ladybird/Kernel/FileSystem/ProcFS.cpp
Andreas Kling 02406b7305 ProcFS: Add /proc/PID/unveil
This file exposes a JSON array of all the unveiled paths in a process.
2020-01-20 22:19:02 +01:00

1616 lines
54 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "ProcFS.h"
#include "Console.h"
#include "KSyms.h"
#include "Process.h"
#include "Scheduler.h"
#include "StdLib.h"
#include <AK/JsonArraySerializer.h>
#include <AK/JsonObject.h>
#include <AK/JsonObjectSerializer.h>
#include <AK/JsonValue.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/DiskBackedFileSystem.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/KParams.h>
#include <Kernel/Module.h>
#include <Kernel/Net/LocalSocket.h>
#include <Kernel/Net/NetworkAdapter.h>
#include <Kernel/Net/Routing.h>
#include <Kernel/Net/TCPSocket.h>
#include <Kernel/Net/UDPSocket.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/Profiling.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PurgeableVMObject.h>
#include <LibC/errno_numbers.h>
enum ProcParentDirectory {
PDI_AbstractRoot = 0,
PDI_Root,
PDI_Root_sys,
PDI_Root_net,
PDI_PID,
PDI_PID_fd,
};
enum ProcFileType {
FI_Invalid = 0,
FI_Root = 1, // directory
__FI_Root_Start,
FI_Root_mm,
FI_Root_mounts,
FI_Root_df,
FI_Root_all,
FI_Root_memstat,
FI_Root_cpuinfo,
FI_Root_inodes,
FI_Root_dmesg,
FI_Root_pci,
FI_Root_devices,
FI_Root_uptime,
FI_Root_cmdline,
FI_Root_modules,
FI_Root_profile,
FI_Root_self, // symlink
FI_Root_sys, // directory
FI_Root_net, // directory
__FI_Root_End,
FI_Root_sys_variable,
FI_Root_net_adapters,
FI_Root_net_arp,
FI_Root_net_tcp,
FI_Root_net_udp,
FI_Root_net_local,
FI_PID,
__FI_PID_Start,
FI_PID_vm,
FI_PID_vmobjects,
FI_PID_stack,
FI_PID_regs,
FI_PID_fds,
FI_PID_unveil,
FI_PID_exe, // symlink
FI_PID_cwd, // symlink
FI_PID_root, // symlink
FI_PID_fd, // directory
__FI_PID_End,
FI_MaxStaticFileIndex,
};
static inline pid_t to_pid(const InodeIdentifier& identifier)
{
#ifdef PROCFS_DEBUG
dbgprintf("to_pid, index=%08x -> %u\n", identifier.index(), identifier.index() >> 16);
#endif
return identifier.index() >> 16u;
}
static inline ProcParentDirectory to_proc_parent_directory(const InodeIdentifier& identifier)
{
return (ProcParentDirectory)((identifier.index() >> 12) & 0xf);
}
static inline ProcFileType to_proc_file_type(const InodeIdentifier& identifier)
{
return (ProcFileType)(identifier.index() & 0xff);
}
static inline int to_fd(const InodeIdentifier& identifier)
{
ASSERT(to_proc_parent_directory(identifier) == PDI_PID_fd);
return (identifier.index() & 0xff) - FI_MaxStaticFileIndex;
}
static inline int to_sys_index(const InodeIdentifier& identifier)
{
ASSERT(to_proc_parent_directory(identifier) == PDI_Root_sys);
ASSERT(to_proc_file_type(identifier) == FI_Root_sys_variable);
return identifier.index() >> 16u;
}
static inline InodeIdentifier to_identifier(unsigned fsid, ProcParentDirectory parent, pid_t pid, ProcFileType proc_file_type)
{
return { fsid, ((unsigned)parent << 12u) | ((unsigned)pid << 16u) | (unsigned)proc_file_type };
}
static inline InodeIdentifier to_identifier_with_fd(unsigned fsid, pid_t pid, int fd)
{
return { fsid, (PDI_PID_fd << 12u) | ((unsigned)pid << 16u) | (FI_MaxStaticFileIndex + fd) };
}
static inline InodeIdentifier sys_var_to_identifier(unsigned fsid, unsigned index)
{
ASSERT(index < 256);
return { fsid, (PDI_Root_sys << 12u) | (index << 16u) | FI_Root_sys_variable };
}
static inline InodeIdentifier to_parent_id(const InodeIdentifier& identifier)
{
switch (to_proc_parent_directory(identifier)) {
case PDI_AbstractRoot:
case PDI_Root:
return { identifier.fsid(), FI_Root };
case PDI_Root_sys:
return { identifier.fsid(), FI_Root_sys };
case PDI_Root_net:
return { identifier.fsid(), FI_Root_net };
case PDI_PID:
return to_identifier(identifier.fsid(), PDI_Root, to_pid(identifier), FI_PID);
case PDI_PID_fd:
return to_identifier(identifier.fsid(), PDI_PID, to_pid(identifier), FI_PID_fd);
}
ASSERT_NOT_REACHED();
}
#if 0
static inline u8 to_unused_metadata(const InodeIdentifier& identifier)
{
