ladybird/AK/HashTable.h
Hediadyoin1 fd8c54d720 AK: Add take_first to HashTable and rename pop to take_last
This naming scheme matches Vector.

This also changes `take_last` to move the value it takes, and delete by
known pointer, avoiding a full lookup and potential copies.
2023-02-21 22:13:06 +01:00

717 lines
24 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2023, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Error.h>
#include <AK/StdLibExtras.h>
#include <AK/Traits.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
namespace AK {
enum class HashSetResult {
InsertedNewEntry,
ReplacedExistingEntry,
KeptExistingEntry,
};
enum class HashSetExistingEntryBehavior {
Keep,
Replace,
};
// BucketState doubles as both an enum and a probe length value.
// - Free: empty bucket
// - Used (implicit, values 1..254): value-1 represents probe length
// - CalculateLength: same as Used but probe length > 253, so we calculate the actual probe length
enum class BucketState : u8 {
Free = 0,
CalculateLength = 255,
};
template<typename HashTableType, typename T, typename BucketType>
class HashTableIterator {
friend HashTableType;
public:
bool operator==(HashTableIterator const& other) const { return m_bucket == other.m_bucket; }
bool operator!=(HashTableIterator const& other) const { return m_bucket != other.m_bucket; }
T& operator*() { return *m_bucket->slot(); }
T* operator->() { return m_bucket->slot(); }
void operator++() { skip_to_next(); }
private:
void skip_to_next()
{
if (!m_bucket)
return;
do {
++m_bucket;
if (m_bucket == m_end_bucket) {
m_bucket = nullptr;
return;
}
} while (m_bucket->state == BucketState::Free);
}
HashTableIterator(BucketType* bucket, BucketType* end_bucket)
: m_bucket(bucket)
, m_end_bucket(end_bucket)
{
}
BucketType* m_bucket { nullptr };
BucketType* m_end_bucket { nullptr };
};
template<typename OrderedHashTableType, typename T, typename BucketType>
class OrderedHashTableIterator {
friend OrderedHashTableType;
public:
bool operator==(OrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
bool operator!=(OrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
T& operator*() { return *m_bucket->slot(); }
T* operator->() { return m_bucket->slot(); }
void operator++() { m_bucket = m_bucket->next; }
void operator--() { m_bucket = m_bucket->previous; }
private:
OrderedHashTableIterator(BucketType* bucket, BucketType*)
: m_bucket(bucket)
{
}
BucketType* m_bucket { nullptr };
};
template<typename T, typename TraitsForT, bool IsOrdered>
class HashTable {
static constexpr size_t grow_capacity_at_least = 8;
static constexpr size_t grow_at_load_factor_percent = 80;
static constexpr size_t grow_capacity_increase_percent = 60;
struct Bucket {
BucketState state;
alignas(T) u8 storage[sizeof(T)];
T* slot() { return reinterpret_cast<T*>(storage); }
T const* slot() const { return reinterpret_cast<T const*>(storage); }
};
struct OrderedBucket {
OrderedBucket* previous;
OrderedBucket* next;
BucketState state;
alignas(T) u8 storage[sizeof(T)];
T* slot() { return reinterpret_cast<T*>(storage); }
T const* slot() const { return reinterpret_cast<T const*>(storage); }
};
using BucketType = Conditional<IsOrdered, OrderedBucket, Bucket>;
struct CollectionData {
};
struct OrderedCollectionData {
BucketType* head { nullptr };
BucketType* tail { nullptr };
};
using CollectionDataType = Conditional<IsOrdered, OrderedCollectionData, CollectionData>;
public:
HashTable() = default;
explicit HashTable(size_t capacity) { rehash(capacity); }
~HashTable()
{
if (!m_buckets)
return;
if constexpr (!IsTriviallyDestructible<T>) {
for (size_t i = 0; i < m_capacity; ++i) {
if (m_buckets[i].state != BucketState::Free)
m_buckets[i].slot()->~T();
}
}
kfree_sized(m_buckets, size_in_bytes(m_capacity));
