ladybird/Kernel/VM/PurgeablePageRanges.h
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

266 lines
8.2 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/RefCounted.h>
#include <Kernel/SpinLock.h>
namespace Kernel {
struct VolatilePageRange {
size_t base { 0 };
size_t count { 0 };
bool was_purged { false };
bool is_empty() const { return count == 0; }
bool intersects(const VolatilePageRange& other) const
{
return other.base < base + count || other.base + other.count > base;
}
bool intersects_or_adjacent(const VolatilePageRange& other) const
{
return other.base <= base + count || other.base + other.count >= base;
}
bool contains(const VolatilePageRange& other) const
{
return base <= other.base && base + count >= other.base + other.count;
}
VolatilePageRange intersected(const VolatilePageRange& other) const
{
auto b = max(base, other.base);
auto e = min(base + count, other.base + other.count);
if (b >= e)
return {};
return { b, e - b, was_purged };
}
void combine_intersecting_or_adjacent(const VolatilePageRange& other)
{
VERIFY(intersects_or_adjacent(other));
if (base <= other.base) {
count = (other.base - base) + other.count;
} else {
count = (base - other.base) + count;
base = other.base;
}
was_purged |= other.was_purged;
}
void subtract_intersecting(const VolatilePageRange& other)
{
if (!intersects(other))
return;
if (other.contains(*this)) {
count = 0;
return;
}
if (base <= other.base) {
count = (other.base - base);
} else {
auto new_base = other.base + other.count;
count = (base + count) - new_base;
base = new_base;
}
}
bool range_equals(const VolatilePageRange& other) const
{
return base == other.base && count == other.count;
}
bool operator==(const VolatilePageRange& other) const
{
return base == other.base && count == other.count && was_purged == other.was_purged;
}
bool operator!=(const VolatilePageRange& other) const
{
return base != other.base || count != other.count || was_purged != other.was_purged;
}
};
class VolatilePageRanges {
public:
VolatilePageRanges(const VolatilePageRange& total_range)
: m_total_range(total_range)
{
}
VolatilePageRanges(const VolatilePageRanges& other)
: m_ranges(other.m_ranges)
, m_total_range(other.m_total_range)
{
}
bool is_empty() const { return m_ranges.is_empty(); }
void clear() { m_ranges.clear_with_capacity(); }
bool is_all() const
{
if (m_ranges.size() != 1)
return false;
return m_ranges[0] == m_total_range;
}
void set_all()
{
if (m_ranges.size() != 1)
m_ranges = { m_total_range };
else
m_ranges[0] = m_total_range;
}
bool intersects(const VolatilePageRange&) const;
bool contains(size_t index) const
{
return intersects({ index, 1 });
}
bool add(const VolatilePageRange&);
void add_unchecked(const VolatilePageRange&);
bool remove(const VolatilePageRange&, bool&);
template<typename F>
IterationDecision for_each_intersecting_range(const VolatilePageRange& range, F f)
{
auto r = m_total_range.intersected(range);
if (r.is_empty())
return IterationDecision::Continue;
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_ranges.span(), r, &nearby_index, [](auto& a, auto& b) {
if (a.intersects(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
if (!existing_range)
return IterationDecision::Continue;
if (existing_range->range_equals(r))
return f(r);
VERIFY(existing_range == &m_ranges[nearby_index]); // sanity check
while (nearby_index < m_ranges.size()) {
existing_range = &m_ranges[nearby_index];
if (!existing_range->intersects(range))
break;
IterationDecision decision = f(existing_range->intersected(r));
if (decision != IterationDecision::Continue)
return decision;
nearby_index++;
}
return IterationDecision::Continue;
}
template<typename F>
IterationDecision for_each_nonvolatile_range(F f) const
{
size_t base = m_total_range.base;
for (const auto& volatile_range : m_ranges) {
if (volatile_range.base == base)
continue;
IterationDecision decision = f({ base, volatile_range.base - base });
if (decision != IterationDecision::Continue)
return decision;
base = volatile_range.base + volatile_range.count;
}
if (base < m_total_range.base + m_total_range.count)
return f({ base, (m_total_range.base + m_total_range.count) - base });
return IterationDecision::Continue;
}
Vector<VolatilePageRange>& ranges() { return m_ranges; }
const Vector<VolatilePageRange>& ranges() const { return m_ranges; }
private:
Vector<VolatilePageRange> m_ranges;
VolatilePageRange m_total_range;
};
class AnonymousVMObject;
class PurgeablePageRanges {
friend class AnonymousVMObject;
public:
PurgeablePageRanges(const VMObject&);
void copy_purgeable_page_ranges(const PurgeablePageRanges& other)
{
if (this == &other)
return;
ScopedSpinLock lock(m_volatile_ranges_lock);
ScopedSpinLock other_lock(other.m_volatile_ranges_lock);
m_volatile_ranges = other.m_volatile_ranges;
}
bool add_volatile_range(const VolatilePageRange& range);
enum class RemoveVolatileError {
Success = 0,
SuccessNoChange,
OutOfMemory
};
RemoveVolatileError remove_volatile_range(const VolatilePageRange& range, bool& was_purged);
bool is_volatile_range(const VolatilePageRange& range) const;
bool is_volatile(size_t) const;
bool is_empty() const { return m_volatile_ranges.is_empty(); }
void set_was_purged(const VolatilePageRange&);
const VolatilePageRanges& volatile_ranges() const { return m_volatile_ranges; }
protected:
void set_vmobject(AnonymousVMObject*);
VolatilePageRanges m_volatile_ranges;
mutable RecursiveSpinLock m_volatile_ranges_lock;
AnonymousVMObject* m_vmobject { nullptr };
};
class CommittedCowPages : public RefCounted<CommittedCowPages> {
AK_MAKE_NONCOPYABLE(CommittedCowPages);
public:
CommittedCowPages() = delete;
CommittedCowPages(size_t);
~CommittedCowPages();
NonnullRefPtr<PhysicalPage> allocate_one();
bool return_one();
private:
size_t m_committed_pages;
};
}