mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-04 01:05:58 +03:00
1123af361d
This API now returns a KResultOr<NonnullOwnPtr<KString>> and allocation failures should be propagated everywhere nicely. :^)
962 lines
37 KiB
C++
962 lines
37 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/LexicalPath.h>
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <AK/WeakPtr.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/FileSystem/Custody.h>
|
|
#include <Kernel/FileSystem/FileDescription.h>
|
|
#include <Kernel/PerformanceManager.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Random.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <Kernel/VM/AllocationStrategy.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
#include <Kernel/VM/PageDirectory.h>
|
|
#include <Kernel/VM/Region.h>
|
|
#include <Kernel/VM/SharedInodeVMObject.h>
|
|
#include <LibC/limits.h>
|
|
#include <LibELF/AuxiliaryVector.h>
|
|
#include <LibELF/Image.h>
|
|
#include <LibELF/Validation.h>
|
|
|
|
namespace Kernel {
|
|
|
|
extern Region* g_signal_trampoline_region;
|
|
|
|
struct LoadResult {
|
|
OwnPtr<Space> space;
|
|
FlatPtr load_base { 0 };
|
|
FlatPtr entry_eip { 0 };
|
|
size_t size { 0 };
|
|
WeakPtr<Region> tls_region;
|
|
size_t tls_size { 0 };
|
|
size_t tls_alignment { 0 };
|
|
WeakPtr<Region> stack_region;
|
|
};
|
|
|
|
static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, uid_t uid, uid_t euid, gid_t gid, gid_t egid, String executable_path, int main_program_fd);
|
|
|
|
static bool validate_stack_size(const Vector<String>& arguments, const Vector<String>& environment)
|
|
{
|
|
size_t total_arguments_size = 0;
|
|
size_t total_environment_size = 0;
|
|
|
|
for (auto& a : arguments)
|
|
total_arguments_size += a.length() + 1;
|
|
for (auto& e : environment)
|
|
total_environment_size += e.length() + 1;
|
|
|
|
total_arguments_size += sizeof(char*) * (arguments.size() + 1);
|
|
total_environment_size += sizeof(char*) * (environment.size() + 1);
|
|
|
|
static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
|
|
static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
|
|
|
|
if (total_arguments_size > max_arguments_size)
|
|
return false;
|
|
|
|
if (total_environment_size > max_environment_size)
|
|
return false;
|
|
|
|
// FIXME: This doesn't account for the size of the auxiliary vector
|
|
return true;
|
|
}
|
|
|
|
static KResultOr<FlatPtr> make_userspace_stack_for_main_thread(Region& region, Vector<String> arguments, Vector<String> environment, Vector<ELF::AuxiliaryValue> auxiliary_values)
|
|
{
|
|
FlatPtr new_esp = region.range().end().get();
|
|
|
|
// Add some bits of randomness to the user stack pointer.
|
|
new_esp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
|
|
|
|
auto push_on_new_stack = [&new_esp](u32 value) {
|
|
new_esp -= 4;
|
|
Userspace<u32*> stack_ptr = new_esp;
|
|
return copy_to_user(stack_ptr, &value);
|
|
};
|
|
|
|
auto push_aux_value_on_new_stack = [&new_esp](auxv_t value) {
|
|
new_esp -= sizeof(auxv_t);
|
|
Userspace<auxv_t*> stack_ptr = new_esp;
|
|
return copy_to_user(stack_ptr, &value);
|
|
};
|
|
|
|
auto push_string_on_new_stack = [&new_esp](const String& string) {
|
|
new_esp -= round_up_to_power_of_two(string.length() + 1, 4);
|
|
Userspace<u32*> stack_ptr = new_esp;
|
|
return copy_to_user(stack_ptr, string.characters(), string.length() + 1);
|
|
};
|
|
|
|
Vector<FlatPtr> argv_entries;
|
|
for (auto& argument : arguments) {
|
|
push_string_on_new_stack(argument);
|
|
if (!argv_entries.try_append(new_esp))
|
|
return ENOMEM;
|
|
}
|
|
|
|
Vector<FlatPtr> env_entries;
|
|
for (auto& variable : environment) {
|
|
push_string_on_new_stack(variable);
|
|
if (!env_entries.try_append(new_esp))
|
|
return ENOMEM;
|
|
}
|
|
|
|
for (auto& value : auxiliary_values) {
|
|
if (!value.optional_string.is_empty()) {
|
|
push_string_on_new_stack(value.optional_string);
|
|
value.auxv.a_un.a_ptr = (void*)new_esp;
|
|
}
|
|
}
|
|
|
|
for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
|
|
auto& value = auxiliary_values[i];
|
|
push_aux_value_on_new_stack(value.auxv);
|
|
}
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(env_entries[i]);
|
|
FlatPtr envp = new_esp;
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(argv_entries[i]);
|
|
FlatPtr argv = new_esp;
|
|
|
|
// NOTE: The stack needs to be 16-byte aligned.
