mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-06 19:19:44 +03:00
1f9d3a3523
There are now 2 separate classes for almost the same object type: - EnumerableDeviceIdentifier, which is used in the enumeration code for all PCI host controller classes. This is allowed to be moved and copied, as it doesn't support ref-counting. - DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This class uses ref-counting, and is not allowed to be copied. It has a spinlock member in its structure to allow safely executing complicated IO sequences on a PCI device and its space configuration. There's a static method that allows a quick conversion from EnumerableDeviceIdentifier to DeviceIdentifier while creating a NonnullRefPtr out of it. The reason for doing this is for the sake of integrity and reliablity of the system in 2 places: - Ensure that "complicated" tasks that rely on manipulating PCI device registers are done in a safe manner. For example, determining a PCI BAR space size requires multiple read and writes to the same register, and if another CPU tries to do something else with our selected register, then the result will be a catastrophe. - Allow the PCI API to have a united form around a shared object which actually holds much more data than the PCI::Address structure. This is fundamental if we want to do certain types of optimizations, and be able to support more features of the PCI bus in the foreseeable future. This patch already has several implications: - All PCI::Device(s) hold a reference to a DeviceIdentifier structure being given originally from the PCI::Access singleton. This means that all instances of DeviceIdentifier structures are located in one place, and all references are pointing to that location. This ensures that locking the operation spinlock will take effect in all the appropriate places. - We no longer support adding PCI host controllers and then immediately allow for enumerating it with a lambda function. It was found that this method is extremely broken and too much complicated to work reliably with the new paradigm being introduced in this patch. This means that for Volume Management Devices (Intel VMD devices), we simply first enumerate the PCI bus for such devices in the storage code, and if we find a device, we attach it in the PCI::Access method which will scan for devices behind that bridge and will add new DeviceIdentifier(s) objects to its internal Vector. Afterwards, we just continue as usual with scanning for actual storage controllers, so we will find a corresponding NVMe controllers if there were any behind that VMD bridge.
266 lines
12 KiB
C++
266 lines
12 KiB
C++
/*
|
||
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
|
||
*
|
||
* SPDX-License-Identifier: BSD-2-Clause
|
||
*/
|
||
|
||
#include <Kernel/Bus/PCI/API.h>
|
||
#include <Kernel/Bus/PCI/Definitions.h>
|
||
#include <Kernel/IOWindow.h>
|
||
|
||
namespace Kernel {
|
||
|
||
#if ARCH(X86_64)
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_io_space(IOAddress address, u64 space_length)
|
||
{
|
||
VERIFY(!Checked<u64>::addition_would_overflow(address.get(), space_length));
|
||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(address.get(), space_length)));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||
}
|
||
|
||
IOWindow::IOWindow(NonnullOwnPtr<IOAddressData> io_range)
|
||
: m_space_type(SpaceType::IO)
|
||
, m_io_range(move(io_range))
|
||
{
|
||
}
|
||
#endif
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset, u64 space_length)
|
||
{
|
||
#if ARCH(X86_64)
|
||
if (m_space_type == SpaceType::IO) {
|
||
VERIFY(m_io_range);
|
||
if (Checked<u64>::addition_would_overflow(m_io_range->address(), space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(as_io_address().offset(offset).get(), space_length)));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||
}
|
||
#endif
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
|
||
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
|
||
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(m_memory_mapped_range->paddr.offset(offset), space_length, Memory::Region::Access::ReadWrite));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset)
|
||
{
|
||
|
||
#if ARCH(X86_64)
|
||
if (m_space_type == SpaceType::IO) {
|
||
VERIFY(m_io_range);
|
||
VERIFY(m_io_range->space_length() >= offset);
|
||
return create_from_io_window_with_offset(offset, m_io_range->space_length() - offset);
|
||
}
|
||
#endif
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
VERIFY(m_memory_mapped_range->length >= offset);
|
||
return create_from_io_window_with_offset(offset, m_memory_mapped_range->length - offset);
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
|
||
{
|
||
u64 pci_bar_value = PCI::get_BAR(pci_device_identifier, pci_bar);
|
||
auto pci_bar_space_type = PCI::get_BAR_space_type(pci_bar_value);
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace) {
|
||
// FIXME: In theory, BAR5 cannot be assigned to 64 bit as it is the last one...
|
||
// however, there might be 64 bit BAR5 for real bare metal hardware, so remove this
|
||
// if it makes a problem.
|
||
if (pci_bar == PCI::HeaderType0BaseRegister::BAR5) {
|
||
return Error::from_errno(EINVAL);
|
||
}
|
||
u64 next_pci_bar_value = PCI::get_BAR(pci_device_identifier, static_cast<PCI::HeaderType0BaseRegister>(to_underlying(pci_bar) + 1));
|
||
pci_bar_value |= next_pci_bar_value << 32;
|
||
}
|
||
|
||
auto pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
|
||
if (pci_bar_space_size < space_length)
|
||
return Error::from_errno(EIO);
|
||
|
||
if (pci_bar_space_type == PCI::BARSpaceType::IOSpace) {
|
||
#if ARCH(X86_64)
|
||
if (Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData((pci_bar_value & 0xfffffffc), space_length)));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||
#else
|
||
// Note: For non-x86 platforms, IO PCI BARs are simply not useable.