return (identifier.index() >> 8) & 0xf;
}
#endif
static inline bool is_process_related_file(const InodeIdentifier& identifier)
{
if (to_proc_file_type(identifier) == FI_PID)
return true;
auto proc_parent_directory = to_proc_parent_directory(identifier);
switch (proc_parent_directory) {
case PDI_PID:
case PDI_PID_fd:
return true;
default:
return false;
}
}
static inline bool is_directory(const InodeIdentifier& identifier)
{
auto proc_file_type = to_proc_file_type(identifier);
switch (proc_file_type) {
case FI_Root:
case FI_Root_sys:
case FI_Root_net:
case FI_PID:
case FI_PID_fd:
return true;
default:
return false;
}
}
static inline bool is_persistent_inode(const InodeIdentifier& identifier)
{
return to_proc_parent_directory(identifier) == PDI_Root_sys;
}
NonnullRefPtr<ProcFS> ProcFS::create()
{
return adopt(*new ProcFS);
}
ProcFS::~ProcFS()
{
}
Optional<KBuffer> procfs$pid_fds(InodeIdentifier identifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle) {
array.finish();
return builder.build();
}
auto& process = handle->process();
if (process.number_of_open_file_descriptors() == 0) {
array.finish();
return builder.build();
}
for (int i = 0; i < process.max_open_file_descriptors(); ++i) {
auto description = process.file_description(i);
if (!description)
continue;
bool cloexec = process.fd_flags(i) & FD_CLOEXEC;
auto description_object = array.add_object();
description_object.add("fd", i);
description_object.add("absolute_path", description->absolute_path());
description_object.add("seekable", description->file().is_seekable());
description_object.add("class", description->file().class_name());
description_object.add("offset", description->offset());
description_object.add("cloexec", cloexec);
description_object.add("blocking", description->is_blocking());
description_object.add("can_read", description->can_read());
description_object.add("can_write", description->can_write());
}
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$pid_fd_entry(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
int fd = to_fd(identifier);
auto description = process.file_description(fd);
if (!description)
return {};
return description->absolute_path().to_byte_buffer();
}
Optional<KBuffer> procfs$pid_vm(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
KBufferBuilder builder;
JsonArraySerializer array { builder };
for (auto& region : process.regions()) {
if (!region.is_user_accessible() && !current->process().is_superuser())
continue;
auto region_object = array.add_object();
region_object.add("readable", region.is_readable());
region_object.add("writable", region.is_writable());
region_object.add("executable", region.is_executable());
region_object.add("stack", region.is_stack());
region_object.add("shared", region.is_shared());
region_object.add("user_accessible", region.is_user_accessible());
region_object.add("purgeable", region.vmobject().is_purgeable());
if (region.vmobject().is_purgeable()) {
region_object.add("volatile", static_cast<const PurgeableVMObject&>(region.vmobject()).is_volatile());
}
region_object.add("purgeable", region.vmobject().is_purgeable());
region_object.add("address", region.vaddr().get());
region_object.add("size", (u32)region.size());
region_object.add("amount_resident", (u32)region.amount_resident());
region_object.add("amount_dirty", (u32)region.amount_dirty());
region_object.add("cow_pages", region.cow_pages());
region_object.add("name", region.name());
}
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$pci(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
PCI::enumerate_all([&array](PCI::Address address, PCI::ID id) {
auto obj = array.add_object();
obj.add("seg", address.seg());
obj.add("bus", address.bus());
obj.add("slot", address.slot());
obj.add("function", address.function());
obj.add("vendor_id", id.vendor_id);
obj.add("device_id", id.device_id);
obj.add("revision_id", PCI::get_revision_id(address));
obj.add("subclass", PCI::get_subclass(address));
obj.add("class", PCI::get_class(address));
obj.add("subsystem_id", PCI::get_subsystem_id(address));