|
|
new_esp -= new_esp % 16;
|
|
// GCC assumes that the return address has been pushed to the stack when it enters the function,
|
|
// so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
|
|
// calculations work
|
|
new_esp -= sizeof(void*);
|
|
|
|
push_on_new_stack((FlatPtr)envp);
|
|
push_on_new_stack((FlatPtr)argv);
|
|
push_on_new_stack((FlatPtr)argv_entries.size());
|
|
push_on_new_stack(0);
|
|
|
|
VERIFY((new_esp + sizeof(void*)) % 16 == 0);
|
|
|
|
return new_esp;
|
|
}
|
|
|
|
struct RequiredLoadRange {
|
|
FlatPtr start { 0 };
|
|
FlatPtr end { 0 };
|
|
};
|
|
|
|
static KResultOr<RequiredLoadRange> get_required_load_range(FileDescription& program_description)
|
|
{
|
|
auto& inode = *(program_description.inode());
|
|
auto vmobject = SharedInodeVMObject::create_with_inode(inode);
|
|
|
|
size_t executable_size = inode.size();
|
|
|
|
auto region = MM.allocate_kernel_region_with_vmobject(*vmobject, page_round_up(executable_size), "ELF memory range calculation", Region::Access::Read);
|
|
if (!region) {
|
|
dbgln("Could not allocate memory for ELF");
|
|
return ENOMEM;
|
|
}
|
|
|
|
auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
|
|
if (!elf_image.is_valid()) {
|
|
return EINVAL;
|
|
}
|
|
|
|
RequiredLoadRange range {};
|
|
elf_image.for_each_program_header([&range](const auto& pheader) {
|
|
if (pheader.type() != PT_LOAD)
|
|
return;
|
|
|
|
auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
|
|
auto region_end = region_start + pheader.size_in_memory();
|
|
if (range.start == 0 || region_start < range.start)
|
|
range.start = region_start;
|
|
if (range.end == 0 || region_end > range.end)
|
|
range.end = region_end;
|
|
});
|
|
|
|
VERIFY(range.end > range.start);
|
|
return range;
|
|
};
|
|
|
|
static KResultOr<FlatPtr> get_load_offset(const Elf32_Ehdr& main_program_header, FileDescription& main_program_description, FileDescription* interpreter_description)
|
|
{
|
|
constexpr FlatPtr load_range_start = 0x08000000;
|
|
constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
|
|
constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
|
|
|
|
auto random_load_offset_in_range([](auto start, auto size) {
|
|
return page_round_down(start + get_good_random<FlatPtr>() % size);
|
|
});
|
|
|
|
if (main_program_header.e_type == ET_DYN) {
|
|
return random_load_offset_in_range(load_range_start, load_range_size);
|
|
}
|
|
|
|
if (main_program_header.e_type != ET_EXEC)
|
|
return EINVAL;
|
|
|
|
auto main_program_load_range_result = get_required_load_range(main_program_description);
|
|
if (main_program_load_range_result.is_error())
|
|
return main_program_load_range_result.error();
|
|
|
|
auto main_program_load_range = main_program_load_range_result.value();
|
|
|
|
RequiredLoadRange selected_range {};
|
|
|
|
if (interpreter_description) {
|
|
auto interpreter_load_range_result = get_required_load_range(*interpreter_description);
|
|
if (interpreter_load_range_result.is_error())
|
|
return interpreter_load_range_result.error();
|
|
|
|
auto interpreter_size_in_memory = interpreter_load_range_result.value().end - interpreter_load_range_result.value().start;
|
|
auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
|
|
|
|
// No intersection
|
|
if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
|
|
return random_load_offset_in_range(load_range_start, load_range_size);
|
|
|
|
RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
|
|
RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
|
|
|
|
// Select larger part
|
|
if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
|
|
selected_range = first_available_part;
|
|
else
|
|
selected_range = second_available_part;
|
|
} else
|
|
selected_range = main_program_load_range;
|
|
|
|
// If main program is too big and leaves us without enough space for adequate loader randomization
|
|
if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
|
|
return E2BIG;
|
|
|
|
return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
|
|
}
|
|
|
|
enum class ShouldAllocateTls {
|
|
No,
|
|
Yes,
|
|
};
|
|
|
|
enum class ShouldAllowSyscalls {
|
|
No,
|
|
Yes,
|
|
};
|
|
|
|
static KResultOr<LoadResult> load_elf_object(NonnullOwnPtr<Space> new_space, FileDescription& object_description,
|
