ladybird/Userland/Applications/SpaceAnalyzer/TreeMapWidget.cpp
Ali Mohammad Pur 5e1499d104 Everywhere: Rename {Deprecated => Byte}String
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).

This commit is auto-generated:
  $ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
    Meta Ports Ladybird Tests Kernel)
  $ perl -pie 's/\bDeprecatedString\b/ByteString/g;
    s/deprecated_string/byte_string/g' $xs
  $ clang-format --style=file -i \
    $(git diff --name-only | grep \.cpp\|\.h)
  $ gn format $(git ls-files '*.gn' '*.gni')
2023-12-17 18:25:10 +03:30

472 lines
17 KiB
C++

/*
* Copyright (c) 2021-2022, the SerenityOS developers.
* Copyright (c) 2022-2023, Sam Atkins <atkinssj@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "TreeMapWidget.h"
#include "ProgressWindow.h"
#include "Tree.h"
#include <AK/Array.h>
#include <AK/ByteString.h>
#include <AK/NumberFormat.h>
#include <LibGUI/ConnectionToWindowServer.h>
#include <LibGUI/Painter.h>
#include <LibGUI/Statusbar.h>
#include <LibGfx/Font/Font.h>
#include <WindowServer/WindowManager.h>
namespace SpaceAnalyzer {
static constexpr Array colors = {
Color(253, 231, 37),
Color(148, 216, 64),
Color(60, 188, 117),
Color(31, 150, 139),
Color(45, 112, 142),
Color(63, 71, 136),
Color(85, 121, 104),
};
static float get_normalized_aspect_ratio(float a, float b)
{
if (a < b) {
return a / b;
} else {
return b / a;
}
}
static bool node_is_leaf(TreeNode const& node)
{
return node.num_children() == 0;
}
bool TreeMapWidget::rect_can_contain_label(Gfx::IntRect const& rect) const
{
return rect.height() >= font().presentation_size() && rect.width() > 20;
}
void TreeMapWidget::paint_cell_frame(GUI::Painter& painter, TreeNode const& node, Gfx::IntRect const& cell_rect, Gfx::IntRect const& inner_rect, int depth, HasLabel has_label) const
{
if (cell_rect.width() <= 2 || cell_rect.height() <= 2) {
painter.fill_rect(cell_rect, Color::Black);
return;
}
Gfx::IntRect remainder = cell_rect;
Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))];
if (m_selected_node_cache == &node) {
color = color.darkened(0.8f);
}
// Draw borders.
painter.fill_rect(remainder.take_from_right(1), Color::Black);
painter.fill_rect(remainder.take_from_bottom(1), Color::Black);
// Draw highlights.
painter.fill_rect(remainder.take_from_right(1), color.darkened());
painter.fill_rect(remainder.take_from_bottom(1), color.darkened());
painter.fill_rect(remainder.take_from_top(1), color.lightened());
painter.fill_rect(remainder.take_from_left(1), color.lightened());
// Paint the background.
if (inner_rect.is_empty()) {
painter.fill_rect(remainder, color);
} else {
// Draw black edges above and to the left of the inner_rect.
Gfx::IntRect border_rect = inner_rect.inflated(2, 2);
Gfx::IntRect hammer_rect = border_rect;
hammer_rect.set_width(hammer_rect.width() - 1);
hammer_rect.set_height(hammer_rect.height() - 1);
painter.fill_rect(border_rect.take_from_top(1), Color::Black);
painter.fill_rect(border_rect.take_from_left(1), Color::Black);
for (auto& shard : remainder.shatter(hammer_rect)) {
painter.fill_rect(shard, color);
}
}
// Paint text.
if (has_label == HasLabel::Yes) {
Gfx::IntRect text_rect = remainder;
text_rect.shrink(4, 4);
painter.clear_clip_rect();
painter.add_clip_rect(text_rect);
if (node_is_leaf(node)) {
painter.draw_text(text_rect, node.name(), font(), Gfx::TextAlignment::TopLeft, Color::Black);
text_rect.take_from_top(font().presentation_size() + 1);
painter.draw_text(text_rect, human_readable_size(node.area()), font(), Gfx::TextAlignment::TopLeft, Color::Black);
} else {
painter.draw_text(text_rect, ByteString::formatted("{} - {}", node.name(), human_readable_size(node.area())), font(), Gfx::TextAlignment::TopLeft, Color::Black);
}
painter.clear_clip_rect();
}
}
template<typename Function>
void TreeMapWidget::lay_out_children(TreeNode const& node, Gfx::IntRect const& rect, int depth, Function callback)
{
if (node.num_children() == 0) {
return;
}
// Check if the children are sorted yet, if not do that now.