obj.add("subsystem_vendor_id", PCI::get_subsystem_vendor_id(address));
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$devices(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
Device::for_each([&array](auto& device) {
auto obj = array.add_object();
obj.add("major", device.major());
obj.add("minor", device.minor());
obj.add("class_name", device.class_name());
if (device.is_block_device())
obj.add("type", "block");
else if (device.is_character_device())
obj.add("type", "character");
else
ASSERT_NOT_REACHED();
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$uptime(InodeIdentifier)
{
KBufferBuilder builder;
builder.appendf("%u\n", (u32)(g_uptime / 1000));
return builder.build();
}
Optional<KBuffer> procfs$cmdline(InodeIdentifier)
{
KBufferBuilder builder;
builder.appendf("%s\n", KParams::the().cmdline().characters());
return builder.build();
}
Optional<KBuffer> procfs$modules(InodeIdentifier)
{
extern HashMap<String, OwnPtr<Module>>* g_modules;
KBufferBuilder builder;
JsonArraySerializer array { builder };
for (auto& it : *g_modules) {
auto obj = array.add_object();
obj.add("name", it.value->name);
obj.add("module_init", (u32)it.value->module_init);
obj.add("module_fini", (u32)it.value->module_fini);
u32 size = 0;
for (auto& section : it.value->sections) {
size += section.capacity();
}
obj.add("size", size);
}
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$profile(InodeIdentifier)
{
InterruptDisabler disabler;
KBufferBuilder builder;
JsonArraySerializer array(builder);
bool mask_kernel_addresses = !current->process().is_superuser();
Profiling::for_each_sample([&](auto& sample) {
auto object = array.add_object();
object.add("pid", sample.pid);
object.add("tid", sample.tid);
object.add("timestamp", sample.timestamp);
auto frames_array = object.add_array("frames");
for (size_t i = 0; i < Profiling::max_stack_frame_count; ++i) {
if (sample.frames[i] == 0)
break;
auto frame_object = frames_array.add_object();
u32 address = (u32)sample.frames[i];
if (mask_kernel_addresses && !is_user_address(VirtualAddress(address)))
address = 0xdeadc0de;
frame_object.add("address", address);
frame_object.add("symbol", sample.symbolicated_frames[i]);
frame_object.add("offset", JsonValue((u32)sample.offsets[i]));
frame_object.finish();
}
frames_array.finish();
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$net_adapters(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
NetworkAdapter::for_each([&array](auto& adapter) {
auto obj = array.add_object();
obj.add("name", adapter.name());
obj.add("class_name", adapter.class_name());
obj.add("mac_address", adapter.mac_address().to_string());
if (!adapter.ipv4_address().is_zero()) {
obj.add("ipv4_address", adapter.ipv4_address().to_string());
obj.add("ipv4_netmask", adapter.ipv4_netmask().to_string());
}
if (!adapter.ipv4_gateway().is_zero())
obj.add("ipv4_gateway", adapter.ipv4_gateway().to_string());
obj.add("packets_in", adapter.packets_in());
obj.add("bytes_in", adapter.bytes_in());
obj.add("packets_out", adapter.packets_out());
obj.add("bytes_out", adapter.bytes_out());
obj.add("link_up", adapter.link_up());
obj.add("mtu", adapter.mtu());
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$net_arp(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
LOCKER(arp_table().lock());
for (auto& it : arp_table().resource()) {
auto obj = array.add_object();
obj.add("mac_address", it.value.to_string());
obj.add("ip_address", it.key.to_string());
}
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$net_tcp(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
TCPSocket::for_each([&array](auto& socket) {
auto obj = array.add_object();
obj.add("local_address", socket.local_address().to_string());
obj.add("local_port", socket.local_port());
obj.add("peer_address", socket.peer_address().to_string());
obj.add("peer_port", socket.peer_port());
obj.add("state", TCPSocket::to_string(socket.state()));
obj.add("ack_number", socket.ack_number());
obj.add("sequence_number", socket.sequence_number());