|
FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
|
|
{
|
|
auto& inode = *(object_description.inode());
|
|
auto vmobject = SharedInodeVMObject::create_with_inode(inode);
|
|
if (vmobject->writable_mappings()) {
|
|
dbgln("Refusing to execute a write-mapped program");
|
|
return ETXTBSY;
|
|
}
|
|
|
|
size_t executable_size = inode.size();
|
|
|
|
auto executable_region = MM.allocate_kernel_region_with_vmobject(*vmobject, page_round_up(executable_size), "ELF loading", Region::Access::Read);
|
|
if (!executable_region) {
|
|
dbgln("Could not allocate memory for ELF loading");
|
|
return ENOMEM;
|
|
}
|
|
|
|
auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
|
|
|
|
if (!elf_image.is_valid())
|
|
return ENOEXEC;
|
|
|
|
Region* master_tls_region { nullptr };
|
|
size_t master_tls_size = 0;
|
|
size_t master_tls_alignment = 0;
|
|
FlatPtr load_base_address = 0;
|
|
|
|
String elf_name = object_description.absolute_path();
|
|
VERIFY(!Processor::current().in_critical());
|
|
|
|
MemoryManager::enter_space(*new_space);
|
|
|
|
KResult ph_load_result = KSuccess;
|
|
elf_image.for_each_program_header([&](const ELF::Image::ProgramHeader& program_header) {
|
|
if (program_header.type() == PT_TLS) {
|
|
VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
|
|
VERIFY(program_header.size_in_memory());
|
|
|
|
if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
|
|
dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
|
|
ph_load_result = ENOEXEC;
|
|
return IterationDecision::Break;
|
|
}
|
|
|
|
auto range = new_space->allocate_range({}, program_header.size_in_memory());
|
|
if (!range.has_value()) {
|
|
ph_load_result = ENOMEM;
|
|
return IterationDecision::Break;
|
|
}
|
|
|
|
auto region_or_error = new_space->allocate_region(range.value(), String::formatted("{} (master-tls)", elf_name), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve);
|
|
if (region_or_error.is_error()) {
|
|
ph_load_result = region_or_error.error();
|
|
return IterationDecision::Break;
|
|
}
|
|
|
|
master_tls_region = region_or_error.value();
|
|
master_tls_size = program_header.size_in_memory();
|
|
master_tls_alignment = program_header.alignment();
|
|
|
|
if (!copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image())) {
|
|
ph_load_result = EFAULT;
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
if (program_header.type() != PT_LOAD)
|
|
return IterationDecision::Continue;
|
|
|
|
if (program_header.is_writable()) {
|
|
// Writable section: create a copy in memory.
|
|
VERIFY(program_header.size_in_memory());
|
|
VERIFY(program_header.alignment() == PAGE_SIZE);
|
|
|
|
if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
|
|
dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
|
|
ph_load_result = ENOEXEC;
|
|
return IterationDecision::Break;
|
|
}
|
|
|
|
int prot = 0;
|
|
if (program_header.is_readable())
|
|
prot |= PROT_READ;
|
|
if (program_header.is_writable())
|
|
prot |= PROT_WRITE;
|
|
auto region_name = String::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : "");
|
|
|
|
auto range_base = VirtualAddress { page_round_down(program_header.vaddr().offset(load_offset).get()) };
|
|
auto range_end = VirtualAddress { page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
|
|
|
|
auto range = new_space->allocate_range(range_base, range_end.get() - range_base.get());
|
|
if (!range.has_value()) {
|
|
ph_load_result = ENOMEM;
|
|
return IterationDecision::Break;
|
|
}
|
|
auto region_or_error = new_space->allocate_region(range.value(), region_name, prot, AllocationStrategy::Reserve);
|
|
if (region_or_error.is_error()) {
|
|
ph_load_result = region_or_error.error();
|
|
return IterationDecision::Break;
|
|
}
|
|
|
|
// It's not always the case with PIE executables (and very well shouldn't be) that the
|
|
// virtual address in the program header matches the one we end up giving the process.
|
|
// In order to copy the data image correctly into memory, we need to copy the data starting at
|
|
// the right initial page offset into the pages allocated for the elf_alloc-XX section.
|
|
// FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
|
|
// the .text and .data PT_LOAD sections of the executable.
|
|
// Accessing it would definitely be a bug.
