ladybird/Userland/Libraries/LibWeb/TreeNode.h
Luke 5beacf08a2 LibWeb: Make the node mutation algorithms more spec compliant
The mutation algorithms now more closely follow the spec and
fixes some assertion failures in tests such as Acid3 and Dromaeo.

The main thing that is missing right now is passing exceptions to the
bindings layer. This is because of issue #6075. I spent a while trying
to work it out and got so frustrated I just left it as a FIXME. Besides
that, the algorithms bail at the appropriate points.

This also makes the adopting steps in the document more spec compliant
as it's needed by the insertion algorithm. While I was at it, I added
the adoptNode IDL binding.

This adds a bunch of ancestor/descendant checks to TreeNode as well.
I moved the "remove_all_children" function to Node as it needs to use
the full remove algorithm instead of simply removing it from
the child list.
2021-04-06 21:42:00 +02:00

491 lines
15 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/NonnullRefPtr.h>
#include <AK/TypeCasts.h>
#include <AK/Weakable.h>
#include <LibWeb/Forward.h>
namespace Web {
template<typename T>
class TreeNode : public Weakable<T> {
public:
void ref()
{
VERIFY(!m_in_removed_last_ref);
VERIFY(m_ref_count);
++m_ref_count;
}
void unref()
{
VERIFY(!m_in_removed_last_ref);
VERIFY(m_ref_count);
if (!--m_ref_count) {
if constexpr (IsBaseOf<DOM::Node, T>::value) {
m_in_removed_last_ref = true;
static_cast<T*>(this)->removed_last_ref();
} else {
delete static_cast<T*>(this);
}
return;
}
}
int ref_count() const { return m_ref_count; }
T* parent() { return m_parent; }
const T* parent() const { return m_parent; }
bool has_children() const { return m_first_child; }
T* next_sibling() { return m_next_sibling; }
T* previous_sibling() { return m_previous_sibling; }
T* first_child() { return m_first_child; }
T* last_child() { return m_last_child; }
const T* next_sibling() const { return m_next_sibling; }
const T* previous_sibling() const { return m_previous_sibling; }
const T* first_child() const { return m_first_child; }
const T* last_child() const { return m_last_child; }
int child_count() const
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling())
++count;
return count;
}
T* child_at_index(int index)
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (count == index)
return child;
++count;
}
return nullptr;
}
const T* child_at_index(int index) const
{
return const_cast<TreeNode*>(this)->child_at_index(index);
}
bool is_ancestor_of(const TreeNode&) const;
bool is_inclusive_ancestor_of(const TreeNode&) const;
bool is_descendant_of(const TreeNode&) const;
bool is_inclusive_descendant_of(const TreeNode&) const;
void append_child(NonnullRefPtr<T> node);
void prepend_child(NonnullRefPtr<T> node);
void insert_before(NonnullRefPtr<T> node, RefPtr<T> child);
void remove_child(NonnullRefPtr<T> node);
bool is_child_allowed(const T&) const { return true; }
T* next_in_pre_order()
{
if (first_child())
return first_child();
T* node;
if (!(node = next_sibling())) {
node = parent();
while (node && !node->next_sibling())
node = node->parent();
if (node)
node = node->next_sibling();
}
return node;
}
const T* next_in_pre_order() const
{
return const_cast<TreeNode*>(this)->next_in_pre_order();
}
bool is_before(const T& other) const
{
if (this == &other)
return false;
for (auto* node = this; node; node = node->next_in_pre_order()) {
if (node == &other)
return true;
}
return false;
}
template<typename Callback>
IterationDecision for_each_in_inclusive_subtree(Callback callback) const
{
if (callback(static_cast<const T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
IterationDecision for_each_in_inclusive_subtree(Callback callback)
{
if (callback(static_cast<T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_inclusive_subtree_of_type(Callback callback)
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_inclusive_subtree_of_type(Callback callback) const
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<const U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback) const
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback)
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_inclusive_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback)
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback) const
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_inclusive_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
void for_each_child(Callback callback) const
{
return const_cast<TreeNode*>(this)->template for_each_child(move(callback));
}
template<typename Callback>
void for_each_child(Callback callback)
{
for (auto* node = first_child(); node; node = node->next_sibling())
callback(*node);
}
template<typename U, typename Callback>
void for_each_child_of_type(Callback callback)
{
for (auto* node = first_child(); node; node = node->next_sibling()) {
if (is<U>(node))
callback(downcast<U>(*node));
}
}
template<typename U, typename Callback>
void for_each_child_of_type(Callback callback) const
