ladybird/Userland/Libraries/LibJS/AST.h
Andreas Kling 398c181c79 LibJS: Rename PropertyName to PropertyKey
Let's use the same name as the spec. :^)
2021-10-24 17:18:07 +02:00

1879 lines
58 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, David Tuin <davidot@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/FlyString.h>
#include <AK/HashMap.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/RefPtr.h>
#include <AK/String.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
#include <LibJS/Forward.h>
#include <LibJS/Runtime/EnvironmentCoordinate.h>
#include <LibJS/Runtime/PropertyKey.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/Value.h>
#include <LibJS/SourceRange.h>
#include <LibRegex/Regex.h>
namespace JS {
class Declaration;
class ClassDeclaration;
class FunctionDeclaration;
class Identifier;
class MemberExpression;
class VariableDeclaration;
enum class FunctionKind {
Generator,
Regular,
};
template<class T, class... Args>
static inline NonnullRefPtr<T>
create_ast_node(SourceRange range, Args&&... args)
{
return adopt_ref(*new T(range, forward<Args>(args)...));
}
class ASTNode : public RefCounted<ASTNode> {
public:
virtual ~ASTNode() { }
virtual Value execute(Interpreter&, GlobalObject&) const = 0;
virtual void generate_bytecode(Bytecode::Generator&) const;
virtual void dump(int indent) const;
SourceRange const& source_range() const { return m_source_range; }
SourceRange& source_range() { return m_source_range; }
String class_name() const;
template<typename T>
bool fast_is() const = delete;
virtual bool is_new_expression() const { return false; }
virtual bool is_member_expression() const { return false; }
virtual bool is_super_expression() const { return false; }
virtual bool is_function_expression() const { return false; }
virtual bool is_class_expression() const { return false; }
virtual bool is_expression_statement() const { return false; }
virtual bool is_identifier() const { return false; }
virtual bool is_scope_node() const { return false; }
virtual bool is_program() const { return false; }
virtual bool is_function_declaration() const { return false; }
protected:
explicit ASTNode(SourceRange source_range)
: m_source_range(source_range)
{
}
private:
SourceRange m_source_range;
};
class Statement : public ASTNode {
public:
explicit Statement(SourceRange source_range)
: ASTNode(source_range)
{
}
};
class LabelableStatement : public Statement {
public:
using Statement::Statement;
Vector<FlyString> const& labels() const { return m_labels; }
virtual void add_label(FlyString string) { m_labels.append(move(string)); }
protected:
Vector<FlyString> m_labels;
};
class IterationStatement : public LabelableStatement {
public:
using LabelableStatement::LabelableStatement;
};
class EmptyStatement final : public Statement {
public:
explicit EmptyStatement(SourceRange source_range)
: Statement(source_range)
{
}
Value execute(Interpreter&, GlobalObject&) const override { return {}; }
virtual void generate_bytecode(Bytecode::Generator&) const override;
};
class ErrorStatement final : public Statement {
public:
explicit ErrorStatement(SourceRange source_range)
: Statement(source_range)
{
}
Value execute(Interpreter&, GlobalObject&) const override { return {}; }
};
class ExpressionStatement final : public Statement {
public:
ExpressionStatement(SourceRange source_range, NonnullRefPtr<Expression> expression)
: Statement(source_range)
, m_expression(move(expression))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
Expression const& expression() const { return m_expression; };
private:
virtual bool is_expression_statement() const override { return true; }
NonnullRefPtr<Expression> m_expression;
};
template<typename... Args>
class IteratorOrVoidFunction : public Function<IterationDecision(Args...)> {
public:
template<typename CallableType>
IteratorOrVoidFunction(CallableType&& callable) requires(VoidFunction<CallableType, Args...>)
: Function<IterationDecision(Args...)>([callable = forward<CallableType>(callable)](Args... args) {
callable(args...);
return IterationDecision::Continue;
})
{
}
template<typename CallableType>
IteratorOrVoidFunction(CallableType&& callable) requires(IteratorFunction<CallableType, Args...>)
: Function<IterationDecision(Args...)>(forward<CallableType>(callable))
{
}
};
class ScopeNode : public LabelableStatement {
public:
template<typename T, typename... Args>
T& append(SourceRange range, Args&&... args)
{
auto child = create_ast_node<T>(range, forward<Args>(args)...);
m_children.append(move(child));
return static_cast<T&>(m_children.last());
}
void append(NonnullRefPtr<Statement> child)
{
m_children.append(move(child));
}
NonnullRefPtrVector<Statement> const& children() const { return m_children; }
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
Value evaluate_statements(Interpreter& interpreter, GlobalObject& global_object) const;
void add_var_scoped_declaration(NonnullRefPtr<Declaration> variables);
void add_lexical_declaration(NonnullRefPtr<Declaration> variables);
void add_hoisted_function(NonnullRefPtr<FunctionDeclaration> declaration);
[[nodiscard]] bool has_lexical_declarations() const { return !m_lexical_declarations.is_empty(); }
[[nodiscard]] bool has_var_declarations() const { return !m_var_declarations.is_empty(); }
[[nodiscard]] size_t var_declaration_count() const { return m_var_declarations.size(); }
[[nodiscard]] size_t lexical_declaration_count() const { return m_lexical_declarations.size(); }
void for_each_lexically_scoped_declaration(IteratorOrVoidFunction<Declaration const&>&& callback) const;
void for_each_lexically_declared_name(IteratorOrVoidFunction<FlyString const&>&& callback) const;
void for_each_var_declared_name(IteratorOrVoidFunction<FlyString const&>&& callback) const;
void for_each_var_function_declaration_in_reverse_order(IteratorOrVoidFunction<FunctionDeclaration const&>&& callback) const;