|
|
auto page_offset = program_header.vaddr();
|
|
page_offset.mask(~PAGE_MASK);
|
|
if (!copy_to_user((u8*)region_or_error.value()->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image())) {
|
|
ph_load_result = EFAULT;
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
// Non-writable section: map the executable itself in memory.
|
|
VERIFY(program_header.size_in_memory());
|
|
VERIFY(program_header.alignment() == PAGE_SIZE);
|
|
int prot = 0;
|
|
if (program_header.is_readable())
|
|
prot |= PROT_READ;
|
|
if (program_header.is_writable())
|
|
prot |= PROT_WRITE;
|
|
if (program_header.is_executable())
|
|
prot |= PROT_EXEC;
|
|
auto range = new_space->allocate_range(program_header.vaddr().offset(load_offset), program_header.size_in_memory());
|
|
if (!range.has_value()) {
|
|
ph_load_result = ENOMEM;
|
|
return IterationDecision::Break;
|
|
}
|
|
auto region_or_error = new_space->allocate_region_with_vmobject(range.value(), *vmobject, program_header.offset(), elf_name, prot, true);
|
|
if (region_or_error.is_error()) {
|
|
ph_load_result = region_or_error.error();
|
|
return IterationDecision::Break;
|
|
}
|
|
if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
|
|
region_or_error.value()->set_syscall_region(true);
|
|
if (program_header.offset() == 0)
|
|
load_base_address = (FlatPtr)region_or_error.value()->vaddr().as_ptr();
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
if (ph_load_result.is_error()) {
|
|
dbgln("do_exec: Failure loading program ({})", ph_load_result.error());
|
|
return ph_load_result;
|
|
}
|
|
|
|
if (!elf_image.entry().offset(load_offset).get()) {
|
|
dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto stack_range = new_space->allocate_range({}, Thread::default_userspace_stack_size);
|
|
if (!stack_range.has_value()) {
|
|
dbgln("do_exec: Failed to allocate VM range for stack");
|
|
return ENOMEM;
|
|
}
|
|
|
|
auto stack_region_or_error = new_space->allocate_region(stack_range.value(), "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve);
|
|
if (stack_region_or_error.is_error())
|
|
return stack_region_or_error.error();
|
|
auto& stack_region = *stack_region_or_error.value();
|
|
stack_region.set_stack(true);
|
|
|
|
return LoadResult {
|
|
move(new_space),
|
|
load_base_address,
|
|
elf_image.entry().offset(load_offset).get(),
|
|
executable_size,
|
|
AK::try_make_weak_ptr(master_tls_region),
|
|
master_tls_size,
|
|
master_tls_alignment,
|
|
stack_region.make_weak_ptr()
|
|
};
|
|
}
|
|
|
|
KResultOr<LoadResult> Process::load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const Elf32_Ehdr& main_program_header)
|
|
{
|
|
auto new_space = Space::create(*this, nullptr);
|
|
if (!new_space)
|
|
return ENOMEM;
|
|
|
|
ScopeGuard space_guard([&]() {
|
|
MemoryManager::enter_process_paging_scope(*this);
|
|
});
|
|
|
|
auto load_offset = get_load_offset(main_program_header, main_program_description, interpreter_description);
|
|
if (load_offset.is_error()) {
|
|
return load_offset.error();
|
|
}
|
|
|
|
if (interpreter_description.is_null()) {
|
|
auto result = load_elf_object(new_space.release_nonnull(), main_program_description, load_offset.value(), ShouldAllocateTls::Yes, ShouldAllowSyscalls::No);
|
|
if (result.is_error())
|
|
return result.error();
|
|
|
|
m_master_tls_region = result.value().tls_region;
|
|
m_master_tls_size = result.value().tls_size;
|
|
m_master_tls_alignment = result.value().tls_alignment;
|
|
|
|
return result;
|
|
}
|
|
|
|
auto interpreter_load_result = load_elf_object(new_space.release_nonnull(), *interpreter_description, load_offset.value(), ShouldAllocateTls::No, ShouldAllowSyscalls::Yes);
|
|
|
|
if (interpreter_load_result.is_error())
|
|
return interpreter_load_result.error();
|
|
|
|
// TLS allocation will be done in userspace by the loader
|
|
VERIFY(!interpreter_load_result.value().tls_region);
|
|
VERIFY(!interpreter_load_result.value().tls_alignment);
|
|
VERIFY(!interpreter_load_result.value().tls_size);
|
|
|
|
return interpreter_load_result;
|
|
}
|
|
|
|
KResult Process::do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const Elf32_Ehdr& main_program_header)
|
|
{
|
|
VERIFY(is_user_process());
|
|
VERIFY(!Processor::current().in_critical());
|
|
auto path = main_program_description->absolute_path();
|
|
|
|
dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
|
|
|
|
// FIXME: How much stack space does process startup need?
