ladybird/Userland/Libraries/LibGfx/GIFLoader.cpp
AnotherTest 09a43969ba Everywhere: Replace dbgln<flag>(...) with dbgln_if(flag, ...)
Replacement made by `find Kernel Userland -name '*.h' -o -name '*.cpp' | sed -i -Ee 's/dbgln\b<(\w+)>\(/dbgln_if(\1, /g'`
2021-02-08 18:08:55 +01:00

775 lines
24 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Array.h>
#include <AK/ByteBuffer.h>
#include <AK/Debug.h>
#include <AK/LexicalPath.h>
#include <AK/MappedFile.h>
#include <AK/Memory.h>
#include <AK/MemoryStream.h>
#include <AK/NonnullOwnPtrVector.h>
#include <LibGfx/GIFLoader.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
namespace Gfx {
// Row strides and offsets for each interlace pass.
static const int INTERLACE_ROW_STRIDES[] = { 8, 8, 4, 2 };
static const int INTERLACE_ROW_OFFSETS[] = { 0, 4, 2, 1 };
struct ImageDescriptor {
u16 x { 0 };
u16 y { 0 };
u16 width { 0 };
u16 height { 0 };
bool use_global_color_map { true };
bool interlaced { false };
Color color_map[256];
u8 lzw_min_code_size { 0 };
Vector<u8> lzw_encoded_bytes;
// Fields from optional graphic control extension block
enum DisposalMethod : u8 {
None = 0,
InPlace = 1,
RestoreBackground = 2,
RestorePrevious = 3,
};
DisposalMethod disposal_method { None };
u8 transparency_index { 0 };
u16 duration { 0 };
bool transparent { false };
bool user_input { false };
const IntRect rect() const
{
return { this->x, this->y, this->width, this->height };
}
};
struct LogicalScreen {
u16 width;
u16 height;
Color color_map[256];
};
struct GIFLoadingContext {
enum State {
NotDecoded = 0,
FrameDescriptorsLoaded,
FrameComplete,
};
State state { NotDecoded };
enum ErrorState {
NoError = 0,
FailedToDecodeAllFrames,
FailedToDecodeAnyFrame,
FailedToLoadFrameDescriptors,
};
ErrorState error_state { NoError };
const u8* data { nullptr };
size_t data_size { 0 };
LogicalScreen logical_screen {};
u8 background_color_index { 0 };
NonnullOwnPtrVector<ImageDescriptor> images {};
size_t loops { 1 };
RefPtr<Gfx::Bitmap> frame_buffer;
size_t current_frame { 0 };
RefPtr<Gfx::Bitmap> prev_frame_buffer;
};
RefPtr<Gfx::Bitmap> load_gif(const StringView& path)
{
auto file_or_error = MappedFile::map(path);
if (file_or_error.is_error())
return nullptr;
GIFImageDecoderPlugin gif_decoder((const u8*)file_or_error.value()->data(), file_or_error.value()->size());
auto bitmap = gif_decoder.bitmap();
if (bitmap)
bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded GIF: {}", bitmap->size(), LexicalPath::canonicalized_path(path)));
return bitmap;
}
RefPtr<Gfx::Bitmap> load_gif_from_memory(const u8* data, size_t length)
{
GIFImageDecoderPlugin gif_decoder(data, length);
auto bitmap = gif_decoder.bitmap();
if (bitmap)
bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded GIF: <memory>", bitmap->size()));
return bitmap;
}
enum class GIFFormat {
GIF87a,
GIF89a,
};
static Optional<GIFFormat> decode_gif_header(InputMemoryStream& stream)
{
static const char valid_header_87[] = "GIF87a";
static const char valid_header_89[] = "GIF89a";
Array<u8, 6> header;
stream >> header;
if (stream.handle_any_error())
return {};
if (header.span() == ReadonlyBytes { valid_header_87, 6 })
return GIFFormat::GIF87a;
if (header.span() == ReadonlyBytes { valid_header_89, 6 })
return GIFFormat::GIF89a;
return {};
}
class LZWDecoder {
private:
static constexpr int max_code_size = 12;
public:
explicit LZWDecoder(const Vector<u8>& lzw_bytes, u8 min_code_size)
: m_lzw_bytes(lzw_bytes)
, m_code_size(min_code_size)
, m_original_code_size(min_code_size)
, m_table_capacity(pow(2, min_code_size))
{
init_code_table();
}
u16 add_control_code()
{
const u16 control_code = m_code_table.size();
m_code_table.append(Vector<u8> {});
m_original_code_table.append(Vector<u8> {});
if (m_code_table.size() >= m_table_capacity && m_code_size < max_code_size) {
++m_code_size;
++m_original_code_size;
m_table_capacity *= 2;
}
return control_code;
}
void reset()
{
m_code_table.clear();
m_code_table.append(m_original_code_table);
m_code_size = m_original_code_size;
m_table_capacity = pow(2, m_code_size);
m_output.clear();
}
Optional<u16> next_code()
{
size_t current_byte_index = m_current_bit_index / 8;
if (current_byte_index >= m_lzw_bytes.size()) {
return {};
}
// Extract the code bits using a 32-bit mask to cover the possibility that if
// the current code size > 9 bits then the code can span 3 bytes.