}
HashTable(HashTable const& other)
{
rehash(other.capacity());
for (auto& it : other)
set(it);
}
HashTable& operator=(HashTable const& other)
{
HashTable temporary(other);
swap(*this, temporary);
return *this;
}
HashTable(HashTable&& other) noexcept
: m_buckets(other.m_buckets)
, m_collection_data(other.m_collection_data)
, m_size(other.m_size)
, m_capacity(other.m_capacity)
{
other.m_size = 0;
other.m_capacity = 0;
other.m_buckets = nullptr;
if constexpr (IsOrdered)
other.m_collection_data = { nullptr, nullptr };
}
HashTable& operator=(HashTable&& other) noexcept
{
HashTable temporary { move(other) };
swap(*this, temporary);
return *this;
}
friend void swap(HashTable& a, HashTable& b) noexcept
{
swap(a.m_buckets, b.m_buckets);
swap(a.m_size, b.m_size);
swap(a.m_capacity, b.m_capacity);
if constexpr (IsOrdered)
swap(a.m_collection_data, b.m_collection_data);
}
[[nodiscard]] bool is_empty() const { return m_size == 0; }
[[nodiscard]] size_t size() const { return m_size; }
[[nodiscard]] size_t capacity() const { return m_capacity; }
template<typename U, size_t N>
ErrorOr<void> try_set_from(U (&from_array)[N])
{
for (size_t i = 0; i < N; ++i)
TRY(try_set(from_array[i]));
return {};
}
template<typename U, size_t N>
void set_from(U (&from_array)[N])
{
MUST(try_set_from(from_array));
}
ErrorOr<void> try_ensure_capacity(size_t capacity)
{
// The user usually expects "capacity" to mean the number of values that can be stored in a
// container without it needing to reallocate. Our definition of "capacity" is the number of
// buckets we can store, but we reallocate earlier because of `grow_at_load_factor_percent`.
// This calculates the required internal capacity to store `capacity` number of values.
size_t required_capacity = capacity * 100 / grow_at_load_factor_percent + 1;
if (required_capacity <= m_capacity)
return {};
return try_rehash(required_capacity);
}
void ensure_capacity(size_t capacity)
{
MUST(try_ensure_capacity(capacity));
}
[[nodiscard]] bool contains(T const& value) const
{
return find(value) != end();
}
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] bool contains(K const& value) const
{
return find(value) != end();
}
using Iterator = Conditional<IsOrdered,
OrderedHashTableIterator<HashTable, T, BucketType>,
HashTableIterator<HashTable, T, BucketType>>;
[[nodiscard]] Iterator begin()
{
if constexpr (IsOrdered)
return Iterator(m_collection_data.head, end_bucket());
for (size_t i = 0; i < m_capacity; ++i) {
if (m_buckets[i].state != BucketState::Free)
return Iterator(&m_buckets[i], end_bucket());
}
return end();
}
[[nodiscard]] Iterator end()
{
return Iterator(nullptr, nullptr);
}
using ConstIterator = Conditional<IsOrdered,
OrderedHashTableIterator<const HashTable, const T, BucketType const>,
HashTableIterator<const HashTable, const T, BucketType const>>;
[[nodiscard]] ConstIterator begin() const
{
if constexpr (IsOrdered)
return ConstIterator(m_collection_data.head, end_bucket());
for (size_t i = 0; i < m_capacity; ++i) {
if (m_buckets[i].state != BucketState::Free)
return ConstIterator(&m_buckets[i], end_bucket());
}
return end();
}
[[nodiscard]] ConstIterator end() const
{
return ConstIterator(nullptr, nullptr);
}
void clear()
{
*this = HashTable();
}
void clear_with_capacity()
{
if (m_capacity == 0)
return;
if constexpr (!IsTriviallyDestructible<T>) {
for (auto* bucket : *this)
bucket->~T();
}
__builtin_memset(m_buckets, 0, size_in_bytes(m_capacity));
m_size = 0;
if constexpr (IsOrdered)
m_collection_data = { nullptr, nullptr };
}
template<typename U = T>
ErrorOr<HashSetResult> try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
{
if (should_grow())
TRY(try_rehash(m_capacity * (100 + grow_capacity_increase_percent) / 100));
