ladybird/Kernel/VM/MemoryManager.h
Idan Horowitz 3e909c0c49 Kernel: Remove double-counting of allocated pages in AnonymousVMObject
When constructing an AnonymousVMObject with the AllocateNow allocation
strategy we accidentally allocated the committed pages directly through
MemoryManager instead of taking them from our m_unused_physical_pages
CommittedPhysicalPageSet, which meant they were counted as allocated in
MemoryManager, but were still counted as unallocated in the PageSet,
who would then try to uncommit them on destruction, resulting in a
failed assertion.

To help prevent similar issues in the future a Badge<T> was added to
MM::allocate_committed_user_physical_page to prevent allocation of
commited pages not via a CommittedPhysicalPageSet.
2021-08-05 20:26:47 +02:00

326 lines
9.9 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/HashTable.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <Kernel/Arch/x86/PageFault.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Forward.h>
#include <Kernel/SpinLock.h>
#include <Kernel/VM/AllocationStrategy.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/PhysicalRegion.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/VMObject.h>
namespace Kernel {
constexpr bool page_round_up_would_wrap(FlatPtr x)
{
return x > (explode_byte(0xFF) & ~0xFFF);
}
constexpr FlatPtr page_round_up(FlatPtr x)
{
FlatPtr rounded = (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
// Rounding up >0xfffff000 wraps back to 0. That's never what we want.
VERIFY(x == 0 || rounded != 0);
return rounded;
}
constexpr FlatPtr page_round_down(FlatPtr x)
{
return ((FlatPtr)(x)) & ~(PAGE_SIZE - 1);
}
inline FlatPtr virtual_to_low_physical(FlatPtr virtual_)
{
return virtual_ - physical_to_virtual_offset;
}
enum class UsedMemoryRangeType {
LowMemory = 0,
Prekernel,
Kernel,
BootModule,
PhysicalPages,
};
static constexpr StringView UserMemoryRangeTypeNames[] {
"Low memory",
"Prekernel",
"Kernel",
"Boot module",
"Physical Pages"
};
struct UsedMemoryRange {
UsedMemoryRangeType type {};
PhysicalAddress start;
PhysicalAddress end;
};
struct ContiguousReservedMemoryRange {
PhysicalAddress start;
PhysicalSize length {};
};
enum class PhysicalMemoryRangeType {
Usable = 0,
Reserved,
ACPI_Reclaimable,
ACPI_NVS,
BadMemory,
Unknown,
};
struct PhysicalMemoryRange {
PhysicalMemoryRangeType type { PhysicalMemoryRangeType::Unknown };
PhysicalAddress start;
PhysicalSize length {};
};
#define MM Kernel::MemoryManager::the()
struct MemoryManagerData {
static ProcessorSpecificDataID processor_specific_data_id() { return ProcessorSpecificDataID::MemoryManager; }
SpinLock<u8> m_quickmap_in_use;
u32 m_quickmap_prev_flags;
PhysicalAddress m_last_quickmap_pd;
PhysicalAddress m_last_quickmap_pt;
};
extern RecursiveSpinLock s_mm_lock;
// This class represents a set of committed physical pages.
// When you ask MemoryManager to commit pages for you, you get one of these in return.
// You can allocate pages from it via `take_one()`
// It will uncommit any (unallocated) remaining pages when destroyed.
class CommittedPhysicalPageSet {
AK_MAKE_NONCOPYABLE(CommittedPhysicalPageSet);
public:
CommittedPhysicalPageSet(Badge<MemoryManager>, size_t page_count)
: m_page_count(page_count)
{
}
CommittedPhysicalPageSet(CommittedPhysicalPageSet&& other)
: m_page_count(exchange(other.m_page_count, 0))
{
}
~CommittedPhysicalPageSet();
bool is_empty() const { return m_page_count == 0; }
size_t page_count() const { return m_page_count; }
[[nodiscard]] NonnullRefPtr<PhysicalPage> take_one();
void uncommit_one();
void operator=(CommittedPhysicalPageSet&&) = delete;
private:
size_t m_page_count { 0 };
};
class MemoryManager {
AK_MAKE_ETERNAL
friend class PageDirectory;
friend class AnonymousVMObject;
friend class Region;
friend class VMObject;
public:
static MemoryManager& the();
static bool is_initialized();
static void initialize(u32 cpu);
static inline MemoryManagerData& get_data()
{
return ProcessorSpecific<MemoryManagerData>::get();
}
PageFaultResponse handle_page_fault(PageFault const&);
void set_page_writable_direct(VirtualAddress, bool);
void protect_readonly_after_init_memory();
void unmap_text_after_init();
void unmap_ksyms_after_init();
static void enter_process_paging_scope(Process&);
static void enter_space(Space&);
bool validate_user_stack_no_lock(Space&, VirtualAddress) const;
bool validate_user_stack(Space&, VirtualAddress) const;
enum class ShouldZeroFill {
No,
Yes
};
Optional<CommittedPhysicalPageSet> commit_user_physical_pages(size_t page_count);
void uncommit_user_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count);
NonnullRefPtr<PhysicalPage> allocate_committed_user_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill = ShouldZeroFill::Yes);