|
|
if (!validate_stack_size(arguments, environment))
|
|
return E2BIG;
|
|
|
|
auto parts = path.split('/');
|
|
if (parts.is_empty())
|
|
return ENOENT;
|
|
|
|
auto main_program_metadata = main_program_description->metadata();
|
|
|
|
auto load_result_or_error = load(main_program_description, interpreter_description, main_program_header);
|
|
if (load_result_or_error.is_error()) {
|
|
dbgln("do_exec: Failed to load main program or interpreter for {}", path);
|
|
return load_result_or_error.error();
|
|
}
|
|
|
|
auto signal_trampoline_range = load_result_or_error.value().space->allocate_range({}, PAGE_SIZE);
|
|
if (!signal_trampoline_range.has_value()) {
|
|
dbgln("do_exec: Failed to allocate VM for signal trampoline");
|
|
return ENOMEM;
|
|
}
|
|
|
|
// We commit to the new executable at this point. There is no turning back!
|
|
|
|
// Prevent other processes from attaching to us with ptrace while we're doing this.
|
|
Locker ptrace_locker(ptrace_lock());
|
|
|
|
// Disable profiling temporarily in case it's running on this process.
|
|
auto was_profiling = m_profiling;
|
|
TemporaryChange profiling_disabler(m_profiling, false);
|
|
|
|
kill_threads_except_self();
|
|
|
|
auto& load_result = load_result_or_error.value();
|
|
bool executable_is_setid = false;
|
|
|
|
if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
|
|
if (main_program_metadata.is_setuid()) {
|
|
executable_is_setid = true;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_euid = main_program_metadata.uid;
|
|
m_suid = main_program_metadata.uid;
|
|
}
|
|
if (main_program_metadata.is_setgid()) {
|
|
executable_is_setid = true;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_egid = main_program_metadata.gid;
|
|
m_sgid = main_program_metadata.gid;
|
|
}
|
|
}
|
|
|
|
set_dumpable(!executable_is_setid);
|
|
|
|
{
|
|
// We must disable global profiling (especially kfree tracing) here because
|
|
// we might otherwise end up walking the stack into the process' space that
|
|
// is about to be destroyed.
|
|
TemporaryChange global_profiling_disabler(g_profiling_all_threads, false);
|
|
m_space = load_result.space.release_nonnull();
|
|
}
|
|
MemoryManager::enter_space(*m_space);
|
|
|
|
auto signal_trampoline_region = m_space->allocate_region_with_vmobject(signal_trampoline_range.value(), g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true);
|
|
if (signal_trampoline_region.is_error()) {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
signal_trampoline_region.value()->set_syscall_region(true);
|
|
|
|
m_executable = main_program_description->custody();
|
|
m_arguments = arguments;
|
|
m_environment = environment;
|
|
|
|
m_veil_state = VeilState::None;
|
|
m_unveiled_paths.clear();
|
|
|
|
m_coredump_metadata.clear();
|
|
|
|
auto current_thread = Thread::current();
|
|
current_thread->clear_signals();
|
|
|
|
clear_futex_queues_on_exec();
|
|
|
|
for (size_t i = 0; i < m_fds.size(); ++i) {
|
|
auto& description_and_flags = m_fds[i];
|
|
if (description_and_flags.description() && description_and_flags.flags() & FD_CLOEXEC)
|
|
description_and_flags = {};
|
|
}
|
|
|
|
int main_program_fd = -1;
|
|
if (interpreter_description) {
|
|
main_program_fd = alloc_fd();
|
|
VERIFY(main_program_fd >= 0);
|
|
auto seek_result = main_program_description->seek(0, SEEK_SET);
|
|
VERIFY(!seek_result.is_error());
|
|
main_program_description->set_readable(true);
|
|
m_fds[main_program_fd].set(move(main_program_description), FD_CLOEXEC);
|
|
}
|
|
|
|
new_main_thread = nullptr;
|
|
if (¤t_thread->process() == this) {
|
|
new_main_thread = current_thread;
|
|
} else {
|
|
for_each_thread([&](auto& thread) {
|
|
new_main_thread = &thread;
|
|
return IterationDecision::Break;
|
|
});
|
|
}
|
|
VERIFY(new_main_thread);
|
|
|
|
auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path, main_program_fd);
|
|
|
|
// NOTE: We create the new stack before disabling interrupts since it will zero-fault
|
|
// and we don't want to deal with faults after this point.