return write_value(forward<U>(value), existing_entry_behavior);
}
template<typename U = T>
HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behaviour = HashSetExistingEntryBehavior::Replace)
{
return MUST(try_set(forward<U>(value), existing_entry_behaviour));
}
template<typename TUnaryPredicate>
[[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate)
{
return Iterator(lookup_with_hash(hash, move(predicate)), end_bucket());
}
[[nodiscard]] Iterator find(T const& value)
{
return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
}
template<typename TUnaryPredicate>
[[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const
{
return ConstIterator(lookup_with_hash(hash, move(predicate)), end_bucket());
}
[[nodiscard]] ConstIterator find(T const& value) const
{
return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
}
// FIXME: Support for predicates, while guaranteeing that the predicate call
// does not call a non trivial constructor each time invoked
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value)
{
return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
}
template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate)
{
return find(Traits<K>::hash(value), move(predicate));
}
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value) const
{
return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
}
template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const
{
return find(Traits<K>::hash(value), move(predicate));
}
bool remove(T const& value)
{
auto it = find(value);
if (it != end()) {
remove(it);
return true;
}
return false;
}
template<Concepts::HashCompatible<T> K>
requires(IsSame<TraitsForT, Traits<T>>) bool remove(K const& value)
{
auto it = find(value);
if (it != end()) {
remove(it);
return true;
}
return false;
}
// This invalidates the iterator
void remove(Iterator& iterator)
{
auto* bucket = iterator.m_bucket;
VERIFY(bucket);
delete_bucket(*bucket);
iterator.m_bucket = nullptr;
}
template<typename TUnaryPredicate>
bool remove_all_matching(TUnaryPredicate const& predicate)
{
bool has_removed_anything = false;
for (size_t i = 0; i < m_capacity; ++i) {
auto& bucket = m_buckets[i];
if (bucket.state == BucketState::Free || !predicate(*bucket.slot()))
continue;
delete_bucket(bucket);
has_removed_anything = true;
// If a bucket was shifted up, reevaluate this bucket index
if (bucket.state != BucketState::Free)
--i;
}
return has_removed_anything;
}
T take_last()
requires(IsOrdered)
{
VERIFY(!is_empty());
T element = move(*m_collection_data.tail->slot());
delete_bucket(*m_collection_data.tail);
return element;
}
T take_first()
requires(IsOrdered)
{
VERIFY(!is_empty());
T element = move(*m_collection_data.head->slot());
delete_bucket(*m_collection_data.head);
return element;
}
private:
bool should_grow() const { return ((m_size + 1) * 100) >= (m_capacity * grow_at_load_factor_percent); }
static constexpr size_t size_in_bytes(size_t capacity) { return sizeof(BucketType) * capacity; }
BucketType* end_bucket()
{
if constexpr (IsOrdered)
return m_collection_data.tail;
else
return &m_buckets[m_capacity];
}
BucketType const* end_bucket() const
{
return const_cast<HashTable*>(this)->end_bucket();
}
ErrorOr<void> try_rehash(size_t new_capacity)
{
new_capacity = max(new_capacity, m_capacity + grow_capacity_at_least);
new_capacity = kmalloc_good_size(size_in_bytes(new_capacity)) / sizeof(BucketType);
VERIFY(new_capacity >= size());
auto* old_buckets = m_buckets;
auto old_buckets_size = size_in_bytes(m_capacity);
Iterator old_iter = begin();
auto* new_buckets = kcalloc(1, size_in_bytes(new_capacity));
if (!new_buckets)
return Error::from_errno(ENOMEM);
m_buckets = static_cast<BucketType*>(new_buckets);