void for_each_var_scoped_variable_declaration(IteratorOrVoidFunction<VariableDeclaration const&>&& callback) const;
void block_declaration_instantiation(GlobalObject& global_object, Environment* environment) const;
void for_each_function_hoistable_with_annexB_extension(IteratorOrVoidFunction<FunctionDeclaration&>&& callback) const;
protected:
explicit ScopeNode(SourceRange source_range)
: LabelableStatement(source_range)
{
}
private:
virtual bool is_scope_node() const final { return true; }
NonnullRefPtrVector<Statement> m_children;
NonnullRefPtrVector<Declaration> m_lexical_declarations;
NonnullRefPtrVector<Declaration> m_var_declarations;
NonnullRefPtrVector<FunctionDeclaration> m_functions_hoistable_with_annexB_extension;
};
class ImportStatement final : public Statement {
public:
struct ImportEntry {
String import_name;
String local_name;
};
explicit ImportStatement(SourceRange source_range, StringView from_module, Vector<ImportEntry> entries = {})
: Statement(source_range)
, m_module_request(from_module)
, m_entries(move(entries))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
bool has_bound_name(StringView name) const;
private:
String m_module_request;
Vector<ImportEntry> m_entries;
};
class ExportStatement final : public Statement {
public:
struct ExportEntry {
enum Kind {
ModuleRequest,
LocalExport
} kind;
// Can always have
String export_name;
// Only if module request
String module_request;
// Has just one of ones below
String local_or_import_name;
ExportEntry(String export_name, String local_name)
: kind(LocalExport)
, export_name(export_name)
, local_or_import_name(local_name)
{
}
};
explicit ExportStatement(SourceRange source_range, RefPtr<ASTNode> statement, Vector<ExportEntry> entries)
: Statement(source_range)
, m_statement(move(statement))
, m_entries(move(entries))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
bool has_export(StringView export_name) const;
private:
RefPtr<ASTNode> m_statement;
Vector<ExportEntry> m_entries;
};
class Program final : public ScopeNode {
public:
enum class Type {
Script,
Module
};
explicit Program(SourceRange source_range, Type program_type)
: ScopeNode(source_range)
, m_type(program_type)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
bool is_strict_mode() const { return m_is_strict_mode; }
void set_strict_mode() { m_is_strict_mode = true; }
Type type() const { return m_type; }
void append_import(NonnullRefPtr<ImportStatement> import_statement)
{
m_imports.append(import_statement);
append(import_statement);
}
void append_export(NonnullRefPtr<ExportStatement> export_statement)
{
m_exports.append(export_statement);
append(export_statement);
}
NonnullRefPtrVector<ImportStatement> const& imports() const { return m_imports; }
NonnullRefPtrVector<ExportStatement> const& exports() const { return m_exports; }
ThrowCompletionOr<void> global_declaration_instantiation(Interpreter& interpreter, GlobalObject& global_object, GlobalEnvironment& global_environment) const;
private:
virtual bool is_program() const override { return true; }
bool m_is_strict_mode { false };
Type m_type { Type::Script };
NonnullRefPtrVector<ImportStatement> m_imports;
NonnullRefPtrVector<ExportStatement> m_exports;
};
class BlockStatement final : public ScopeNode {
public:
explicit BlockStatement(SourceRange source_range)
: ScopeNode(source_range)
{
}
Value execute(Interpreter& interpreter, GlobalObject& object) const override;
};
class FunctionBody final : public ScopeNode {
public:
explicit FunctionBody(SourceRange source_range)
: ScopeNode(source_range)
{
}
void set_strict_mode() { m_in_strict_mode = true; }
bool in_strict_mode() const { return m_in_strict_mode; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
private:
bool m_in_strict_mode { false };
};
class Expression : public ASTNode {
public:
explicit Expression(SourceRange source_range)
: ASTNode(source_range)
{
}
virtual Reference to_reference(Interpreter&, GlobalObject&) const;
};
class Declaration : public Statement {
public:
explicit Declaration(SourceRange source_range)
: Statement(source_range)
{
}
virtual void for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const = 0;
// 8.1.3 Static Semantics: IsConstantDeclaration, https://tc39.es/ecma262/#sec-static-semantics-isconstantdeclaration
virtual bool is_constant_declaration() const { return false; }
virtual bool is_lexical_declaration() const { return false; }
};
class ErrorDeclaration final : public Declaration {
public:
explicit ErrorDeclaration(SourceRange source_range)
: Declaration(source_range)
{
}
Value execute(Interpreter&, GlobalObject&) const override { return {}; }
void for_each_bound_name(IteratorOrVoidFunction<FlyString const&>) const override
{
VERIFY_NOT_REACHED();
}
};
struct BindingPattern : RefCounted<BindingPattern> {
// This covers both BindingProperty and BindingElement, hence the more generic name
struct BindingEntry {
// If this entry represents a BindingElement, then name will be Empty
Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<Expression>, Empty> name {};
Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>, NonnullRefPtr<MemberExpression>, Empty> alias {};
RefPtr<Expression> initializer {};
bool is_rest { false };
bool is_elision() const { return name.has<Empty>() && alias.has<Empty>(); }
};
enum class Kind {
Array,
Object,
};
void dump(int indent) const;
template<typename C>
void for_each_bound_name(C&& callback) const;
bool contains_expression() const;
Vector<BindingEntry> entries;
Kind kind { Kind::Object };
};
class FunctionNode {
public:
struct Parameter {
Variant<FlyString, NonnullRefPtr<BindingPattern>> binding;
RefPtr<Expression> default_value;
bool is_rest { false };
};
FlyString const& name() const { return m_name; }
Statement const& body() const { return *m_body; }
Vector<Parameter> const& parameters() const { return m_parameters; };
i32 function_length() const { return m_function_length; }