|
|
auto make_stack_result = make_userspace_stack_for_main_thread(*load_result.stack_region.unsafe_ptr(), move(arguments), move(environment), move(auxv));
|
|
if (make_stack_result.is_error())
|
|
return make_stack_result.error();
|
|
u32 new_userspace_esp = make_stack_result.value();
|
|
|
|
if (wait_for_tracer_at_next_execve()) {
|
|
// Make sure we release the ptrace lock here or the tracer will block forever.
|
|
ptrace_locker.unlock();
|
|
Thread::current()->send_urgent_signal_to_self(SIGSTOP);
|
|
}
|
|
|
|
// We enter a critical section here because we don't want to get interrupted between do_exec()
|
|
// and Processor::assume_context() or the next context switch.
|
|
// If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
|
|
Processor::current().enter_critical(prev_flags);
|
|
|
|
// NOTE: Be careful to not trigger any page faults below!
|
|
|
|
m_name = parts.take_last();
|
|
new_main_thread->set_name(m_name);
|
|
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_promises = m_execpromises;
|
|
m_has_promises = m_has_execpromises;
|
|
|
|
m_execpromises = 0;
|
|
m_has_execpromises = false;
|
|
|
|
m_signal_trampoline = signal_trampoline_region.value()->vaddr();
|
|
|
|
// FIXME: PID/TID ISSUE
|
|
m_pid = new_main_thread->tid().value();
|
|
}
|
|
|
|
auto tsr_result = new_main_thread->make_thread_specific_region({});
|
|
if (tsr_result.is_error()) {
|
|
// FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
new_main_thread->reset_fpu_state();
|
|
|
|
auto& tss = new_main_thread->m_tss;
|
|
tss.cs = GDT_SELECTOR_CODE3 | 3;
|
|
tss.ds = GDT_SELECTOR_DATA3 | 3;
|
|
tss.es = GDT_SELECTOR_DATA3 | 3;
|
|
tss.ss = GDT_SELECTOR_DATA3 | 3;
|
|
tss.fs = GDT_SELECTOR_DATA3 | 3;
|
|
tss.gs = GDT_SELECTOR_TLS | 3;
|
|
tss.eip = load_result.entry_eip;
|
|
tss.esp = new_userspace_esp;
|
|
tss.cr3 = space().page_directory().cr3();
|
|
tss.ss2 = pid().value();
|
|
|
|
{
|
|
TemporaryChange profiling_disabler(m_profiling, was_profiling);
|
|
PerformanceManager::add_process_exec_event(*this);
|
|
}
|
|
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
new_main_thread->set_state(Thread::State::Runnable);
|
|
}
|
|
u32 lock_count_to_restore;
|
|
[[maybe_unused]] auto rc = big_lock().force_unlock_if_locked(lock_count_to_restore);
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(Processor::current().in_critical());
|
|
return KSuccess;
|
|
}
|
|
|
|
static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, uid_t uid, uid_t euid, gid_t gid, gid_t egid, String executable_path, int main_program_fd)
|
|
{
|
|
Vector<ELF::AuxiliaryValue> auxv;
|
|
// PHDR/EXECFD
|
|
// PH*
|
|
auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
|
|
auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
|
|
// NOTELF
|
|
auxv.append({ ELF::AuxiliaryValue::Uid, (long)uid });
|
|
auxv.append({ ELF::AuxiliaryValue::EUid, (long)euid });
|
|
auxv.append({ ELF::AuxiliaryValue::Gid, (long)gid });
|
|
auxv.append({ ELF::AuxiliaryValue::EGid, (long)egid });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Platform, Processor::current().platform_string() });
|
|
// FIXME: This is platform specific
|
|
auxv.append({ ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });
|
|
|
|
// FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
|
|
auxv.append({ ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 });
|
|
|
|
char random_bytes[16] {};
|
|
get_fast_random_bytes((u8*)random_bytes, sizeof(random_bytes));
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Random, String(random_bytes, sizeof(random_bytes)) });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Null, 0L });
|
|
return auxv;
|
|
}
|
|
|
|
static KResultOr<Vector<String>> find_shebang_interpreter_for_executable(const char first_page[], int nread)
|
|
{
|
|
int word_start = 2;
|
|
int word_length = 0;
|
|
if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
|
|
Vector<String> interpreter_words;
|
|
|
|
for (int i = 2; i < nread; ++i) {
|
|
if (first_page[i] == '\n') {
|
|
break;
|
|
}
|
|
|
|
if (first_page[i] != ' ') {
|
|
++word_length;
|
|
}
|
|
|
|
if (first_page[i] == ' ') {
|
|
if (word_length > 0) {
|
|
interpreter_words.append(String(&first_page[word_start], word_length));
|
|
}
|
|
word_length = 0;
|
|
word_start = i + 1;
|
|
}
|
|
}
|