RefPtr<PhysicalPage> allocate_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr);
RefPtr<PhysicalPage> allocate_supervisor_physical_page();
NonnullRefPtrVector<PhysicalPage> allocate_contiguous_supervisor_physical_pages(size_t size);
void deallocate_physical_page(PhysicalAddress);
OwnPtr<Region> allocate_contiguous_kernel_region(size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region(size_t, StringView name, Region::Access access, AllocationStrategy strategy = AllocationStrategy::Reserve, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region_identity(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region_with_vmobject(VMObject&, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region_with_vmobject(Range const&, VMObject&, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
struct SystemMemoryInfo {
PhysicalSize user_physical_pages { 0 };
PhysicalSize user_physical_pages_used { 0 };
PhysicalSize user_physical_pages_committed { 0 };
PhysicalSize user_physical_pages_uncommitted { 0 };
PhysicalSize super_physical_pages { 0 };
PhysicalSize super_physical_pages_used { 0 };
};
SystemMemoryInfo get_system_memory_info()
{
ScopedSpinLock lock(s_mm_lock);
return m_system_memory_info;
}
template<IteratorFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
ScopedSpinLock locker(s_mm_lock);
for (auto& vmobject : MM.m_vmobjects) {
if (callback(vmobject) == IterationDecision::Break)
break;
}
}
template<VoidFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
for (auto& vmobject : MM.m_vmobjects)
callback(vmobject);
}
static Region* find_user_region_from_vaddr(Space&, VirtualAddress);
static Region* find_user_region_from_vaddr_no_lock(Space&, VirtualAddress);
static void validate_syscall_preconditions(Space&, RegisterState const&);
void dump_kernel_regions();
PhysicalPage& shared_zero_page() { return *m_shared_zero_page; }
PhysicalPage& lazy_committed_page() { return *m_lazy_committed_page; }
PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; }
Vector<UsedMemoryRange> const& used_memory_ranges() { return m_used_memory_ranges; }
bool is_allowed_to_mmap_to_userspace(PhysicalAddress, Range const&) const;
PhysicalPageEntry& get_physical_page_entry(PhysicalAddress);
PhysicalAddress get_physical_address(PhysicalPage const&);
private:
MemoryManager();
~MemoryManager();
void initialize_physical_pages();
void register_reserved_ranges();
void register_vmobject(VMObject&);
void unregister_vmobject(VMObject&);
void register_region(Region&);
void unregister_region(Region&);
void protect_kernel_image();
void parse_memory_map();
static void flush_tlb_local(VirtualAddress, size_t page_count = 1);
static void flush_tlb(PageDirectory const*, VirtualAddress, size_t page_count = 1);
static Region* kernel_region_from_vaddr(VirtualAddress);
static Region* find_region_from_vaddr(VirtualAddress);
RefPtr<PhysicalPage> find_free_user_physical_page(bool);
ALWAYS_INLINE u8* quickmap_page(PhysicalPage& page)
{
return quickmap_page(page.paddr());
}
u8* quickmap_page(PhysicalAddress const&);
void unquickmap_page();
PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index);
PageTableEntry* quickmap_pt(PhysicalAddress);
PageTableEntry* pte(PageDirectory&, VirtualAddress);
PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress);
void release_pte(PageDirectory&, VirtualAddress, bool);
RefPtr<PageDirectory> m_kernel_page_directory;
RefPtr<PhysicalPage> m_shared_zero_page;
RefPtr<PhysicalPage> m_lazy_committed_page;
SystemMemoryInfo m_system_memory_info;
NonnullOwnPtrVector<PhysicalRegion> m_user_physical_regions;
OwnPtr<PhysicalRegion> m_super_physical_region;
OwnPtr<PhysicalRegion> m_physical_pages_region;
PhysicalPageEntry* m_physical_page_entries { nullptr };
size_t m_physical_page_entries_count { 0 };
Region::ListInMemoryManager m_user_regions;
Region::ListInMemoryManager m_kernel_regions;
Vector<UsedMemoryRange> m_used_memory_ranges;
Vector<PhysicalMemoryRange> m_physical_memory_ranges;
Vector<ContiguousReservedMemoryRange> m_reserved_memory_ranges;
VMObject::List m_vmobjects;
};
inline bool is_user_address(VirtualAddress vaddr)
{
return vaddr.get() < USER_RANGE_CEILING;
}
inline bool is_user_range(VirtualAddress vaddr, size_t size)
{
if (vaddr.offset(size) < vaddr)
return false;
return is_user_address(vaddr) && is_user_address(vaddr.offset(size));
}
inline bool is_user_range(Range const& range)
{
return is_user_range(range.base(), range.size());
}
inline bool PhysicalPage::is_shared_zero_page() const
{
return this == &MM.shared_zero_page();
}
inline bool PhysicalPage::is_lazy_committed_page() const
{
return this == &MM.lazy_committed_page();
}
}