bool is_strict_mode() const { return m_is_strict_mode; }
bool might_need_arguments_object() const { return m_might_need_arguments_object; }
bool contains_direct_call_to_eval() const { return m_contains_direct_call_to_eval; }
bool is_arrow_function() const { return m_is_arrow_function; }
FunctionKind kind() const { return m_kind; }
protected:
FunctionNode(FlyString name, NonnullRefPtr<Statement> body, Vector<Parameter> parameters, i32 function_length, FunctionKind kind, bool is_strict_mode, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function)
: m_name(move(name))
, m_body(move(body))
, m_parameters(move(parameters))
, m_function_length(function_length)
, m_kind(kind)
, m_is_strict_mode(is_strict_mode)
, m_might_need_arguments_object(might_need_arguments_object)
, m_contains_direct_call_to_eval(contains_direct_call_to_eval)
, m_is_arrow_function(is_arrow_function)
{
if (m_is_arrow_function)
VERIFY(!m_might_need_arguments_object);
}
void dump(int indent, String const& class_name) const;
protected:
void set_name(FlyString name)
{
VERIFY(m_name.is_empty());
m_name = move(name);
}
private:
FlyString m_name;
NonnullRefPtr<Statement> m_body;
Vector<Parameter> const m_parameters;
const i32 m_function_length;
FunctionKind m_kind;
bool m_is_strict_mode { false };
bool m_might_need_arguments_object { false };
bool m_contains_direct_call_to_eval { false };
bool m_is_arrow_function { false };
};
class FunctionDeclaration final
: public Declaration
, public FunctionNode {
public:
static bool must_have_name() { return true; }
FunctionDeclaration(SourceRange source_range, FlyString const& name, NonnullRefPtr<Statement> body, Vector<Parameter> parameters, i32 function_length, FunctionKind kind, bool is_strict_mode, bool might_need_arguments_object, bool contains_direct_call_to_eval)
: Declaration(source_range)
, FunctionNode(name, move(body), move(parameters), function_length, kind, is_strict_mode, might_need_arguments_object, contains_direct_call_to_eval, false)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
void for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const override;
virtual bool is_function_declaration() const override { return true; }
void set_should_do_additional_annexB_steps() { m_is_hoisted = true; }
private:
bool m_is_hoisted { false };
};
class FunctionExpression final
: public Expression
, public FunctionNode {
public:
static bool must_have_name() { return false; }
FunctionExpression(SourceRange source_range, FlyString const& name, NonnullRefPtr<Statement> body, Vector<Parameter> parameters, i32 function_length, FunctionKind kind, bool is_strict_mode, bool might_need_arguments_object, bool contains_direct_call_to_eval, bool is_arrow_function = false)
: Expression(source_range)
, FunctionNode(name, move(body), move(parameters), function_length, kind, is_strict_mode, might_need_arguments_object, contains_direct_call_to_eval, is_arrow_function)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
bool has_name() const { return !name().is_empty(); }
Value instantiate_ordinary_function_expression(Interpreter& interpreter, GlobalObject& global_object, FlyString given_name) const;
private:
virtual bool is_function_expression() const override { return true; }
};
class ErrorExpression final : public Expression {
public:
explicit ErrorExpression(SourceRange source_range)
: Expression(source_range)
{
}
Value execute(Interpreter&, GlobalObject&) const override { return {}; }
};
class YieldExpression final : public Expression {
public:
explicit YieldExpression(SourceRange source_range, RefPtr<Expression> argument, bool is_yield_from)
: Expression(source_range)
, m_argument(move(argument))
, m_is_yield_from(is_yield_from)
{
}
Expression const* argument() const { return m_argument; }
bool is_yield_from() const { return m_is_yield_from; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
RefPtr<Expression> m_argument;
bool m_is_yield_from { false };
};
class ReturnStatement final : public Statement {
public:
explicit ReturnStatement(SourceRange source_range, RefPtr<Expression> argument)
: Statement(source_range)
, m_argument(move(argument))
{
}
Expression const* argument() const { return m_argument; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
RefPtr<Expression> m_argument;
};
class IfStatement final : public Statement {
public:
IfStatement(SourceRange source_range, NonnullRefPtr<Expression> predicate, NonnullRefPtr<Statement> consequent, RefPtr<Statement> alternate)
: Statement(source_range)
, m_predicate(move(predicate))
, m_consequent(move(consequent))
, m_alternate(move(alternate))
{
}
Expression const& predicate() const { return *m_predicate; }
Statement const& consequent() const { return *m_consequent; }
Statement const* alternate() const { return m_alternate; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtr<Expression> m_predicate;
NonnullRefPtr<Statement> m_consequent;
RefPtr<Statement> m_alternate;
};
class WhileStatement final : public IterationStatement {
public:
WhileStatement(SourceRange source_range, NonnullRefPtr<Expression> test, NonnullRefPtr<Statement> body)
: IterationStatement(source_range)
, m_test(move(test))
, m_body(move(body))
{
}
Expression const& test() const { return *m_test; }
Statement const& body() const { return *m_body; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtr<Expression> m_test;
NonnullRefPtr<Statement> m_body;
};
class DoWhileStatement final : public IterationStatement {
public:
DoWhileStatement(SourceRange source_range, NonnullRefPtr<Expression> test, NonnullRefPtr<Statement> body)
: IterationStatement(source_range)
, m_test(move(test))
, m_body(move(body))
{
}
Expression const& test() const { return *m_test; }
Statement const& body() const { return *m_body; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtr<Expression> m_test;
NonnullRefPtr<Statement> m_body;
};
class WithStatement final : public Statement {