u8 current_bit_offset = m_current_bit_index % 8;
u32 mask = (u32)(m_table_capacity - 1) << current_bit_offset;
// Make a padded copy of the final bytes in the data to ensure we don't read past the end.
if (current_byte_index + sizeof(mask) > m_lzw_bytes.size()) {
u8 padded_last_bytes[sizeof(mask)] = { 0 };
for (int i = 0; current_byte_index + i < m_lzw_bytes.size(); ++i) {
padded_last_bytes[i] = m_lzw_bytes[current_byte_index + i];
}
const u32* addr = (const u32*)&padded_last_bytes;
m_current_code = (*addr & mask) >> current_bit_offset;
} else {
const u32* addr = (const u32*)&m_lzw_bytes.at(current_byte_index);
m_current_code = (*addr & mask) >> current_bit_offset;
}
if (m_current_code > m_code_table.size()) {
dbgln_if(GIF_DEBUG, "Corrupted LZW stream, invalid code: {} at bit index {}, code table size: {}",
m_current_code,
m_current_bit_index,
m_code_table.size());
return {};
} else if (m_current_code == m_code_table.size() && m_output.is_empty()) {
dbgln_if(GIF_DEBUG, "Corrupted LZW stream, valid new code but output buffer is empty: {} at bit index {}, code table size: {}",
m_current_code,
m_current_bit_index,
m_code_table.size());
return {};
}
m_current_bit_index += m_code_size;
return m_current_code;
}
Vector<u8>& get_output()
{
ASSERT(m_current_code <= m_code_table.size());
if (m_current_code < m_code_table.size()) {
Vector<u8> new_entry = m_output;
m_output = m_code_table.at(m_current_code);
new_entry.append(m_output[0]);
extend_code_table(new_entry);
} else if (m_current_code == m_code_table.size()) {
ASSERT(!m_output.is_empty());
m_output.append(m_output[0]);
extend_code_table(m_output);
}
return m_output;
}
private:
void init_code_table()
{
m_code_table.clear();
for (u16 i = 0; i < m_table_capacity; ++i) {
m_code_table.append({ (u8)i });
}
m_original_code_table = m_code_table;
}
void extend_code_table(const Vector<u8>& entry)
{
if (entry.size() > 1 && m_code_table.size() < 4096) {
m_code_table.append(entry);
if (m_code_table.size() >= m_table_capacity && m_code_size < max_code_size) {
++m_code_size;
m_table_capacity *= 2;
}
}
}
const Vector<u8>& m_lzw_bytes;
int m_current_bit_index { 0 };
Vector<Vector<u8>> m_code_table {};
Vector<Vector<u8>> m_original_code_table {};
u8 m_code_size { 0 };
u8 m_original_code_size { 0 };
u32 m_table_capacity { 0 };
u16 m_current_code { 0 };
Vector<u8> m_output {};
};
static void copy_frame_buffer(Bitmap& dest, const Bitmap& src)
{
ASSERT(dest.size_in_bytes() == src.size_in_bytes());
memcpy(dest.scanline(0), src.scanline(0), dest.size_in_bytes());
}
static void clear_rect(Bitmap& bitmap, const IntRect& rect, Color color)
{
if (rect.is_empty())
return;
ASSERT(bitmap.rect().contains(rect));
RGBA32* dst = bitmap.scanline(rect.top()) + rect.left();
const size_t dst_skip = bitmap.pitch() / sizeof(RGBA32);
for (int i = rect.height() - 1; i >= 0; --i) {
fast_u32_fill(dst, color.value(), rect.width());
dst += dst_skip;
}
}
static bool decode_frame(GIFLoadingContext& context, size_t frame_index)
{
if (frame_index >= context.images.size()) {
return false;
}
if (context.state >= GIFLoadingContext::State::FrameComplete && frame_index == context.current_frame) {
return true;
}
size_t start_frame = context.current_frame + 1;
if (context.state < GIFLoadingContext::State::FrameComplete) {
start_frame = 0;
context.frame_buffer = Bitmap::create_purgeable(BitmapFormat::RGBA32, { context.logical_screen.width, context.logical_screen.height });
if (!context.frame_buffer)
return false;
context.prev_frame_buffer = Bitmap::create_purgeable(BitmapFormat::RGBA32, { context.logical_screen.width, context.logical_screen.height });