|
|
|
if (word_length > 0)
|
|
interpreter_words.append(String(&first_page[word_start], word_length));
|
|
|
|
if (!interpreter_words.is_empty())
|
|
return interpreter_words;
|
|
}
|
|
|
|
return ENOEXEC;
|
|
}
|
|
|
|
KResultOr<RefPtr<FileDescription>> Process::find_elf_interpreter_for_executable(const String& path, const Elf32_Ehdr& main_program_header, int nread, size_t file_size)
|
|
{
|
|
// Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
|
|
String interpreter_path;
|
|
if (!ELF::validate_program_headers(main_program_header, file_size, (const u8*)&main_program_header, nread, &interpreter_path)) {
|
|
dbgln("exec({}): File has invalid ELF Program headers", path);
|
|
return ENOEXEC;
|
|
}
|
|
|
|
if (!interpreter_path.is_empty()) {
|
|
dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
|
|
auto interp_result = VFS::the().open(interpreter_path, O_EXEC, 0, current_directory());
|
|
if (interp_result.is_error()) {
|
|
dbgln("exec({}): Unable to open program interpreter {}", path, interpreter_path);
|
|
return interp_result.error();
|
|
}
|
|
auto interpreter_description = interp_result.value();
|
|
auto interp_metadata = interpreter_description->metadata();
|
|
|
|
VERIFY(interpreter_description->inode());
|
|
|
|
// Validate the program interpreter as a valid elf binary.
|
|
// If your program interpreter is a #! file or something, it's time to stop playing games :)
|
|
if (interp_metadata.size < (int)sizeof(Elf32_Ehdr))
|
|
return ENOEXEC;
|
|
|
|
char first_page[PAGE_SIZE] = {};
|
|
auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
|
|
auto nread_or_error = interpreter_description->read(first_page_buffer, sizeof(first_page));
|
|
if (nread_or_error.is_error())
|
|
return ENOEXEC;
|
|
nread = nread_or_error.value();
|
|
|
|
if (nread < (int)sizeof(Elf32_Ehdr))
|
|
return ENOEXEC;
|
|
|
|
auto elf_header = (Elf32_Ehdr*)first_page;
|
|
if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
|
|
dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_description->absolute_path());
|
|
return ENOEXEC;
|
|
}
|
|
|
|
// Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
|
|
String interpreter_interpreter_path;
|
|
if (!ELF::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, &interpreter_interpreter_path)) {
|
|
dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_description->absolute_path());
|
|
return ENOEXEC;
|
|
}
|
|
|
|
if (!interpreter_interpreter_path.is_empty()) {
|
|
dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_description->absolute_path(), interpreter_interpreter_path);
|
|
return ELOOP;
|
|
}
|
|
|
|
return interpreter_description;
|
|
}
|
|
|
|
if (main_program_header.e_type == ET_REL) {
|
|
// We can't exec an ET_REL, that's just an object file from the compiler
|
|
return ENOEXEC;
|
|
}
|
|
if (main_program_header.e_type == ET_DYN) {
|
|
// If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
|
|
// for its own relocation (i.e. it's /usr/lib/Loader.so)
|
|
if (path != "/usr/lib/Loader.so")
|
|
dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
|
|
return nullptr;
|
|
}
|
|
|
|
// No interpreter, but, path refers to a valid elf image
|
|
return KResult(KSuccess);
|
|
}
|
|
|
|
KResult Process::exec(String path, Vector<String> arguments, Vector<String> environment, int recursion_depth)
|
|
{
|
|
if (recursion_depth > 2) {
|
|
dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
|
|
return ELOOP;
|
|
}
|
|
|
|
// Open the file to check what kind of binary format it is
|
|
// Currently supported formats:
|
|
// - #! interpreted file
|
|
// - ELF32
|
|
// * ET_EXEC binary that just gets loaded
|
|
// * ET_DYN binary that requires a program interpreter
|
|
//
|
|
auto file_or_error = VFS::the().open(path, O_EXEC, 0, current_directory());
|
|
if (file_or_error.is_error())
|
|
return file_or_error.error();
|
|
auto description = file_or_error.release_value();
|
|
auto metadata = description->metadata();
|
|
|
|
// Always gonna need at least 3 bytes. these are for #!X
|
|
if (metadata.size < 3)
|
|
return ENOEXEC;
|
|
|
|
VERIFY(description->inode());
|
|
|
|
// Read the first page of the program into memory so we can validate the binfmt of it
|
|
char first_page[PAGE_SIZE];
|
|
auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
|
|