public:
WithStatement(SourceRange source_range, NonnullRefPtr<Expression> object, NonnullRefPtr<Statement> body)
: Statement(source_range)
, m_object(move(object))
, m_body(move(body))
{
}
Expression const& object() const { return *m_object; }
Statement const& body() const { return *m_body; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
NonnullRefPtr<Expression> m_object;
NonnullRefPtr<Statement> m_body;
};
class ForStatement final : public IterationStatement {
public:
ForStatement(SourceRange source_range, RefPtr<ASTNode> init, RefPtr<Expression> test, RefPtr<Expression> update, NonnullRefPtr<Statement> body)
: IterationStatement(source_range)
, m_init(move(init))
, m_test(move(test))
, m_update(move(update))
, m_body(move(body))
{
}
ASTNode const* init() const { return m_init; }
Expression const* test() const { return m_test; }
Expression const* update() const { return m_update; }
Statement const& body() const { return *m_body; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
RefPtr<ASTNode> m_init;
RefPtr<Expression> m_test;
RefPtr<Expression> m_update;
NonnullRefPtr<Statement> m_body;
};
class ForInStatement final : public IterationStatement {
public:
ForInStatement(SourceRange source_range, Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs, NonnullRefPtr<Expression> rhs, NonnullRefPtr<Statement> body)
: IterationStatement(source_range)
, m_lhs(move(lhs))
, m_rhs(move(rhs))
, m_body(move(body))
{
}
auto const& lhs() const { return m_lhs; }
Expression const& rhs() const { return *m_rhs; }
Statement const& body() const { return *m_body; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> m_lhs;
NonnullRefPtr<Expression> m_rhs;
NonnullRefPtr<Statement> m_body;
};
class ForOfStatement final : public IterationStatement {
public:
ForOfStatement(SourceRange source_range, Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs, NonnullRefPtr<Expression> rhs, NonnullRefPtr<Statement> body)
: IterationStatement(source_range)
, m_lhs(move(lhs))
, m_rhs(move(rhs))
, m_body(move(body))
{
}
auto const& lhs() const { return m_lhs; }
Expression const& rhs() const { return *m_rhs; }
Statement const& body() const { return *m_body; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> m_lhs;
NonnullRefPtr<Expression> m_rhs;
NonnullRefPtr<Statement> m_body;
};
enum class BinaryOp {
Addition,
Subtraction,
Multiplication,
Division,
Modulo,
Exponentiation,
StrictlyEquals,
StrictlyInequals,
LooselyEquals,
LooselyInequals,
GreaterThan,
GreaterThanEquals,
LessThan,
LessThanEquals,
BitwiseAnd,
BitwiseOr,
BitwiseXor,
LeftShift,
RightShift,
UnsignedRightShift,
In,
InstanceOf,
};
class BinaryExpression final : public Expression {
public:
BinaryExpression(SourceRange source_range, BinaryOp op, NonnullRefPtr<Expression> lhs, NonnullRefPtr<Expression> rhs)
: Expression(source_range)
, m_op(op)
, m_lhs(move(lhs))
, m_rhs(move(rhs))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
BinaryOp m_op;
NonnullRefPtr<Expression> m_lhs;
NonnullRefPtr<Expression> m_rhs;
};
enum class LogicalOp {
And,
Or,
NullishCoalescing,
};
class LogicalExpression final : public Expression {
public:
LogicalExpression(SourceRange source_range, LogicalOp op, NonnullRefPtr<Expression> lhs, NonnullRefPtr<Expression> rhs)
: Expression(source_range)
, m_op(op)
, m_lhs(move(lhs))
, m_rhs(move(rhs))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
LogicalOp m_op;
NonnullRefPtr<Expression> m_lhs;
NonnullRefPtr<Expression> m_rhs;
};
enum class UnaryOp {
BitwiseNot,
Not,
Plus,
Minus,
Typeof,
Void,
Delete,
};
class UnaryExpression final : public Expression {
public:
UnaryExpression(SourceRange source_range, UnaryOp op, NonnullRefPtr<Expression> lhs)
: Expression(source_range)
, m_op(op)
, m_lhs(move(lhs))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
UnaryOp m_op;
NonnullRefPtr<Expression> m_lhs;
};
class SequenceExpression final : public Expression {
public:
SequenceExpression(SourceRange source_range, NonnullRefPtrVector<Expression> expressions)
: Expression(source_range)
, m_expressions(move(expressions))
{
VERIFY(m_expressions.size() >= 2);
}
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtrVector<Expression> m_expressions;
};
class Literal : public Expression {
protected:
explicit Literal(SourceRange source_range)
: Expression(source_range)
{
}
};
class BooleanLiteral final : public Literal {
public:
explicit BooleanLiteral(SourceRange source_range, bool value)
: Literal(source_range)
, m_value(value)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
bool m_value { false };
};
class NumericLiteral final : public Literal {
public:
explicit NumericLiteral(SourceRange source_range, double value)
: Literal(source_range)
, m_value(value)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
Value m_value;
};
class BigIntLiteral final : public Literal {
public:
explicit BigIntLiteral(SourceRange source_range, String value)
: Literal(source_range)
, m_value(move(value))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
String m_value;
};
class StringLiteral final : public Literal {
public:
explicit StringLiteral(SourceRange source_range, String value, bool is_use_strict_directive = false)
: Literal(source_range)
, m_value(move(value))
, m_is_use_strict_directive(is_use_strict_directive)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
StringView value() const { return m_value; }
bool is_use_strict_directive() const { return m_is_use_strict_directive; };
private:
String m_value;
bool m_is_use_strict_directive;
};
class NullLiteral final : public Literal {
public:
explicit NullLiteral(SourceRange source_range)
: Literal(source_range)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
};
class RegExpLiteral final : public Literal {
public:
RegExpLiteral(SourceRange source_range, regex::Parser::Result parsed_regex, String parsed_pattern, regex::RegexOptions<ECMAScriptFlags> parsed_flags, String pattern, String flags)
