to(Point<T> const& point) const
{
if (m_a == m_b)
return m_a;
auto delta_a = point.x() - m_a.x();
auto delta_b = point.y() - m_a.y();
auto delta_c = m_b.x() - m_a.x();
auto delta_d = m_b.y() - m_a.y();
auto len_sq = delta_c * delta_c + delta_d * delta_d;
float param = -1.0;
if (len_sq != 0)
param = static_cast<float>(delta_a * delta_c + delta_b * delta_d) / static_cast<float>(len_sq);
if (param < 0)
return m_a;
if (param > 1)
return m_b;
// TODO: round if we're dealing with int
return { static_cast<T>(m_a.x() + param * delta_c), static_cast<T>(m_a.y() + param * delta_d) };
}
Line<T> shortest_line_to(Point<T> const& point) const
{
return { closest_to(point), point };
}
float distance_to(Point<T> const& point) const
{
return shortest_line_to(point).length();
}
Point<T> const& a() const { return m_a; }
Point<T> const& b() const { return m_b; }
void set_a(Point<T> const& a) { m_a = a; }
void set_b(Point<T> const& b) { m_b = b; }
String to_string() const;
private:
Point<T> m_a;
Point<T> m_b;
};
template<>
inline String IntLine::to_string() const
{
return String::formatted("[{},{} -> {}x{}]", m_a.x(), m_a.y(), m_b.x(), m_b.y());
}
template<>
inline String FloatLine::to_string() const
{
return String::formatted("[{},{} {}x{}]", m_a.x(), m_a.y(), m_b.x(), m_b.y());
}
}