obj.add("packets_in", socket.packets_in());
obj.add("bytes_in", socket.bytes_in());
obj.add("packets_out", socket.packets_out());
obj.add("bytes_out", socket.bytes_out());
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$net_udp(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
UDPSocket::for_each([&array](auto& socket) {
auto obj = array.add_object();
obj.add("local_address", socket.local_address().to_string());
obj.add("local_port", socket.local_port());
obj.add("peer_address", socket.peer_address().to_string());
obj.add("peer_port", socket.peer_port());
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$net_local(InodeIdentifier)
{
KBufferBuilder builder;
JsonArraySerializer array { builder };
LocalSocket::for_each([&array](auto& socket) {
auto obj = array.add_object();
obj.add("path", String(socket.socket_path()));
obj.add("origin_pid", socket.origin_pid());
obj.add("origin_uid", socket.origin_uid());
obj.add("origin_gid", socket.origin_gid());
obj.add("acceptor_pid", socket.acceptor_pid());
obj.add("acceptor_uid", socket.acceptor_uid());
obj.add("acceptor_gid", socket.acceptor_gid());
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$pid_vmobjects(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
KBufferBuilder builder;
builder.appendf("BEGIN END SIZE NAME\n");
for (auto& region : process.regions()) {
builder.appendf("%x -- %x %x %s\n",
region.vaddr().get(),
region.vaddr().offset(region.size() - 1).get(),
region.size(),
region.name().characters());
builder.appendf("VMO: %s @ %x(%u)\n",
region.vmobject().is_anonymous() ? "anonymous" : "file-backed",
&region.vmobject(),
region.vmobject().ref_count());
for (size_t i = 0; i < region.vmobject().page_count(); ++i) {
auto& physical_page = region.vmobject().physical_pages()[i];
builder.appendf("P%x%s(%u) ",
physical_page ? physical_page->paddr().get() : 0,
region.should_cow(i) ? "!" : "",
physical_page ? physical_page->ref_count() : 0);
}
builder.appendf("\n");
}
return builder.build();
}
Optional<KBuffer> procfs$pid_unveil(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
KBufferBuilder builder;
JsonArraySerializer array { builder };
for (auto& unveiled_path : process.unveiled_paths()) {
auto obj = array.add_object();
obj.add("path", unveiled_path.path);
StringBuilder permissions_builder;
if (unveiled_path.permissions & UnveiledPath::Access::Read)
permissions_builder.append('r');
if (unveiled_path.permissions & UnveiledPath::Access::Write)
permissions_builder.append('w');
if (unveiled_path.permissions & UnveiledPath::Access::Execute)
permissions_builder.append('x');
if (unveiled_path.permissions & UnveiledPath::Access::CreateOrRemove)
permissions_builder.append('c');
obj.add("permissions", permissions_builder.to_string());
}
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$pid_stack(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
return process.backtrace(*handle);
}
Optional<KBuffer> procfs$pid_regs(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
KBufferBuilder builder;
process.for_each_thread([&](Thread& thread) {
builder.appendf("Thread %d:\n", thread.tid());
auto& tss = thread.tss();
builder.appendf("eax: %x\n", tss.eax);
builder.appendf("ebx: %x\n", tss.ebx);
builder.appendf("ecx: %x\n", tss.ecx);
builder.appendf("edx: %x\n", tss.edx);
builder.appendf("esi: %x\n", tss.esi);
builder.appendf("edi: %x\n", tss.edi);
builder.appendf("ebp: %x\n", tss.ebp);
builder.appendf("cr3: %x\n", tss.cr3);
builder.appendf("flg: %x\n", tss.eflags);
builder.appendf("sp: %w:%x\n", tss.ss, tss.esp);
builder.appendf("pc: %w:%x\n", tss.cs, tss.eip);
return IterationDecision::Continue;
});
return builder.build();
}
Optional<KBuffer> procfs$pid_exe(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
auto& process = handle->process();
auto* custody = process.executable();
ASSERT(custody);
return custody->absolute_path().to_byte_buffer();
}
Optional<KBuffer> procfs$pid_cwd(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
return handle->process().current_directory().absolute_path().to_byte_buffer();