: Literal(source_range)
, m_parsed_regex(move(parsed_regex))
, m_parsed_pattern(move(parsed_pattern))
, m_parsed_flags(move(parsed_flags))
, m_pattern(move(pattern))
, m_flags(move(flags))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
regex::Parser::Result const& parsed_regex() const { return m_parsed_regex; }
String const& parsed_pattern() const { return m_parsed_pattern; }
regex::RegexOptions<ECMAScriptFlags> const& parsed_flags() const { return m_parsed_flags; }
String const& pattern() const { return m_pattern; }
String const& flags() const { return m_flags; }
private:
regex::Parser::Result m_parsed_regex;
String m_parsed_pattern;
regex::RegexOptions<ECMAScriptFlags> m_parsed_flags;
String m_pattern;
String m_flags;
};
class Identifier final : public Expression {
public:
explicit Identifier(SourceRange source_range, FlyString string)
: Expression(source_range)
, m_string(move(string))
{
}
FlyString const& string() const { return m_string; }
void set_lexically_bound_function_argument_index(size_t index) { m_lexically_bound_function_argument = index; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual Reference to_reference(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
virtual bool is_identifier() const override { return true; }
FlyString m_string;
Optional<size_t> m_lexically_bound_function_argument;
mutable Optional<EnvironmentCoordinate> m_cached_environment_coordinate;
};
class PrivateIdentifier final : public Expression {
public:
explicit PrivateIdentifier(SourceRange source_range, FlyString string)
: Expression(source_range)
, m_string(move(string))
{
}
FlyString const& string() const { return m_string; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
FlyString m_string;
};
class ClassElement : public ASTNode {
public:
ClassElement(SourceRange source_range, bool is_static)
: ASTNode(source_range)
, m_is_static(is_static)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
enum class ElementKind {
Method,
Field,
StaticInitializer,
};
virtual ElementKind class_element_kind() const = 0;
bool is_static() const { return m_is_static; }
using ClassElementName = Variant<PropertyKey, PrivateName>;
struct ClassFieldDefinition {
ClassElementName name;
ECMAScriptFunctionObject* initializer { nullptr };
};
// We use the Completion also as a ClassStaticBlockDefinition Record.
using ClassValue = Variant<ClassFieldDefinition, Completion, PrivateElement>;
virtual ThrowCompletionOr<ClassValue> class_element_evaluation(Interpreter&, GlobalObject&, Object& home_object) const = 0;
virtual Optional<FlyString> private_bound_identifier() const { return {}; };
private:
bool m_is_static { false };
};
class ClassMethod final : public ClassElement {
public:
enum class Kind {
Method,
Getter,
Setter,
};
ClassMethod(SourceRange source_range, NonnullRefPtr<Expression> key, NonnullRefPtr<FunctionExpression> function, Kind kind, bool is_static)
: ClassElement(source_range, is_static)
, m_key(move(key))
, m_function(move(function))
, m_kind(kind)
{
}
Expression const& key() const { return *m_key; }
Kind kind() const { return m_kind; }
virtual ElementKind class_element_kind() const override { return ElementKind::Method; }
virtual void dump(int indent) const override;
virtual ThrowCompletionOr<ClassValue> class_element_evaluation(Interpreter&, GlobalObject&, Object& home_object) const override;
virtual Optional<FlyString> private_bound_identifier() const override;
private:
NonnullRefPtr<Expression> m_key;
NonnullRefPtr<FunctionExpression> m_function;
Kind m_kind;
};
class ClassField final : public ClassElement {
public:
ClassField(SourceRange source_range, NonnullRefPtr<Expression> key, RefPtr<Expression> init, bool contains_direct_call_to_eval, bool is_static)
: ClassElement(source_range, is_static)
, m_key(move(key))
, m_initializer(move(init))
, m_contains_direct_call_to_eval(contains_direct_call_to_eval)
{
}
Expression const& key() const { return *m_key; }
RefPtr<Expression> const& initializer() const { return m_initializer; }
RefPtr<Expression>& initializer() { return m_initializer; }
virtual ElementKind class_element_kind() const override { return ElementKind::Field; }
virtual void dump(int indent) const override;
virtual ThrowCompletionOr<ClassValue> class_element_evaluation(Interpreter& interpreter, GlobalObject& object, Object& home_object) const override;
virtual Optional<FlyString> private_bound_identifier() const override;
private:
NonnullRefPtr<Expression> m_key;
RefPtr<Expression> m_initializer;
bool m_contains_direct_call_to_eval { false };
};
class StaticInitializer final : public ClassElement {
public:
StaticInitializer(SourceRange source_range, NonnullRefPtr<FunctionBody> function_body, bool contains_direct_call_to_eval)
: ClassElement(source_range, true)
, m_function_body(move(function_body))
, m_contains_direct_call_to_eval(contains_direct_call_to_eval)
{
}
virtual ElementKind class_element_kind() const override { return ElementKind::StaticInitializer; }
virtual ThrowCompletionOr<ClassValue> class_element_evaluation(Interpreter&, GlobalObject&, Object& home_object) const override;
virtual void dump(int indent) const override;
private:
NonnullRefPtr<FunctionBody> m_function_body;
bool m_contains_direct_call_to_eval { false };
};
class SuperExpression final : public Expression {
public:
explicit SuperExpression(SourceRange source_range)
: Expression(source_range)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual bool is_super_expression() const override { return true; }
};
class ClassExpression final : public Expression {
public:
ClassExpression(SourceRange source_range, String name, RefPtr<FunctionExpression> constructor, RefPtr<Expression> super_class, NonnullRefPtrVector<ClassElement> elements)
: Expression(source_range)
, m_name(move(name))
, m_constructor(move(constructor))
, m_super_class(move(super_class))