{
return const_cast<TreeNode*>(this)->template for_each_child_of_type<U>(move(callback));
}
template<typename U>
const U* next_sibling_of_type() const
{
return const_cast<TreeNode*>(this)->template next_sibling_of_type<U>();
}
template<typename U>
inline U* next_sibling_of_type()
{
for (auto* sibling = next_sibling(); sibling; sibling = sibling->next_sibling()) {
if (is<U>(*sibling))
return &downcast<U>(*sibling);
}
return nullptr;
}
template<typename U>
const U* previous_sibling_of_type() const
{
return const_cast<TreeNode*>(this)->template previous_sibling_of_type<U>();
}
template<typename U>
U* previous_sibling_of_type()
{
for (auto* sibling = previous_sibling(); sibling; sibling = sibling->previous_sibling()) {
if (is<U>(*sibling))
return &downcast<U>(*sibling);
}
return nullptr;
}
template<typename U>
const U* first_child_of_type() const
{
return const_cast<TreeNode*>(this)->template first_child_of_type<U>();
}
template<typename U>
const U* last_child_of_type() const
{
return const_cast<TreeNode*>(this)->template last_child_of_type<U>();
}
template<typename U>
U* first_child_of_type()
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (is<U>(*child))
return &downcast<U>(*child);
}
return nullptr;
}
template<typename U>
U* last_child_of_type()
{
for (auto* child = last_child(); child; child = child->previous_sibling()) {
if (is<U>(*child))
return &downcast<U>(*child);
}
return nullptr;
}
template<typename U>
bool has_child_of_type() const
{
return first_child_of_type<U>() != nullptr;
}
template<typename U>
const U* first_ancestor_of_type() const
{
return const_cast<TreeNode*>(this)->template first_ancestor_of_type<U>();
}
template<typename U>
U* first_ancestor_of_type()
{
for (auto* ancestor = parent(); ancestor; ancestor = ancestor->parent()) {
if (is<U>(*ancestor))
return &downcast<U>(*ancestor);
}
return nullptr;
}
~TreeNode()
{
VERIFY(!m_parent);
T* next_child = nullptr;
for (auto* child = m_first_child; child; child = next_child) {
next_child = child->m_next_sibling;
child->m_parent = nullptr;
child->unref();
}
}
protected:
TreeNode() { }
bool m_deletion_has_begun { false };
bool m_in_removed_last_ref { false };
private:
int m_ref_count { 1 };
T* m_parent { nullptr };
T* m_first_child { nullptr };
T* m_last_child { nullptr };
T* m_next_sibling { nullptr };
T* m_previous_sibling { nullptr };
};
template<typename T>
inline void TreeNode<T>::remove_child(NonnullRefPtr<T> node)
{
VERIFY(node->m_parent == this);
if (m_first_child == node)
m_first_child = node->m_next_sibling;
if (m_last_child == node)
m_last_child = node->m_previous_sibling;
if (node->m_next_sibling)
node->m_next_sibling->m_previous_sibling = node->m_previous_sibling;
if (node->m_previous_sibling)
node->m_previous_sibling->m_next_sibling = node->m_next_sibling;
node->m_next_sibling = nullptr;
node->m_previous_sibling = nullptr;
node->m_parent = nullptr;
node->unref();
}
template<typename T>
inline void TreeNode<T>::append_child(NonnullRefPtr<T> node)
{
VERIFY(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_last_child)
m_last_child->m_next_sibling = node.ptr();
node->m_previous_sibling = m_last_child;
node->m_parent = static_cast<T*>(this);
m_last_child = node.ptr();
if (!m_first_child)
m_first_child = m_last_child;
[[maybe_unused]] auto& rc = node.leak_ref();
}
template<typename T>
inline void TreeNode<T>::insert_before(NonnullRefPtr<T> node, RefPtr<T> child)
{
if (!child)
return append_child(move(node));
VERIFY(!node->m_parent);
VERIFY(child->parent() == this);
node->m_previous_sibling = child->m_previous_sibling;
node->m_next_sibling = child;
if (child->m_previous_sibling)
child->m_previous_sibling->m_next_sibling = node;
if (m_first_child == child)
m_first_child = node;
child->m_previous_sibling = node;
node->m_parent = static_cast<T*>(this);
[[maybe_unused]] auto& rc = node.leak_ref();
}
template<typename T>
inline void TreeNode<T>::prepend_child(NonnullRefPtr<T> node)
{
VERIFY(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_first_child)
m_first_child->m_previous_sibling = node.ptr();
node->m_next_sibling = m_first_child;
node->m_parent = static_cast<T*>(this);
m_first_child = node.ptr();
if (!m_last_child)
m_last_child = m_first_child;
node->inserted_into(static_cast<T&>(*this));
[[maybe_unused]] auto& rc = node.leak_ref();
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline bool TreeNode<T>::is_ancestor_of(const TreeNode<T>& other) const
{
for (auto* ancestor = other.parent(); ancestor; ancestor = ancestor->parent()) {
if (ancestor == this)
return true;
}
return false;
}
template<typename T>
inline bool TreeNode<T>::is_inclusive_ancestor_of(const TreeNode<T>& other) const
{
return &other == this || is_ancestor_of(other);
}
template<typename T>
inline bool TreeNode<T>::is_descendant_of(const TreeNode<T>& other) const
{
return other.is_ancestor_of(*this);
}
template<typename T>
inline bool TreeNode<T>::is_inclusive_descendant_of(const TreeNode<T>& other) const
{
return other.is_inclusive_ancestor_of(*this);
}
}