}
Optional<KBuffer> procfs$pid_root(InodeIdentifier identifier)
{
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier));
if (!handle)
return {};
return handle->process().root_directory_relative_to_global_root().absolute_path().to_byte_buffer();
}
Optional<KBuffer> procfs$self(InodeIdentifier)
{
char buffer[16];
sprintf(buffer, "%u", current->pid());
return KBuffer::copy((const u8*)buffer, strlen(buffer));
}
Optional<KBuffer> procfs$mm(InodeIdentifier)
{
InterruptDisabler disabler;
KBufferBuilder builder;
u32 vmobject_count = 0;
MemoryManager::for_each_vmobject([&](auto& vmobject) {
++vmobject_count;
builder.appendf("VMObject: %p %s(%u): p:%4u\n",
&vmobject,
vmobject.is_anonymous() ? "anon" : "file",
vmobject.ref_count(),
vmobject.page_count());
return IterationDecision::Continue;
});
builder.appendf("VMO count: %u\n", vmobject_count);
builder.appendf("Free physical pages: %u\n", MM.user_physical_pages() - MM.user_physical_pages_used());
builder.appendf("Free supervisor physical pages: %u\n", MM.super_physical_pages() - MM.super_physical_pages_used());
return builder.build();
}
Optional<KBuffer> procfs$dmesg(InodeIdentifier)
{
InterruptDisabler disabler;
KBufferBuilder builder;
for (char ch : Console::the().logbuffer())
builder.append(ch);
return builder.build();
}
Optional<KBuffer> procfs$mounts(InodeIdentifier)
{
// FIXME: This is obviously racy against the VFS mounts changing.
KBufferBuilder builder;
VFS::the().for_each_mount([&builder](auto& mount) {
auto& fs = mount.guest_fs();
builder.appendf("%s @ ", fs.class_name());
if (!mount.host().is_valid())
builder.appendf("/");
else {
builder.appendf("%u:%u", mount.host().fsid(), mount.host().index());
builder.append(' ');
builder.append(mount.absolute_path());
}
builder.append('\n');
});
return builder.build();
}
Optional<KBuffer> procfs$df(InodeIdentifier)
{
// FIXME: This is obviously racy against the VFS mounts changing.
KBufferBuilder builder;
JsonArraySerializer array { builder };
VFS::the().for_each_mount([&array](auto& mount) {
auto& fs = mount.guest_fs();
auto fs_object = array.add_object();
fs_object.add("class_name", fs.class_name());
fs_object.add("total_block_count", fs.total_block_count());
fs_object.add("free_block_count", fs.free_block_count());
fs_object.add("total_inode_count", fs.total_inode_count());
fs_object.add("free_inode_count", fs.free_inode_count());
fs_object.add("mount_point", mount.absolute_path());
fs_object.add("block_size", fs.block_size());
fs_object.add("readonly", fs.is_readonly());
fs_object.add("mount_flags", mount.flags());
if (fs.is_disk_backed())
fs_object.add("device", static_cast<const DiskBackedFS&>(fs).device().absolute_path());
else
fs_object.add("device", fs.class_name());
});
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$cpuinfo(InodeIdentifier)
{
KBufferBuilder builder;
{
CPUID cpuid(0);
builder.appendf("cpuid: ");
auto emit_u32 = [&](u32 value) {
builder.appendf("%c%c%c%c",
value & 0xff,
(value >> 8) & 0xff,
(value >> 16) & 0xff,
(value >> 24) & 0xff);
};
emit_u32(cpuid.ebx());
emit_u32(cpuid.edx());
emit_u32(cpuid.ecx());
builder.appendf("\n");
}
{
CPUID cpuid(1);
u32 stepping = cpuid.eax() & 0xf;
u32 model = (cpuid.eax() >> 4) & 0xf;
u32 family = (cpuid.eax() >> 8) & 0xf;
u32 type = (cpuid.eax() >> 12) & 0x3;
u32 extended_model = (cpuid.eax() >> 16) & 0xf;
u32 extended_family = (cpuid.eax() >> 20) & 0xff;
u32 display_model;
u32 display_family;
if (family == 15) {
display_family = family + extended_family;
display_model = model + (extended_model << 4);
} else if (family == 6) {
display_family = family;
display_model = model + (extended_model << 4);
} else {
display_family = family;
display_model = model;
}
builder.appendf("family: %u\n", display_family);
builder.appendf("model: %u\n", display_model);
builder.appendf("stepping: %u\n", stepping);
builder.appendf("type: %u\n", type);
}
{
// FIXME: Check first that this is supported by calling CPUID with eax=0x80000000
// and verifying that the returned eax>=0x80000004.