, m_elements(move(elements))
{
}
StringView name() const { return m_name; }
RefPtr<FunctionExpression> constructor() const { return m_constructor; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
bool has_name() const { return !m_name.is_empty(); }
ThrowCompletionOr<Value> class_definition_evaluation(Interpreter& interpreter, GlobalObject& global_object, FlyString const& binding_name = {}, FlyString const& class_name = {}) const;
private:
virtual bool is_class_expression() const override { return true; }
String m_name;
RefPtr<FunctionExpression> m_constructor;
RefPtr<Expression> m_super_class;
NonnullRefPtrVector<ClassElement> m_elements;
};
class ClassDeclaration final : public Declaration {
public:
ClassDeclaration(SourceRange source_range, NonnullRefPtr<ClassExpression> class_expression)
: Declaration(source_range)
, m_class_expression(move(class_expression))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
void for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const override;
virtual bool is_lexical_declaration() const override { return true; }
private:
NonnullRefPtr<ClassExpression> m_class_expression;
};
class SpreadExpression final : public Expression {
public:
explicit SpreadExpression(SourceRange source_range, NonnullRefPtr<Expression> target)
: Expression(source_range)
, m_target(move(target))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
NonnullRefPtr<Expression> m_target;
};
class ThisExpression final : public Expression {
public:
explicit ThisExpression(SourceRange source_range)
: Expression(source_range)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
};
class CallExpression : public Expression {
public:
struct Argument {
NonnullRefPtr<Expression> value;
bool is_spread;
};
CallExpression(SourceRange source_range, NonnullRefPtr<Expression> callee, Vector<Argument> arguments = {})
: Expression(source_range)
, m_callee(move(callee))
, m_arguments(move(arguments))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
Expression const& callee() const { return m_callee; }
protected:
void throw_type_error_for_callee(Interpreter&, GlobalObject&, Value callee_value, StringView call_type) const;
NonnullRefPtr<Expression> m_callee;
Vector<Argument> const m_arguments;
private:
struct ThisAndCallee {
Value this_value;
Value callee;
};
ThisAndCallee compute_this_and_callee(Interpreter&, GlobalObject&, Reference const&) const;
};
class NewExpression final : public CallExpression {
public:
NewExpression(SourceRange source_range, NonnullRefPtr<Expression> callee, Vector<Argument> arguments = {})
: CallExpression(source_range, move(callee), move(arguments))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual bool is_new_expression() const override { return true; }
};
class SuperCall final : public Expression {
public:
SuperCall(SourceRange source_range, Vector<CallExpression::Argument> arguments)
: Expression(source_range)
, m_arguments(move(arguments))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
Vector<CallExpression::Argument> const m_arguments;
};
enum class AssignmentOp {
Assignment,
AdditionAssignment,
SubtractionAssignment,
MultiplicationAssignment,
DivisionAssignment,
ModuloAssignment,
ExponentiationAssignment,
BitwiseAndAssignment,
BitwiseOrAssignment,
BitwiseXorAssignment,
LeftShiftAssignment,
RightShiftAssignment,
UnsignedRightShiftAssignment,
AndAssignment,
OrAssignment,
NullishAssignment,
};
class AssignmentExpression final : public Expression {
public:
AssignmentExpression(SourceRange source_range, AssignmentOp op, NonnullRefPtr<Expression> lhs, NonnullRefPtr<Expression> rhs)
: Expression(source_range)
, m_op(op)
, m_lhs(move(lhs))
, m_rhs(move(rhs))
{
}
AssignmentExpression(SourceRange source_range, AssignmentOp op, NonnullRefPtr<BindingPattern> lhs, NonnullRefPtr<Expression> rhs)
: Expression(source_range)
, m_op(op)
, m_lhs(move(lhs))
, m_rhs(move(rhs))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
AssignmentOp m_op;
Variant<NonnullRefPtr<Expression>, NonnullRefPtr<BindingPattern>> m_lhs;
NonnullRefPtr<Expression> m_rhs;
};
enum class UpdateOp {
Increment,
Decrement,
};
class UpdateExpression final : public Expression {
public:
UpdateExpression(SourceRange source_range, UpdateOp op, NonnullRefPtr<Expression> argument, bool prefixed = false)
: Expression(source_range)
, m_op(op)
, m_argument(move(argument))
, m_prefixed(prefixed)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
UpdateOp m_op;
NonnullRefPtr<Expression> m_argument;
bool m_prefixed;
};
enum class DeclarationKind {
Var,
Let,
Const,
};
class VariableDeclarator final : public ASTNode {
public:
VariableDeclarator(SourceRange source_range, NonnullRefPtr<Identifier> id)
: ASTNode(source_range)
, m_target(move(id))
{
}
VariableDeclarator(SourceRange source_range, NonnullRefPtr<Identifier> target, RefPtr<Expression> init)
: ASTNode(source_range)
, m_target(move(target))
, m_init(move(init))
{
}
VariableDeclarator(SourceRange source_range, Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>> target, RefPtr<Expression> init)
: ASTNode(source_range)
, m_target(move(target))
, m_init(move(init))
{
}
auto& target() const { return m_target; }
Expression const* init() const { return m_init; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>> m_target;
RefPtr<Expression> m_init;
};
class VariableDeclaration final : public Declaration {
public:
VariableDeclaration(SourceRange source_range, DeclarationKind declaration_kind, NonnullRefPtrVector<VariableDeclarator> declarations)
: Declaration(source_range)
, m_declaration_kind(declaration_kind)
, m_declarations(move(declarations))
{
}
DeclarationKind declaration_kind() const { return m_declaration_kind; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
NonnullRefPtrVector<VariableDeclarator> const& declarations() const { return m_declarations; }
virtual void for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const override;