if (!context.prev_frame_buffer)
return false;
} else if (frame_index < context.current_frame) {
start_frame = 0;
}
for (size_t i = start_frame; i <= frame_index; ++i) {
auto& image = context.images.at(i);
const auto previous_image_disposal_method = i > 0 ? context.images.at(i - 1).disposal_method : ImageDescriptor::DisposalMethod::None;
if (i == 0) {
context.frame_buffer->fill(Color::Transparent);
} else if (i > 0 && image.disposal_method == ImageDescriptor::DisposalMethod::RestorePrevious
&& previous_image_disposal_method != ImageDescriptor::DisposalMethod::RestorePrevious) {
// This marks the start of a run of frames that once disposed should be restored to the
// previous underlying image contents. Therefore we make a copy of the current frame
// buffer so that it can be restored later.
copy_frame_buffer(*context.prev_frame_buffer, *context.frame_buffer);
}
if (previous_image_disposal_method == ImageDescriptor::DisposalMethod::RestoreBackground) {
// Note: RestoreBackground could be interpreted either as restoring the underlying
// background of the entire image (e.g. container element's background-color), or the
// background color of the GIF itself. It appears that all major browsers and most other
// GIF decoders adhere to the former interpretation, therefore we will do the same by
// clearing the entire frame buffer to transparent.
clear_rect(*context.frame_buffer, context.images.at(i - 1).rect(), Color::Transparent);
} else if (i > 0 && previous_image_disposal_method == ImageDescriptor::DisposalMethod::RestorePrevious) {
// Previous frame indicated that once disposed, it should be restored to *its* previous
// underlying image contents, therefore we restore the saved previous frame buffer.
copy_frame_buffer(*context.frame_buffer, *context.prev_frame_buffer);
}
LZWDecoder decoder(image.lzw_encoded_bytes, image.lzw_min_code_size);
// Add GIF-specific control codes
const int clear_code = decoder.add_control_code();
const int end_of_information_code = decoder.add_control_code();
const auto& color_map = image.use_global_color_map ? context.logical_screen.color_map : image.color_map;
int pixel_index = 0;
int row = 0;
int interlace_pass = 0;
while (true) {
Optional<u16> code = decoder.next_code();
if (!code.has_value()) {
#if GIF_DEBUG
dbgln("Unexpectedly reached end of gif frame data");
#endif
return false;
}
if (code.value() == clear_code) {
decoder.reset();
continue;
}
if (code.value() == end_of_information_code)
break;
if (!image.width)
continue;
auto colors = decoder.get_output();
for (const auto& color : colors) {
auto c = color_map[color];
int x = pixel_index % image.width + image.x;
int y = row + image.y;
if (context.frame_buffer->rect().contains(x, y) && (!image.transparent || color != image.transparency_index)) {
context.frame_buffer->set_pixel(x, y, c);
}
++pixel_index;
if (pixel_index % image.width == 0) {
if (image.interlaced) {
if (row + INTERLACE_ROW_STRIDES[interlace_pass] >= image.height) {
++interlace_pass;
if (interlace_pass < 4)
row = INTERLACE_ROW_OFFSETS[interlace_pass];
} else {
if (interlace_pass < 4)
row += INTERLACE_ROW_STRIDES[interlace_pass];
}
} else {
++row;
}
}
}
}
context.current_frame = i;
context.state = GIFLoadingContext::State::FrameComplete;
}
return true;
}
static bool load_gif_frame_descriptors(GIFLoadingContext& context)
{
if (context.data_size < 32)
return false;
InputMemoryStream stream { { context.data, context.data_size } };
Optional<GIFFormat> format = decode_gif_header(stream);
if (!format.has_value()) {
return false;
}
LittleEndian<u16> value;
stream >> value;
context.logical_screen.width = value;