|
||
return Error::from_errno(ENOTSUP);
|
||
#endif
|
||
}
|
||
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory32BitSpace && Checked<u32>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory16BitSpace && Checked<u16>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace && Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
|
||
return Error::from_errno(EOVERFLOW);
|
||
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(PhysicalAddress(pci_bar_value & 0xfffffff0), space_length, Memory::Region::Access::ReadWrite));
|
||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
|
||
}
|
||
|
||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar)
|
||
{
|
||
u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
|
||
return create_for_pci_device_bar(pci_device_identifier, pci_bar, pci_bar_space_size);
|
||
}
|
||
|
||
IOWindow::IOWindow(NonnullOwnPtr<Memory::TypedMapping<u8 volatile>> memory_mapped_range)
|
||
: m_space_type(SpaceType::Memory)
|
||
, m_memory_mapped_range(move(memory_mapped_range))
|
||
{
|
||
}
|
||
|
||
IOWindow::~IOWindow() = default;
|
||
|
||
bool IOWindow::is_access_aligned(u64 offset, size_t byte_size_access) const
|
||
{
|
||
return (offset % byte_size_access) == 0;
|
||
}
|
||
|
||
bool IOWindow::is_access_in_range(u64 offset, size_t byte_size_access) const
|
||
{
|
||
if (Checked<u64>::addition_would_overflow(offset, byte_size_access))
|
||
return false;
|
||
#if ARCH(X86_64)
|
||
if (m_space_type == SpaceType::IO) {
|
||
VERIFY(m_io_range);
|
||
VERIFY(!Checked<u64>::addition_would_overflow(m_io_range->address(), m_io_range->space_length()));
|
||
// To understand how we treat IO address space with the corresponding calculation, the Intel Software Developer manual
|
||
// helps us to understand the layout of the IO address space -
|
||
//
|
||
// Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture, 16.3 I/O ADDRESS SPACE, page 16-1 wrote:
|
||
// Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port.
|
||
// In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space.
|
||
// Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle.
|
||
// Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...).
|
||
// The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more
|
||
// extra bus cycle must be used.
|
||
return (m_io_range->address() + m_io_range->space_length()) >= (offset + byte_size_access);
|
||
}
|
||
#endif
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
VERIFY(!Checked<u64>::addition_would_overflow(m_memory_mapped_range->offset, m_memory_mapped_range->length));
|
||
return (m_memory_mapped_range->offset + m_memory_mapped_range->length) >= (offset + byte_size_access);
|
||
}
|
||
|
||
u8 IOWindow::read8(u64 offset)
|
||
{
|
||
VERIFY(is_access_in_range(offset, sizeof(u8)));
|
||
u8 data { 0 };
|
||
in<u8>(offset, data);
|
||
return data;
|
||
}
|
||
u16 IOWindow::read16(u64 offset)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u16)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u16)));
|
||
u16 data { 0 };
|
||
in<u16>(offset, data);
|
||
return data;
|
||
}
|
||
u32 IOWindow::read32(u64 offset)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u32)));
|
||
u32 data { 0 };
|
||
in<u32>(offset, data);
|
||
return data;
|
||
}
|
||
|
||
void IOWindow::write8(u64 offset, u8 data)
|
||
{
|
||
VERIFY(is_access_in_range(offset, sizeof(u8)));
|
||
out<u8>(offset, data);
|
||
}
|
||
void IOWindow::write16(u64 offset, u16 data)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u16)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u16)));
|
||
out<u16>(offset, data);
|
||
}
|
||
void IOWindow::write32(u64 offset, u32 data)
|
||
{
|
||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||
// for memory mapped IO access, it should always be considered a bug.
|
||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty.
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
VERIFY(is_access_aligned(offset, sizeof(u32)));
|
||
out<u32>(offset, data);
|
||
}
|
||
|
||
void IOWindow::write32_unaligned(u64 offset, u32 data)
|
||
{
|
||
// Note: We only verify that we access IO in the expected range.
|
||
// Note: for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty, we can still allow that to happen.
|
||
// However, it should be noted that most cases should not use unaligned access
|
||
// to hardware IO, so this is a valid case in emulators or hypervisors only.
|
||
// Note: Using this for memory mapped IO will fail for unaligned access, because
|
||
// there's no valid use case for it (yet).
|
||
VERIFY(space_type() != SpaceType::Memory);
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
out<u32>(offset, data);
|
||
}
|
||
|
||
u32 IOWindow::read32_unaligned(u64 offset)
|
||
{
|
||
// Note: We only verify that we access IO in the expected range.
|
||
// Note: for port mapped IO access, because in x86 unaligned access to ports
|
||
// is possible but there's a performance penalty, we can still allow that to happen.
|
||
// However, it should be noted that most cases should not use unaligned access
|
||
// to hardware IO, so this is a valid case in emulators or hypervisors only.
|
||
// Note: Using this for memory mapped IO will fail for unaligned access, because
|
||
// there's no valid use case for it (yet).
|
||
VERIFY(space_type() != SpaceType::Memory);
|
||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||
u32 data { 0 };
|
||
in<u32>(offset, data);
|
||
return data;
|
||
}
|
||
|
||
PhysicalAddress IOWindow::as_physical_memory_address() const
|
||
{
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
return m_memory_mapped_range->paddr;
|
||
}
|
||
|
||
u8 volatile* IOWindow::as_memory_address_pointer()
|
||
{
|
||
VERIFY(space_type() == SpaceType::Memory);
|
||
VERIFY(m_memory_mapped_range);
|
||
return m_memory_mapped_range->ptr();
|
||
}
|
||
|
||
#if ARCH(X86_64)
|
||
IOAddress IOWindow::as_io_address() const
|
||
{
|
||
VERIFY(space_type() == SpaceType::IO);
|
||
VERIFY(m_io_range);
|
||
return IOAddress(m_io_range->address());
|
||
}
|
||
#endif
|
||
|
||
}
|