virtual bool is_constant_declaration() const override { return m_declaration_kind == DeclarationKind::Const; };
virtual bool is_lexical_declaration() const override { return m_declaration_kind != DeclarationKind::Var; }
private:
DeclarationKind m_declaration_kind;
NonnullRefPtrVector<VariableDeclarator> m_declarations;
};
class ObjectProperty final : public ASTNode {
public:
enum class Type {
KeyValue,
Getter,
Setter,
Spread,
};
ObjectProperty(SourceRange source_range, NonnullRefPtr<Expression> key, RefPtr<Expression> value, Type property_type, bool is_method)
: ASTNode(source_range)
, m_key(move(key))
, m_value(move(value))
, m_property_type(property_type)
, m_is_method(is_method)
{
}
Expression const& key() const { return m_key; }
Expression const& value() const
{
VERIFY(m_value);
return *m_value;
}
Type type() const { return m_property_type; }
bool is_method() const { return m_is_method; }
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
private:
NonnullRefPtr<Expression> m_key;
RefPtr<Expression> m_value;
Type m_property_type;
bool m_is_method { false };
};
class ObjectExpression final : public Expression {
public:
explicit ObjectExpression(SourceRange source_range, NonnullRefPtrVector<ObjectProperty> properties = {}, Optional<SourceRange> first_invalid_property_range = {})
: Expression(source_range)
, m_properties(move(properties))
, m_first_invalid_property_range(move(first_invalid_property_range))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
Optional<SourceRange> const& invalid_property_range() const { return m_first_invalid_property_range; }
private:
NonnullRefPtrVector<ObjectProperty> m_properties;
Optional<SourceRange> m_first_invalid_property_range;
};
class ArrayExpression final : public Expression {
public:
ArrayExpression(SourceRange source_range, Vector<RefPtr<Expression>> elements)
: Expression(source_range)
, m_elements(move(elements))
{
}
Vector<RefPtr<Expression>> const& elements() const { return m_elements; }
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
Vector<RefPtr<Expression>> m_elements;
};
class TemplateLiteral final : public Expression {
public:
TemplateLiteral(SourceRange source_range, NonnullRefPtrVector<Expression> expressions)
: Expression(source_range)
, m_expressions(move(expressions))
{
}
TemplateLiteral(SourceRange source_range, NonnullRefPtrVector<Expression> expressions, NonnullRefPtrVector<Expression> raw_strings)
: Expression(source_range)
, m_expressions(move(expressions))
, m_raw_strings(move(raw_strings))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
NonnullRefPtrVector<Expression> const& expressions() const { return m_expressions; }
NonnullRefPtrVector<Expression> const& raw_strings() const { return m_raw_strings; }
private:
NonnullRefPtrVector<Expression> const m_expressions;
NonnullRefPtrVector<Expression> const m_raw_strings;
};
class TaggedTemplateLiteral final : public Expression {
public:
TaggedTemplateLiteral(SourceRange source_range, NonnullRefPtr<Expression> tag, NonnullRefPtr<TemplateLiteral> template_literal)
: Expression(source_range)
, m_tag(move(tag))
, m_template_literal(move(template_literal))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtr<Expression> const m_tag;
NonnullRefPtr<TemplateLiteral> const m_template_literal;
};
class MemberExpression final : public Expression {
public:
MemberExpression(SourceRange source_range, NonnullRefPtr<Expression> object, NonnullRefPtr<Expression> property, bool computed = false)
: Expression(source_range)
, m_object(move(object))
, m_property(move(property))
, m_computed(computed)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
virtual Reference to_reference(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
bool is_computed() const { return m_computed; }
Expression const& object() const { return *m_object; }
Expression const& property() const { return *m_property; }
PropertyKey computed_property_name(Interpreter&, GlobalObject&) const;
String to_string_approximation() const;
bool ends_in_private_name() const;
private:
virtual bool is_member_expression() const override { return true; }
NonnullRefPtr<Expression> m_object;
NonnullRefPtr<Expression> m_property;
bool m_computed { false };
};
class OptionalChain final : public Expression {
public:
enum class Mode {
Optional,
NotOptional,
};
struct Call {
Vector<CallExpression::Argument> arguments;
Mode mode;
};
struct ComputedReference {
NonnullRefPtr<Expression> expression;
Mode mode;
};
struct MemberReference {
NonnullRefPtr<Identifier> identifier;
Mode mode;
};
struct PrivateMemberReference {
NonnullRefPtr<PrivateIdentifier> private_identifier;
Mode mode;
};
using Reference = Variant<Call, ComputedReference, MemberReference, PrivateMemberReference>;
OptionalChain(SourceRange source_range, NonnullRefPtr<Expression> base, Vector<Reference> references)
: Expression(source_range)
, m_base(move(base))
, m_references(move(references))
{
}
virtual Value execute(Interpreter& interpreter, GlobalObject& global_object) const override;
virtual JS::Reference to_reference(Interpreter& interpreter, GlobalObject& global_object) const override;
virtual void dump(int indent) const override;
private:
struct ReferenceAndValue {
JS::Reference reference;
Value value;
};
Optional<ReferenceAndValue> to_reference_and_value(Interpreter&, GlobalObject&) const;
NonnullRefPtr<Expression> m_base;
Vector<Reference> m_references;
};
class MetaProperty final : public Expression {
public:
enum class Type {
NewTarget,
ImportMeta,
};
MetaProperty(SourceRange source_range, Type type)
: Expression(source_range)
, m_type(type)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void dump(int indent) const override;
private:
Type m_type;
};
class ConditionalExpression final : public Expression {
public:
ConditionalExpression(SourceRange source_range, NonnullRefPtr<Expression> test, NonnullRefPtr<Expression> consequent, NonnullRefPtr<Expression> alternate)