alignas(u32) char buffer[48];
u32* bufptr = reinterpret_cast<u32*>(buffer);
auto copy_brand_string_part_to_buffer = [&](u32 i) {
CPUID cpuid(0x80000002 + i);
*bufptr++ = cpuid.eax();
*bufptr++ = cpuid.ebx();
*bufptr++ = cpuid.ecx();
*bufptr++ = cpuid.edx();
};
copy_brand_string_part_to_buffer(0);
copy_brand_string_part_to_buffer(1);
copy_brand_string_part_to_buffer(2);
builder.appendf("brandstr: \"%s\"\n", buffer);
}
return builder.build();
}
Optional<KBuffer> procfs$memstat(InodeIdentifier)
{
InterruptDisabler disabler;
KBufferBuilder builder;
JsonObjectSerializer<KBufferBuilder> json { builder };
json.add("kmalloc_allocated", (u32)sum_alloc);
json.add("kmalloc_available", (u32)sum_free);
json.add("kmalloc_eternal_allocated", (u32)kmalloc_sum_eternal);
json.add("user_physical_allocated", MM.user_physical_pages_used());
json.add("user_physical_available", MM.user_physical_pages() - MM.user_physical_pages_used());
json.add("super_physical_allocated", MM.super_physical_pages_used());
json.add("super_physical_available", MM.super_physical_pages() - MM.super_physical_pages_used());
json.add("kmalloc_call_count", g_kmalloc_call_count);
json.add("kfree_call_count", g_kfree_call_count);
slab_alloc_stats([&json](size_t slab_size, size_t num_allocated, size_t num_free) {
auto prefix = String::format("slab_%zu", slab_size);
json.add(String::format("%s_num_allocated", prefix.characters()), (u32)num_allocated);
json.add(String::format("%s_num_free", prefix.characters()), (u32)num_free);
});
json.finish();
return builder.build();
}
Optional<KBuffer> procfs$all(InodeIdentifier)
{
InterruptDisabler disabler;
auto processes = Process::all_processes();
KBufferBuilder builder;
JsonArraySerializer array { builder };
// Keep this in sync with CProcessStatistics.
auto build_process = [&](const Process& process) {
auto process_object = array.add_object();
StringBuilder pledge_builder;
#define __ENUMERATE_PLEDGE_PROMISE(promise) \
if (process.has_promised(Pledge::promise)) { \
pledge_builder.append(#promise " "); \
}
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
process_object.add("pledge", pledge_builder.to_string());
process_object.add("pid", process.pid());
process_object.add("pgid", process.tty() ? process.tty()->pgid() : 0);
process_object.add("pgp", process.pgid());
process_object.add("sid", process.sid());
process_object.add("uid", process.uid());
process_object.add("gid", process.gid());
process_object.add("ppid", process.ppid());
process_object.add("nfds", process.number_of_open_file_descriptors());
process_object.add("name", process.name());
process_object.add("tty", process.tty() ? process.tty()->tty_name() : "notty");
process_object.add("amount_virtual", (u32)process.amount_virtual());
process_object.add("amount_resident", (u32)process.amount_resident());
process_object.add("amount_dirty_private", (u32)process.amount_dirty_private());
process_object.add("amount_clean_inode", (u32)process.amount_clean_inode());
process_object.add("amount_shared", (u32)process.amount_shared());
process_object.add("amount_purgeable_volatile", (u32)process.amount_purgeable_volatile());
process_object.add("amount_purgeable_nonvolatile", (u32)process.amount_purgeable_nonvolatile());
process_object.add("icon_id", process.icon_id());
auto thread_array = process_object.add_array("threads");
process.for_each_thread([&](const Thread& thread) {
auto thread_object = thread_array.add_object();
thread_object.add("tid", thread.tid());