auto nread_or_error = description->read(first_page_buffer, sizeof(first_page));
|
|
if (nread_or_error.is_error())
|
|
return ENOEXEC;
|
|
|
|
// 1) #! interpreted file
|
|
auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread_or_error.value());
|
|
if (!shebang_result.is_error()) {
|
|
Vector<String> new_arguments(shebang_result.value());
|
|
|
|
new_arguments.append(path);
|
|
|
|
arguments.remove(0);
|
|
new_arguments.append(move(arguments));
|
|
|
|
return exec(shebang_result.value().first(), move(new_arguments), move(environment), ++recursion_depth);
|
|
}
|
|
|
|
// #2) ELF32 for i386
|
|
|
|
if (nread_or_error.value() < (int)sizeof(Elf32_Ehdr))
|
|
return ENOEXEC;
|
|
auto main_program_header = (Elf32_Ehdr*)first_page;
|
|
|
|
if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
|
|
dbgln("exec({}): File has invalid ELF header", path);
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto elf_result = find_elf_interpreter_for_executable(path, *main_program_header, nread_or_error.value(), metadata.size);
|
|
// Assume a static ELF executable by default
|
|
RefPtr<FileDescription> interpreter_description;
|
|
// We're getting either an interpreter, an error, or KSuccess (i.e. no interpreter but file checks out)
|
|
if (!elf_result.is_error()) {
|
|
// It's a dynamic ELF executable, with or without an interpreter. Do not allocate TLS
|
|
interpreter_description = elf_result.value();
|
|
} else if (elf_result.error().is_error())
|
|
return elf_result.error();
|
|
|
|
// The bulk of exec() is done by do_exec(), which ensures that all locals
|
|
// are cleaned up by the time we yield-teleport below.
|
|
Thread* new_main_thread = nullptr;
|
|
u32 prev_flags = 0;
|
|
auto result = do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header);
|
|
if (result.is_error())
|
|
return result;
|
|
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(Processor::current().in_critical());
|
|
|
|
auto current_thread = Thread::current();
|
|
if (current_thread == new_main_thread) {
|
|
// We need to enter the scheduler lock before changing the state
|
|
// and it will be released after the context switch into that
|
|
// thread. We should also still be in our critical section
|
|
VERIFY(!g_scheduler_lock.own_lock());
|
|
VERIFY(Processor::current().in_critical() == 1);
|
|
g_scheduler_lock.lock();
|
|
current_thread->set_state(Thread::State::Running);
|
|
Processor::assume_context(*current_thread, prev_flags);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
Processor::current().leave_critical(prev_flags);
|
|
return KSuccess;
|
|
}
|
|
|
|
KResultOr<int> Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
|
|
{
|
|
REQUIRE_PROMISE(exec);
|
|
|
|
// NOTE: Be extremely careful with allocating any kernel memory in exec().
|
|
// On success, the kernel stack will be lost.
|
|
Syscall::SC_execve_params params;
|
|
if (!copy_from_user(¶ms, user_params))
|
|
return EFAULT;
|
|
|
|
if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
|
|
return E2BIG;
|
|
|
|
String path;
|
|
{
|
|
auto path_arg = get_syscall_path_argument(params.path);
|
|
if (path_arg.is_error())
|
|
return path_arg.error();
|
|
path = path_arg.value()->view();
|
|
}
|
|
|
|
auto copy_user_strings = [](const auto& list, auto& output) {
|
|
if (!list.length)
|
|
return true;
|
|
Checked size = sizeof(*list.strings);
|
|
size *= list.length;
|
|
if (size.has_overflow())
|
|
return false;
|
|
Vector<Syscall::StringArgument, 32> strings;
|
|
if (!strings.try_resize(list.length))
|
|
return false;
|
|
if (!copy_from_user(strings.data(), list.strings, list.length * sizeof(*list.strings)))
|
|
return false;
|
|
for (size_t i = 0; i < list.length; ++i) {
|
|
auto string = copy_string_from_user(strings[i]);
|
|
if (string.is_null())
|
|
return false;
|
|
if (!output.try_append(move(string)))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
Vector<String> arguments;
|
|
if (!copy_user_strings(params.arguments, arguments))
|
|
return EFAULT;
|
|
|
|
Vector<String> environment;
|
|
if (!copy_user_strings(params.environment, environment))
|
|
return EFAULT;
|
|
|
|
auto result = exec(move(path), move(arguments), move(environment));
|
|
VERIFY(result.is_error()); // We should never continue after a successful exec!
|
|
return result.error();
|
|
}
|
|
|
|
}
|