stream >> value;
context.logical_screen.height = value;
if (stream.handle_any_error())
return false;
if (context.logical_screen.width > maximum_width_for_decoded_images || context.logical_screen.height > maximum_height_for_decoded_images) {
dbgln("This GIF is too large for comfort: {}x{}", context.logical_screen.width, context.logical_screen.height);
return false;
}
u8 gcm_info = 0;
stream >> gcm_info;
if (stream.handle_any_error())
return false;
stream >> context.background_color_index;
if (stream.handle_any_error())
return false;
u8 pixel_aspect_ratio = 0;
stream >> pixel_aspect_ratio;
if (stream.handle_any_error())
return false;
u8 bits_per_pixel = (gcm_info & 7) + 1;
int color_map_entry_count = 1;
for (int i = 0; i < bits_per_pixel; ++i)
color_map_entry_count *= 2;
for (int i = 0; i < color_map_entry_count; ++i) {
u8 r = 0;
u8 g = 0;
u8 b = 0;
stream >> r >> g >> b;
context.logical_screen.color_map[i] = { r, g, b };
}
if (stream.handle_any_error())
return false;
NonnullOwnPtr<ImageDescriptor> current_image = make<ImageDescriptor>();
for (;;) {
u8 sentinel = 0;
stream >> sentinel;
if (stream.handle_any_error())
return false;
if (sentinel == '!') {
u8 extension_type = 0;
stream >> extension_type;
if (stream.handle_any_error())
return false;
u8 sub_block_length = 0;
Vector<u8> sub_block {};
for (;;) {
stream >> sub_block_length;
if (stream.handle_any_error())
return false;
if (sub_block_length == 0)
break;
u8 dummy = 0;
for (u16 i = 0; i < sub_block_length; ++i) {
stream >> dummy;
sub_block.append(dummy);
}
if (stream.handle_any_error())
return false;
}
if (extension_type == 0xF9) {
if (sub_block.size() != 4) {
#if GIF_DEBUG
dbgln("Unexpected graphic control size");
#endif
continue;
}
u8 disposal_method = (sub_block[0] & 0x1C) >> 2;
current_image->disposal_method = (ImageDescriptor::DisposalMethod)disposal_method;
u8 user_input = (sub_block[0] & 0x2) >> 1;
current_image->user_input = user_input == 1;
u8 transparent = sub_block[0] & 1;
current_image->transparent = transparent == 1;
u16 duration = sub_block[1] + ((u16)sub_block[2] >> 8);
current_image->duration = duration;
current_image->transparency_index = sub_block[3];
}
if (extension_type == 0xFF) {
if (sub_block.size() != 14) {
dbgln_if(GIF_DEBUG, "Unexpected application extension size: {}", sub_block.size());
continue;
}
if (sub_block[11] != 1) {
dbgln_if(GIF_DEBUG, "Unexpected application extension format");
continue;
}
u16 loops = sub_block[12] + (sub_block[13] << 8);
context.loops = loops;
}
continue;
}
if (sentinel == ',') {
context.images.append(move(current_image));
auto& image = context.images.last();
LittleEndian<u16> tmp;
u8 packed_fields { 0 };
stream >> tmp;
image.x = tmp;
stream >> tmp;
image.y = tmp;
stream >> tmp;
image.width = tmp;
stream >> tmp;
image.height = tmp;
stream >> packed_fields;
if (stream.handle_any_error())
return false;
image.use_global_color_map = !(packed_fields & 0x80);
image.interlaced = (packed_fields & 0x40) != 0;
if (!image.use_global_color_map) {
size_t local_color_table_size = pow(2, (packed_fields & 7) + 1);
for (size_t i = 0; i < local_color_table_size; ++i) {
u8 r = 0;
u8 g = 0;
u8 b = 0;
stream >> r >> g >> b;
image.color_map[i] = { r, g, b };
}
}
stream >> image.lzw_min_code_size;
if (stream.handle_any_error())
return false;
u8 lzw_encoded_bytes_expected = 0;
for (;;) {
stream >> lzw_encoded_bytes_expected;
if (stream.handle_any_error())
return false;
if (lzw_encoded_bytes_expected == 0)
break;
Array<u8, 256> buffer;
stream >> buffer.span().trim(lzw_encoded_bytes_expected);
if (stream.handle_any_error())
return false;