thread_object.add("name", thread.name());
thread_object.add("times_scheduled", thread.times_scheduled());
thread_object.add("ticks", thread.ticks());
thread_object.add("state", thread.state_string());
thread_object.add("priority", thread.priority());
thread_object.add("effective_priority", thread.effective_priority());
thread_object.add("syscall_count", thread.syscall_count());
thread_object.add("inode_faults", thread.inode_faults());
thread_object.add("zero_faults", thread.zero_faults());
thread_object.add("cow_faults", thread.cow_faults());
thread_object.add("file_read_bytes", thread.file_read_bytes());
thread_object.add("file_write_bytes", thread.file_write_bytes());
thread_object.add("unix_socket_read_bytes", thread.unix_socket_read_bytes());
thread_object.add("unix_socket_write_bytes", thread.unix_socket_write_bytes());
thread_object.add("ipv4_socket_read_bytes", thread.ipv4_socket_read_bytes());
thread_object.add("ipv4_socket_write_bytes", thread.ipv4_socket_write_bytes());
return IterationDecision::Continue;
});
};
build_process(*Scheduler::colonel());
for (auto* process : processes)
build_process(*process);
array.finish();
return builder.build();
}
Optional<KBuffer> procfs$inodes(InodeIdentifier)
{
extern InlineLinkedList<Inode>& all_inodes();
KBufferBuilder builder;
InterruptDisabler disabler;
for (auto& inode : all_inodes()) {
builder.appendf("Inode{K%x} %02u:%08u (%u)\n", &inode, inode.fsid(), inode.index(), inode.ref_count());
}
return builder.build();
}
struct SysVariable {
String name;
enum class Type : u8 {
Invalid,
Boolean,
String,
};
Type type { Type::Invalid };
Function<void()> notify_callback;
void* address { nullptr };
static SysVariable& for_inode(InodeIdentifier);
void notify()
{
if (notify_callback)
notify_callback();
}
};
static Vector<SysVariable, 16>* s_sys_variables;
static inline Vector<SysVariable, 16>& sys_variables()
{
if (s_sys_variables == nullptr) {
s_sys_variables = new Vector<SysVariable, 16>;
s_sys_variables->append({ "", SysVariable::Type::Invalid, nullptr, nullptr });
}
return *s_sys_variables;
}
SysVariable& SysVariable::for_inode(InodeIdentifier id)
{
auto index = to_sys_index(id);
if (index >= sys_variables().size())
return sys_variables()[0];
auto& variable = sys_variables()[index];
ASSERT(variable.address);
return variable;
}
static ByteBuffer read_sys_bool(InodeIdentifier inode_id)
{
auto& variable = SysVariable::for_inode(inode_id);
ASSERT(variable.type == SysVariable::Type::Boolean);
auto buffer = ByteBuffer::create_uninitialized(2);
auto* lockable_bool = reinterpret_cast<Lockable<bool>*>(variable.address);
{
LOCKER(lockable_bool->lock());
buffer[0] = lockable_bool->resource() ? '1' : '0';
}
buffer[1] = '\n';
return buffer;
}
static ssize_t write_sys_bool(InodeIdentifier inode_id, const ByteBuffer& data)
{
auto& variable = SysVariable::for_inode(inode_id);
ASSERT(variable.type == SysVariable::Type::Boolean);
if (data.is_empty() || !(data[0] == '0' || data[0] == '1'))
return data.size();
auto* lockable_bool = reinterpret_cast<Lockable<bool>*>(variable.address);
{
LOCKER(lockable_bool->lock());
lockable_bool->resource() = data[0] == '1';
}
variable.notify();
return data.size();
}
static ByteBuffer read_sys_string(InodeIdentifier inode_id)
{
auto& variable = SysVariable::for_inode(inode_id);
ASSERT(variable.type == SysVariable::Type::String);
auto* lockable_string = reinterpret_cast<Lockable<String>*>(variable.address);
LOCKER(lockable_string->lock());