: Expression(source_range)
, m_test(move(test))
, m_consequent(move(consequent))
, m_alternate(move(alternate))
{
}
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtr<Expression> m_test;
NonnullRefPtr<Expression> m_consequent;
NonnullRefPtr<Expression> m_alternate;
};
class CatchClause final : public ASTNode {
public:
CatchClause(SourceRange source_range, FlyString parameter, NonnullRefPtr<BlockStatement> body)
: ASTNode(source_range)
, m_parameter(move(parameter))
, m_body(move(body))
{
}
CatchClause(SourceRange source_range, NonnullRefPtr<BindingPattern> parameter, NonnullRefPtr<BlockStatement> body)
: ASTNode(source_range)
, m_parameter(move(parameter))
, m_body(move(body))
{
}
auto& parameter() const { return m_parameter; }
BlockStatement const& body() const { return m_body; }
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
private:
Variant<FlyString, NonnullRefPtr<BindingPattern>> m_parameter;
NonnullRefPtr<BlockStatement> m_body;
};
class TryStatement final : public LabelableStatement {
public:
TryStatement(SourceRange source_range, NonnullRefPtr<BlockStatement> block, RefPtr<CatchClause> handler, RefPtr<BlockStatement> finalizer)
: LabelableStatement(source_range)
, m_block(move(block))
, m_handler(move(handler))
, m_finalizer(move(finalizer))
{
}
BlockStatement const& block() const { return m_block; }
CatchClause const* handler() const { return m_handler; }
BlockStatement const* finalizer() const { return m_finalizer; }
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
void add_label(FlyString string) override;
private:
NonnullRefPtr<BlockStatement> m_block;
RefPtr<CatchClause> m_handler;
RefPtr<BlockStatement> m_finalizer;
};
class ThrowStatement final : public Statement {
public:
explicit ThrowStatement(SourceRange source_range, NonnullRefPtr<Expression> argument)
: Statement(source_range)
, m_argument(move(argument))
{
}
Expression const& argument() const { return m_argument; }
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
NonnullRefPtr<Expression> m_argument;
};
class SwitchCase final : public ScopeNode {
public:
SwitchCase(SourceRange source_range, RefPtr<Expression> test)
: ScopeNode(source_range)
, m_test(move(test))
{
}
Expression const* test() const { return m_test; }
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
private:
RefPtr<Expression> m_test;
};
class SwitchStatement final : public ScopeNode {
public:
SwitchStatement(SourceRange source_range, NonnullRefPtr<Expression> discriminant)
: ScopeNode(source_range)
, m_discriminant(move(discriminant))
{
}
virtual void dump(int indent) const override;
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
void add_case(NonnullRefPtr<SwitchCase> switch_case) { m_cases.append(move(switch_case)); }
private:
NonnullRefPtr<Expression> m_discriminant;
NonnullRefPtrVector<SwitchCase> m_cases;
};
class BreakStatement final : public Statement {
public:
BreakStatement(SourceRange source_range, FlyString target_label)
: Statement(source_range)
, m_target_label(move(target_label))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
FlyString const& target_label() const { return m_target_label; }
virtual void generate_bytecode(Bytecode::Generator&) const override;
private:
FlyString m_target_label;
};
class ContinueStatement final : public Statement {
public:
ContinueStatement(SourceRange source_range, FlyString target_label)
: Statement(source_range)
, m_target_label(move(target_label))
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
FlyString const& target_label() const { return m_target_label; }
private:
FlyString m_target_label;
};
class DebuggerStatement final : public Statement {
public:
explicit DebuggerStatement(SourceRange source_range)
: Statement(source_range)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override;
virtual void generate_bytecode(Bytecode::Generator&) const override;
};
class SyntheticReferenceExpression final : public Expression {
public:
explicit SyntheticReferenceExpression(SourceRange source_range, Reference reference, Value value)
: Expression(source_range)
, m_reference(move(reference))
, m_value(value)
{
}
virtual Value execute(Interpreter&, GlobalObject&) const override { return m_value; }
virtual Reference to_reference(Interpreter&, GlobalObject&) const override { return m_reference; }
private:
Reference m_reference;
Value m_value;
};
template<typename C>
void BindingPattern::for_each_bound_name(C&& callback) const
{
for (auto& entry : entries) {
auto& alias = entry.alias;
if (alias.has<NonnullRefPtr<Identifier>>()) {
callback(alias.get<NonnullRefPtr<Identifier>>()->string());
} else if (alias.has<NonnullRefPtr<BindingPattern>>()) {
alias.get<NonnullRefPtr<BindingPattern>>()->for_each_bound_name(forward<C>(callback));
} else {
auto& name = entry.name;
if (name.has<NonnullRefPtr<Identifier>>())
callback(name.get<NonnullRefPtr<Identifier>>()->string());
}
}
}
template<>
inline bool ASTNode::fast_is<NewExpression>() const { return is_new_expression(); }
template<>
inline bool ASTNode::fast_is<MemberExpression>() const { return is_member_expression(); }
template<>
inline bool ASTNode::fast_is<SuperExpression>() const { return is_super_expression(); }
template<>
inline bool ASTNode::fast_is<FunctionExpression>() const { return is_function_expression(); }
template<>
inline bool ASTNode::fast_is<ClassExpression>() const { return is_class_expression(); }
template<>
inline bool ASTNode::fast_is<Identifier>() const { return is_identifier(); }
template<>
inline bool ASTNode::fast_is<ExpressionStatement>() const { return is_expression_statement(); }
template<>
inline bool ASTNode::fast_is<ScopeNode>() const { return is_scope_node(); }
template<>
inline bool ASTNode::fast_is<Program>() const { return is_program(); }
template<>
inline bool ASTNode::fast_is<FunctionDeclaration>() const { return is_function_declaration(); }
}