for (size_t k = 0; k < node.num_children() - 1; k++) {
if (node.child_at(k).area() < node.child_at(k + 1).area()) {
node.sort_children_by_area();
break;
}
}
i64 total_area = node.area();
Gfx::IntRect canvas = rect;
bool remaining_nodes_are_too_small = false;
for (size_t i = 0; !remaining_nodes_are_too_small && i < node.num_children(); i++) {
const i64 i_node_area = node.child_at(i).area();
if (i_node_area == 0)
break;
const size_t long_side_size = max(canvas.width(), canvas.height());
const size_t short_side_size = min(canvas.width(), canvas.height());
size_t row_or_column_size = long_side_size * i_node_area / total_area;
i64 node_area_sum = i_node_area;
size_t k = i + 1;
// Try to add nodes to this row or column so long as the worst aspect ratio of
// the new set of nodes is better than the worst aspect ratio of the current set.
{
float best_worst_aspect_ratio_so_far = get_normalized_aspect_ratio(row_or_column_size, short_side_size);
for (; k < node.num_children(); k++) {
// Do a preliminary calculation of the worst aspect ratio of the nodes at index i and k
// if that aspect ratio is better than the 'best_worst_aspect_ratio_so_far' we keep it,
// otherwise it is discarded.
i64 k_node_area = node.child_at(k).area();
if (k_node_area == 0) {
break;
}
i64 new_node_area_sum = node_area_sum + k_node_area;
size_t new_row_or_column_size = long_side_size * new_node_area_sum / total_area;
size_t i_node_size = short_side_size * i_node_area / new_node_area_sum;
size_t k_node_size = short_side_size * k_node_area / new_node_area_sum;
float i_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, i_node_size);
float k_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, k_node_size);
float new_worst_aspect_ratio = min(i_node_aspect_ratio, k_node_aspect_ratio);
if (new_worst_aspect_ratio < best_worst_aspect_ratio_so_far) {
break;
}
best_worst_aspect_ratio_so_far = new_worst_aspect_ratio;
node_area_sum = new_node_area_sum;
row_or_column_size = new_row_or_column_size;
}
}
// Paint the elements from 'i' up to and including 'k-1'.
{
const size_t fixed_side_size = row_or_column_size;
i64 placement_area = node_area_sum;
size_t main_dim = short_side_size;
// Lay out nodes in a row or column.
Orientation orientation = canvas.width() > canvas.height() ? Orientation::Horizontal : Orientation::Vertical;
Gfx::IntRect layout_rect = canvas;
layout_rect.set_primary_size_for_orientation(orientation, fixed_side_size);
for (size_t q = i; q < k; q++) {
auto& child = node.child_at(q);
size_t node_size = main_dim * child.area() / placement_area;
Gfx::IntRect cell_rect = layout_rect;
cell_rect.set_secondary_size_for_orientation(orientation, node_size);
Gfx::IntRect inner_rect;
HasLabel has_label = HasLabel::No;
if (child.num_children() != 0 && rect.height() >= 8 && rect.width() >= 8) {
inner_rect = cell_rect;
inner_rect.shrink(4, 4); // border and shading
if (rect_can_contain_label(inner_rect)) {
int const margin = 5;
has_label = HasLabel::Yes;
inner_rect.set_y(inner_rect.y() + font().presentation_size() + margin);
inner_rect.set_height(inner_rect.height() - (font().presentation_size() + margin * 2));
inner_rect.set_x(inner_rect.x() + margin);
inner_rect.set_width(inner_rect.width() - margin * 2);
}
} else if (rect_can_contain_label(cell_rect)) {
has_label = HasLabel::Yes;
}
callback(child, q, cell_rect, inner_rect, depth, has_label, IsRemainder::No);
if (cell_rect.width() * cell_rect.height() < 16) {
remaining_nodes_are_too_small = true;
} else if (!inner_rect.is_empty()) {
lay_out_children(child, inner_rect, depth + 1, callback);
}
layout_rect.set_secondary_offset_for_orientation(orientation, layout_rect.secondary_offset_for_orientation(orientation) + node_size);
main_dim -= node_size;
placement_area -= child.area();
}
canvas.set_primary_offset_for_orientation(orientation, canvas.primary_offset_for_orientation(orientation) + fixed_side_size);
canvas.set_primary_size_for_orientation(orientation, canvas.primary_size_for_orientation(orientation) - fixed_side_size);
}
// Consume nodes that were added to this row or column.