for (int i = 0; i < lzw_encoded_bytes_expected; ++i) {
image.lzw_encoded_bytes.append(buffer[i]);
}
}
current_image = make<ImageDescriptor>();
continue;
}
if (sentinel == ';') {
break;
}
return false;
}
context.state = GIFLoadingContext::State::FrameDescriptorsLoaded;
return true;
}
GIFImageDecoderPlugin::GIFImageDecoderPlugin(const u8* data, size_t size)
{
m_context = make<GIFLoadingContext>();
m_context->data = data;
m_context->data_size = size;
}
GIFImageDecoderPlugin::~GIFImageDecoderPlugin() { }
IntSize GIFImageDecoderPlugin::size()
{
if (m_context->error_state == GIFLoadingContext::ErrorState::FailedToLoadFrameDescriptors) {
return {};
}
if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) {
if (!load_gif_frame_descriptors(*m_context)) {
m_context->error_state = GIFLoadingContext::ErrorState::FailedToLoadFrameDescriptors;
return {};
}
}
return { m_context->logical_screen.width, m_context->logical_screen.height };
}
RefPtr<Gfx::Bitmap> GIFImageDecoderPlugin::bitmap()
{
if (m_context->state < GIFLoadingContext::State::FrameComplete) {
return frame(0).image;
}
return m_context->frame_buffer;
}
void GIFImageDecoderPlugin::set_volatile()
{
if (m_context->frame_buffer) {
m_context->frame_buffer->set_volatile();
}
}
bool GIFImageDecoderPlugin::set_nonvolatile()
{
if (!m_context->frame_buffer) {
return true;
}
return m_context->frame_buffer->set_nonvolatile();
}
bool GIFImageDecoderPlugin::sniff()
{
InputMemoryStream stream { { m_context->data, m_context->data_size } };
return decode_gif_header(stream).has_value();
}
bool GIFImageDecoderPlugin::is_animated()
{
if (m_context->error_state != GIFLoadingContext::ErrorState::NoError) {
return false;
}
if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) {
if (!load_gif_frame_descriptors(*m_context)) {
m_context->error_state = GIFLoadingContext::ErrorState::FailedToLoadFrameDescriptors;
return false;
}
}
return m_context->images.size() > 1;
}
size_t GIFImageDecoderPlugin::loop_count()
{
if (m_context->error_state != GIFLoadingContext::ErrorState::NoError) {
return 0;
}
if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) {
if (!load_gif_frame_descriptors(*m_context)) {
m_context->error_state = GIFLoadingContext::ErrorState::FailedToLoadFrameDescriptors;
return 0;
}
}
return m_context->loops;
}
size_t GIFImageDecoderPlugin::frame_count()
{
if (m_context->error_state != GIFLoadingContext::ErrorState::NoError) {
return 1;
}
if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) {
if (!load_gif_frame_descriptors(*m_context)) {
m_context->error_state = GIFLoadingContext::ErrorState::FailedToLoadFrameDescriptors;
return 1;
}
}
return m_context->images.size();
}
ImageFrameDescriptor GIFImageDecoderPlugin::frame(size_t i)
{
if (m_context->error_state >= GIFLoadingContext::ErrorState::FailedToDecodeAnyFrame) {
return {};
}
if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) {
if (!load_gif_frame_descriptors(*m_context)) {
m_context->error_state = GIFLoadingContext::ErrorState::FailedToLoadFrameDescriptors;
return {};
}
}
if (m_context->error_state == GIFLoadingContext::ErrorState::NoError && !decode_frame(*m_context, i)) {
if (m_context->state < GIFLoadingContext::State::FrameComplete || !decode_frame(*m_context, 0)) {
m_context->error_state = GIFLoadingContext::ErrorState::FailedToDecodeAnyFrame;
return {};
}
m_context->error_state = GIFLoadingContext::ErrorState::FailedToDecodeAllFrames;
}
ImageFrameDescriptor frame {};
frame.image = m_context->frame_buffer->clone();
frame.duration = m_context->images.at(i).duration * 10;
if (frame.duration <= 10) {
frame.duration = 100;
}
return frame;
}
}