ladybird/Kernel/VM/AnonymousVMObject.cpp
2021-08-06 00:37:47 +02:00

384 lines
13 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/SmapDisabler.h>
#include <Kernel/Debug.h>
#include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PhysicalPage.h>
namespace Kernel {
RefPtr<VMObject> AnonymousVMObject::try_clone()
{
// We need to acquire our lock so we copy a sane state
ScopedSpinLock lock(m_lock);
if (is_purgeable() && is_volatile()) {
// If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
// object, effectively "pre-purging" it in the child process.
auto clone = try_create_purgeable_with_size(size(), AllocationStrategy::None);
if (!clone)
return {};
clone->m_volatile = true;
return clone;
}
// We're the parent. Since we're about to become COW we need to
// commit the number of pages that we need to potentially allocate
// so that the parent is still guaranteed to be able to have all
// non-volatile memory available.
size_t new_cow_pages_needed = page_count();
dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
auto committed_pages = MM.commit_user_physical_pages(new_cow_pages_needed);
if (!committed_pages.has_value())
return {};
// Create or replace the committed cow pages. When cloning a previously
// cloned vmobject, we want to essentially "fork", leaving us and the
// new clone with one set of shared committed cow pages, and the original
// one would keep the one it still has. This ensures that the original
// one and this one, as well as the clone have sufficient resources
// to cow all pages as needed
auto new_shared_committed_cow_pages = try_create<SharedCommittedCowPages>(committed_pages.release_value());
if (!new_shared_committed_cow_pages)
return {};
auto clone = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(*this, *new_shared_committed_cow_pages));
if (!clone)
return {};
m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
// Both original and clone become COW. So create a COW map for ourselves
// or reset all pages to be copied again if we were previously cloned
ensure_or_reset_cow_map();
if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
// The parent vmobject didn't use up all committed pages. When
// cloning (fork) we will overcommit. For this purpose we drop all
// lazy-commit references and replace them with shared zero pages.
for (size_t i = 0; i < page_count(); i++) {
auto& page = clone->m_physical_pages[i];
if (page && page->is_lazy_committed_page()) {
page = MM.shared_zero_page();
}
}
}
return clone;
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
{
Optional<CommittedPhysicalPageSet> committed_pages;
if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
committed_pages = MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE)));
if (!committed_pages.has_value())
return {};
}
return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
{
auto contiguous_physical_pages = MM.allocate_contiguous_supervisor_physical_pages(size);
if (contiguous_physical_pages.is_empty())
return {};
return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(contiguous_physical_pages.span()));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
{
Optional<CommittedPhysicalPageSet> committed_pages;
if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
committed_pages = MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE)));
if (!committed_pages.has_value())
return {};
}
auto vmobject = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
if (!vmobject)
return {};
vmobject->m_purgeable = true;
return vmobject;
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
{
return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(physical_pages));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
{
if (paddr.offset(size) < paddr) {
dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
return nullptr;
}
return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(paddr, size));
}
AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
: VMObject(size)
, m_unused_committed_pages(move(committed_pages))
{
if (strategy == AllocationStrategy::AllocateNow) {
// Allocate all pages right now. We know we can get all because we committed the amount needed
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = m_unused_committed_pages->take_one();
} else {
auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = initial_page;
}
}
AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
: VMObject(size)
{
VERIFY(paddr.page_base() == paddr);
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
}
AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
: VMObject(physical_pages.size() * PAGE_SIZE)
{
for (size_t i = 0; i < physical_pages.size(); ++i) {
m_physical_pages[i] = physical_pages[i];
}
}
AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages)
: VMObject(other)
, m_shared_committed_cow_pages(move(shared_committed_cow_pages))
, m_purgeable(other.m_purgeable)
{
ensure_cow_map();
}
AnonymousVMObject::~AnonymousVMObject()
{
}
size_t AnonymousVMObject::purge()
{
ScopedSpinLock lock(m_lock);
if (!is_purgeable() || !is_volatile())
return 0;
size_t total_pages_purged = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
continue;
page = MM.shared_zero_page();
++total_pages_purged;
}
m_was_purged = true;
for_each_region([](Region& region) {
region.remap();
});
return total_pages_purged;
}
KResult AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
{
VERIFY(is_purgeable());
ScopedSpinLock locker(m_lock);
was_purged = m_was_purged;
if (m_volatile == is_volatile)
return KSuccess;
if (is_volatile) {
// When a VMObject is made volatile, it gives up all of its committed memory.
// Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
for (auto& page : m_physical_pages) {
if (page && page->is_lazy_committed_page())
page = MM.shared_zero_page();
}
m_unused_committed_pages = {};
m_shared_committed_cow_pages = nullptr;
if (!m_cow_map.is_null())
m_cow_map = {};
m_volatile = true;
m_was_purged = false;
for_each_region([&](auto& region) { region.remap(); });
return KSuccess;
}
// When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
// If that fails, we return false to indicate that memory allocation failed.
size_t committed_pages_needed = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
++committed_pages_needed;
}
if (!committed_pages_needed) {
m_volatile = false;
return KSuccess;
}
m_unused_committed_pages = MM.commit_user_physical_pages(committed_pages_needed);
if (!m_unused_committed_pages.has_value())
return ENOMEM;
for (auto& page : m_physical_pages) {
if (page->is_shared_zero_page())
page = MM.lazy_committed_page();
}
m_volatile = false;
m_was_purged = false;
for_each_region([&](auto& region) { region.remap(); });
return KSuccess;
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
{
return m_unused_committed_pages->take_one();
}
Bitmap& AnonymousVMObject::ensure_cow_map()
{
if (m_cow_map.is_null())
m_cow_map = Bitmap { page_count(), true };
return m_cow_map;
}
void AnonymousVMObject::ensure_or_reset_cow_map()
{
if (m_cow_map.is_null())
ensure_cow_map();
else
m_cow_map.fill(true);
}
bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
{
auto& page = physical_pages()[page_index];
if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
return true;
if (is_shared)
return false;
return !m_cow_map.is_null() && m_cow_map.get(page_index);
}
void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
{
ensure_cow_map().set(page_index, cow);
}
size_t AnonymousVMObject::cow_pages() const
{
if (m_cow_map.is_null())
return 0;
return m_cow_map.count_slow(true);
}
PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
{
VERIFY_INTERRUPTS_DISABLED();
ScopedSpinLock lock(m_lock);
if (is_volatile()) {
// A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
dbgln("COW fault in volatile region, will crash.");
return PageFaultResponse::ShouldCrash;
}
auto& page_slot = physical_pages()[page_index];
// If we were sharing committed COW pages with another process, and the other process
// has exhausted the supply, we can stop counting the shared pages.
if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
m_shared_committed_cow_pages = nullptr;
if (page_slot->ref_count() == 1) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
set_should_cow(page_index, false);
if (m_shared_committed_cow_pages) {
m_shared_committed_cow_pages->uncommit_one();
if (m_shared_committed_cow_pages->is_empty())
m_shared_committed_cow_pages = nullptr;
}
return PageFaultResponse::Continue;
}
RefPtr<PhysicalPage> page;
if (m_shared_committed_cow_pages) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
page = m_shared_committed_cow_pages->take_one();
} else {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (page.is_null()) {
dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
return PageFaultResponse::OutOfMemory;
}
}
u8* dest_ptr = MM.quickmap_page(*page);
dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
{
SmapDisabler disabler;
void* fault_at;
if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else
VERIFY_NOT_REACHED();
}
}
page_slot = move(page);
MM.unquickmap_page();
set_should_cow(page_index, false);
return PageFaultResponse::Continue;
}
AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
: m_committed_pages(move(committed_pages))
{
}
AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
{
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
{
ScopedSpinLock locker(m_lock);
return m_committed_pages.take_one();
}
void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
{
ScopedSpinLock locker(m_lock);
m_committed_pages.uncommit_one();
}
}