i = k - 1;
total_area -= node_area_sum;
}
// If not the entire canvas was filled with nodes, fill the remaining area with a dither pattern.
if (!canvas.is_empty()) {
callback(node, 0, canvas, Gfx::IntRect(), depth, HasLabel::No, IsRemainder::Yes);
}
}
TreeNode const* TreeMapWidget::path_node(size_t n) const
{
if (!m_tree.ptr())
return nullptr;
TreeNode const* iter = &m_tree->root();
size_t path_index = 0;
while (iter && path_index < m_path_segments.size() && path_index < n) {
auto child_name = m_path_segments[path_index];
auto maybe_child = iter->child_with_name(child_name);
if (!maybe_child.has_value())
return nullptr;
iter = &maybe_child.release_value();
path_index++;
}
return iter;
}
void TreeMapWidget::paint_event(GUI::PaintEvent& event)
{
GUI::Frame::paint_event(event);
GUI::Painter painter(*this);
m_selected_node_cache = path_node(m_path_segments.size());
TreeNode const* node = path_node(m_viewpoint);
if (!node) {
painter.fill_rect(frame_inner_rect(), Color::MidGray);
} else if (node_is_leaf(*node)) {
paint_cell_frame(painter, *node, frame_inner_rect(), Gfx::IntRect(), m_viewpoint - 1, HasLabel::Yes);
} else {
lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](TreeNode const& node, int, Gfx::IntRect const& rect, Gfx::IntRect const& inner_rect, int depth, HasLabel has_label, IsRemainder remainder) {
if (remainder == IsRemainder::No) {
paint_cell_frame(painter, node, rect, inner_rect, depth, has_label);
} else {
Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))];
Gfx::IntRect dither_rect = rect;
painter.fill_rect(dither_rect.take_from_right(1), Color::Black);
painter.fill_rect(dither_rect.take_from_bottom(1), Color::Black);
painter.fill_rect_with_dither_pattern(dither_rect, color, Color::Black);
}
});
}
}
Vector<ByteString> TreeMapWidget::path_to_position(Gfx::IntPoint position)
{
TreeNode const* node = path_node(m_viewpoint);
if (!node) {
return {};
}
Vector<ByteString> path;
lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](TreeNode const& node, int, Gfx::IntRect const& rect, Gfx::IntRect const&, int, HasLabel, IsRemainder is_remainder) {
if (is_remainder == IsRemainder::No && rect.contains(position)) {
path.append(node.name());
}
});
return path;
}
void TreeMapWidget::mousemove_event(GUI::MouseEvent& event)
{
auto* node = path_node(m_viewpoint);
if (!node) {
set_tooltip({});
return;
}
auto* hovered_node = node;
lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](TreeNode const&, int index, Gfx::IntRect const& rect, Gfx::IntRect const&, int, HasLabel, IsRemainder is_remainder) {
if (is_remainder == IsRemainder::No && rect.contains(event.position())) {
hovered_node = &hovered_node->child_at(index);
}
});
set_tooltip(MUST(String::formatted("{}\n{}", hovered_node->name(), human_readable_size(hovered_node->area()))));
}
void TreeMapWidget::mousedown_event(GUI::MouseEvent& event)
{
TreeNode const* node = path_node(m_viewpoint);
if (node && !node_is_leaf(*node)) {
auto path = path_to_position(event.position());
if (!path.is_empty()) {
m_path_segments.shrink(m_viewpoint);
m_path_segments.extend(path);
update();
}
}
}
void TreeMapWidget::doubleclick_event(GUI::MouseEvent& event)
{
if (event.button() != GUI::MouseButton::Primary)
return;
TreeNode const* node = path_node(m_viewpoint);
if (node && !node_is_leaf(*node)) {
auto path = path_to_position(event.position());
m_path_segments.shrink(m_viewpoint);
m_path_segments.extend(path);
m_viewpoint = m_path_segments.size();
if (on_path_change) {
on_path_change();
}
update();
}
}
void TreeMapWidget::keydown_event(GUI::KeyEvent& event)
{