m_capacity = new_capacity;
if constexpr (IsOrdered)
m_collection_data = { nullptr, nullptr };
if (!old_buckets)
return {};
m_size = 0;
for (auto it = move(old_iter); it != end(); ++it) {
write_value(move(*it), HashSetExistingEntryBehavior::Keep);
it->~T();
}
kfree_sized(old_buckets, old_buckets_size);
return {};
}
void rehash(size_t new_capacity)
{
MUST(try_rehash(new_capacity));
}
template<typename TUnaryPredicate>
[[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const
{
if (is_empty())
return nullptr;
hash %= m_capacity;
for (;;) {
auto* bucket = &m_buckets[hash];
if (bucket->state == BucketState::Free)
return nullptr;
if (predicate(*bucket->slot()))
return bucket;
if (++hash == m_capacity) [[unlikely]]
hash = 0;
}
}
size_t used_bucket_probe_length(BucketType const& bucket) const
{
VERIFY(bucket.state != BucketState::Free);
if (bucket.state == BucketState::CalculateLength) {
size_t ideal_bucket_index = TraitsForT::hash(*bucket.slot()) % m_capacity;
VERIFY(&bucket >= m_buckets);
size_t actual_bucket_index = &bucket - m_buckets;
if (actual_bucket_index < ideal_bucket_index)
return m_capacity + actual_bucket_index - ideal_bucket_index;
return actual_bucket_index - ideal_bucket_index;
}
return static_cast<u8>(bucket.state) - 1;
}
ALWAYS_INLINE constexpr BucketState bucket_state_for_probe_length(size_t probe_length)
{
if (probe_length > 253)
return BucketState::CalculateLength;
return static_cast<BucketState>(probe_length + 1);
}
template<typename U = T>
HashSetResult write_value(U&& value, HashSetExistingEntryBehavior existing_entry_behavior)
{
auto update_collection_for_new_bucket = [&](BucketType& bucket) {
if constexpr (IsOrdered) {
if (!m_collection_data.head) [[unlikely]] {
m_collection_data.head = &bucket;
} else {
bucket.previous = m_collection_data.tail;
m_collection_data.tail->next = &bucket;
}
m_collection_data.tail = &bucket;
}
};
auto update_collection_for_swapped_buckets = [&](BucketType* left_bucket, BucketType* right_bucket) {
if constexpr (IsOrdered) {
if (m_collection_data.head == left_bucket)
m_collection_data.head = right_bucket;
else if (m_collection_data.head == right_bucket)
m_collection_data.head = left_bucket;
if (m_collection_data.tail == left_bucket)
m_collection_data.tail = right_bucket;
else if (m_collection_data.tail == right_bucket)
m_collection_data.tail = left_bucket;
if (left_bucket->previous) {
if (left_bucket->previous == left_bucket)
left_bucket->previous = right_bucket;
left_bucket->previous->next = left_bucket;
}
if (left_bucket->next) {
if (left_bucket->next == left_bucket)
left_bucket->next = right_bucket;
left_bucket->next->previous = left_bucket;
}
if (right_bucket->previous && right_bucket->previous != left_bucket)
right_bucket->previous->next = right_bucket;
if (right_bucket->next && right_bucket->next != left_bucket)
right_bucket->next->previous = right_bucket;
}
};
auto bucket_index = TraitsForT::hash(value) % m_capacity;
size_t probe_length = 0;
for (;;) {
auto* bucket = &m_buckets[bucket_index];
// We found a free bucket, write to it and stop
if (bucket->state == BucketState::Free) {
new (bucket->slot()) T(forward<U>(value));
bucket->state = bucket_state_for_probe_length(probe_length);
update_collection_for_new_bucket(*bucket);
++m_size;
return HashSetResult::InsertedNewEntry;
}
// The bucket is already used, does it have an identical value?
if (TraitsForT::equals(*bucket->slot(), static_cast<T const&>(value))) {
if (existing_entry_behavior == HashSetExistingEntryBehavior::Replace) {
(*bucket->slot()) = forward<U>(value);
return HashSetResult::ReplacedExistingEntry;
}
return HashSetResult::KeptExistingEntry;
}
// Robin hood: if our probe length is larger (poor) than this bucket's (rich), steal its position!
// This ensures that we will always traverse buckets in order of probe length.
auto target_probe_length = used_bucket_probe_length(*bucket);
if (probe_length > target_probe_length) {
// Copy out bucket
BucketType bucket_to_move = move(*bucket);
update_collection_for_swapped_buckets(bucket, &bucket_to_move);
// Write new bucket
new (bucket->slot()) T(forward<U>(value));
bucket->state = bucket_state_for_probe_length(probe_length);
probe_length = target_probe_length;
if constexpr (IsOrdered)
bucket->next = nullptr;
update_collection_for_new_bucket(*bucket);
++m_size;
// Find a free bucket, swapping with smaller probe length buckets along the way
for (;;) {
if (++bucket_index == m_capacity) [[unlikely]]
bucket_index = 0;
bucket = &m_buckets[bucket_index];
++probe_length;
if (bucket->state == BucketState::Free) {
*bucket = move(bucket_to_move);
bucket->state = bucket_state_for_probe_length(probe_length);
update_collection_for_swapped_buckets(&bucket_to_move, bucket);
break;
}
target_probe_length = used_bucket_probe_length(*bucket);
if (probe_length > target_probe_length) {
swap(bucket_to_move, *bucket);
bucket->state = bucket_state_for_probe_length(probe_length);
probe_length = target_probe_length;
update_collection_for_swapped_buckets(&bucket_to_move, bucket);
}
}
return HashSetResult::InsertedNewEntry;
}
// Try next bucket
if (++bucket_index == m_capacity) [[unlikely]]
bucket_index = 0;
++probe_length;
}
}
void delete_bucket(auto& bucket)
{
VERIFY(bucket.state != BucketState::Free);
// Delete the bucket
bucket.slot()->~T();
if constexpr (IsOrdered) {
if (bucket.previous)
bucket.previous->next = bucket.next;
else
m_collection_data.head = bucket.next;
if (bucket.next)
bucket.next->previous = bucket.previous;
else
m_collection_data.tail = bucket.previous;
bucket.previous = nullptr;
bucket.next = nullptr;
}
--m_size;
// If we deleted a bucket, we need to make sure to shift up all buckets after it to ensure
// that we can still probe for buckets with collisions, and we automatically optimize the
// probe lengths. To do so, we shift the following buckets up until we reach a free bucket,
// or a bucket with a probe length of 0 (the ideal index for that bucket).
auto update_bucket_neighbours = [&](BucketType* bucket) {
if constexpr (IsOrdered) {
if (bucket->previous)
bucket->previous->next = bucket;
else
m_collection_data.head = bucket;
if (bucket->next)
bucket->next->previous = bucket;
else
m_collection_data.tail = bucket;
}
};
VERIFY(&bucket >= m_buckets);
size_t shift_to_index = &bucket - m_buckets;
VERIFY(shift_to_index < m_capacity);
size_t shift_from_index = shift_to_index;
for (;;) {
if (++shift_from_index == m_capacity) [[unlikely]]
shift_from_index = 0;
auto* shift_from_bucket = &m_buckets[shift_from_index];
if (shift_from_bucket->state == BucketState::Free)
break;
auto shift_from_probe_length = used_bucket_probe_length(*shift_from_bucket);
if (shift_from_probe_length == 0)
break;
auto* shift_to_bucket = &m_buckets[shift_to_index];
*shift_to_bucket = move(*shift_from_bucket);
shift_to_bucket->state = bucket_state_for_probe_length(shift_from_probe_length - 1);
update_bucket_neighbours(shift_to_bucket);
if (++shift_to_index == m_capacity) [[unlikely]]
shift_to_index = 0;
}
// Mark last bucket as free
m_buckets[shift_to_index].state = BucketState::Free;
}
BucketType* m_buckets { nullptr };
[[no_unique_address]] CollectionDataType m_collection_data;
size_t m_size { 0 };
size_t m_capacity { 0 };
};
}
#if USING_AK_GLOBALLY
using AK::HashSetResult;
using AK::HashTable;
using AK::OrderedHashTable;
#endif