if (event.key() == KeyCode::Key_Left)
set_viewpoint(m_viewpoint == 0 ? m_path_segments.size() : m_viewpoint - 1);
else if (event.key() == KeyCode::Key_Right)
set_viewpoint(m_viewpoint == m_path_segments.size() ? 0 : m_viewpoint + 1);
else
event.ignore();
}
void TreeMapWidget::mousewheel_event(GUI::MouseEvent& event)
{
int delta = event.wheel_raw_delta_y();
if (delta > 0) {
size_t step_back = delta;
if (step_back > m_viewpoint)
step_back = m_viewpoint;
set_viewpoint(m_viewpoint - step_back);
} else {
size_t step_up = -delta;
set_viewpoint(m_viewpoint + step_up);
}
}
void TreeMapWidget::context_menu_event(GUI::ContextMenuEvent& context_menu_event)
{
if (on_context_menu_request)
on_context_menu_request(context_menu_event);
}
void TreeMapWidget::recalculate_path_for_new_tree()
{
TreeNode const* current = &m_tree->root();
size_t new_path_length = 0;
for (auto& segment : m_path_segments) {
auto maybe_child = current->child_with_name(segment);
if (!maybe_child.has_value())
break;
new_path_length++;
current = &maybe_child.release_value();
}
m_path_segments.shrink(new_path_length);
if (new_path_length < m_viewpoint)
m_viewpoint = new_path_length - 1;
}
static ErrorOr<void> fill_mounts(Vector<MountInfo>& output)
{
// Output info about currently mounted filesystems.
auto file = TRY(Core::File::open("/sys/kernel/df"sv, Core::File::OpenMode::Read));
auto content = TRY(file->read_until_eof());
auto json = TRY(JsonValue::from_string(content));
TRY(json.as_array().try_for_each([&output](JsonValue const& value) -> ErrorOr<void> {
auto& filesystem_object = value.as_object();
MountInfo mount_info;
mount_info.mount_point = filesystem_object.get_byte_string("mount_point"sv).value_or({});
mount_info.source = filesystem_object.get_byte_string("source"sv).value_or("none");
TRY(output.try_append(mount_info));
return {};
}));
return {};
}
ErrorOr<void> TreeMapWidget::analyze(GUI::Statusbar& statusbar)
{
statusbar.set_text({});
auto progress_window = TRY(ProgressWindow::try_create("Space Analyzer"sv));
progress_window->show();
// Build an in-memory tree mirroring the filesystem and for each node
// calculate the sum of the file size for all its descendants.
auto tree = TRY(Tree::create(""));
Vector<MountInfo> mounts;
TRY(fill_mounts(mounts));
auto errors = tree->root().populate_filesize_tree(mounts, [&](size_t processed_file_count) {
progress_window->update_progress_label(processed_file_count);
});
progress_window->close();
// Display an error summary in the statusbar.
if (!errors.is_empty()) {
StringBuilder builder;
bool first = true;
builder.append("Some directories were not analyzed: "sv);
for (auto& key : errors.keys()) {
if (!first) {
builder.append(", "sv);
}
auto const* error = strerror(key);
builder.append({ error, strlen(error) });
builder.append(" ("sv);
int value = errors.get(key).value();
builder.append(ByteString::number(value));
if (value == 1) {
builder.append(" time"sv);
} else {
builder.append(" times"sv);
}
builder.append(')');
first = false;
}
statusbar.set_text(TRY(builder.to_string()));
} else {
statusbar.set_text("No errors"_string);
}
m_tree = move(tree);
recalculate_path_for_new_tree();
if (on_path_change) {
on_path_change();
}
update();
return {};
}
void TreeMapWidget::set_viewpoint(size_t viewpoint)
{
if (m_viewpoint == viewpoint)
return;
if (viewpoint > m_path_segments.size())
viewpoint = m_path_segments.size();
m_viewpoint = viewpoint;
if (on_path_change) {
on_path_change();
}
update();
}
size_t TreeMapWidget::path_size() const
{
return m_path_segments.size() + 1;
}
size_t TreeMapWidget::viewpoint() const
{
return m_viewpoint;
}
}