return lockable_string->resource().to_byte_buffer();
}
static ssize_t write_sys_string(InodeIdentifier inode_id, const ByteBuffer& data)
{
auto& variable = SysVariable::for_inode(inode_id);
ASSERT(variable.type == SysVariable::Type::String);
{
auto* lockable_string = reinterpret_cast<Lockable<String>*>(variable.address);
LOCKER(lockable_string->lock());
lockable_string->resource() = String((const char*)data.data(), data.size());
}
variable.notify();
return data.size();
}
void ProcFS::add_sys_bool(String&& name, Lockable<bool>& var, Function<void()>&& notify_callback)
{
InterruptDisabler disabler;
SysVariable variable;
variable.name = move(name);
variable.type = SysVariable::Type::Boolean;
variable.notify_callback = move(notify_callback);
variable.address = &var;
sys_variables().append(move(variable));
}
void ProcFS::add_sys_string(String&& name, Lockable<String>& var, Function<void()>&& notify_callback)
{
InterruptDisabler disabler;
SysVariable variable;
variable.name = move(name);
variable.type = SysVariable::Type::String;
variable.notify_callback = move(notify_callback);
variable.address = &var;
sys_variables().append(move(variable));
}
bool ProcFS::initialize()
{
static Lockable<bool>* kmalloc_stack_helper;
if (kmalloc_stack_helper == nullptr) {
kmalloc_stack_helper = new Lockable<bool>();
kmalloc_stack_helper->resource() = g_dump_kmalloc_stacks;
ProcFS::add_sys_bool("kmalloc_stacks", *kmalloc_stack_helper, [] {
g_dump_kmalloc_stacks = kmalloc_stack_helper->resource();
});
}
return true;
}
const char* ProcFS::class_name() const
{
return "ProcFS";
}
RefPtr<Inode> ProcFS::create_inode(InodeIdentifier, const String&, mode_t, off_t, dev_t, uid_t, gid_t, int&)
{
kprintf("FIXME: Implement ProcFS::create_inode()?\n");
return {};
}
RefPtr<Inode> ProcFS::create_directory(InodeIdentifier, const String&, mode_t, uid_t, gid_t, int& error)
{
error = -EROFS;
return nullptr;
}
InodeIdentifier ProcFS::root_inode() const
{
return { fsid(), FI_Root };
}
RefPtr<Inode> ProcFS::get_inode(InodeIdentifier inode_id) const
{
#ifdef PROCFS_DEBUG
dbgprintf("ProcFS::get_inode(%u)\n", inode_id.index());
#endif
if (inode_id == root_inode())
return m_root_inode;
LOCKER(m_inodes_lock);
auto it = m_inodes.find(inode_id.index());
if (it == m_inodes.end()) {
auto inode = adopt(*new ProcFSInode(const_cast<ProcFS&>(*this), inode_id.index()));
m_inodes.set(inode_id.index(), inode.ptr());
return inode;
}
return (*it).value;
}
ProcFSInode::ProcFSInode(ProcFS& fs, unsigned index)
: Inode(fs, index)
{
}
ProcFSInode::~ProcFSInode()
{
LOCKER(fs().m_inodes_lock);
fs().m_inodes.remove(index());
}
InodeMetadata ProcFSInode::metadata() const
{
#ifdef PROCFS_DEBUG
dbgprintf("ProcFSInode::metadata(%u)\n", index());
#endif
InodeMetadata metadata;
metadata.inode = identifier();
metadata.ctime = mepoch;
metadata.atime = mepoch;
metadata.mtime = mepoch;
auto proc_parent_directory = to_proc_parent_directory(identifier());
auto pid = to_pid(identifier());
auto proc_file_type = to_proc_file_type(identifier());
#ifdef PROCFS_DEBUG
dbgprintf(" -> pid: %d, fi: %u, pdi: %u\n", pid, proc_file_type, proc_parent_directory);
#endif
if (is_process_related_file(identifier())) {
auto handle = ProcessInspectionHandle::from_pid(pid);
metadata.uid = handle->process().sys$getuid();
metadata.gid = handle->process().sys$getgid();
}
if (proc_parent_directory == PDI_PID_fd) {
metadata.mode = 00120700;
return metadata;
}
switch (proc_file_type) {
case FI_Root_self:
metadata.mode = 0120444;
break;
case FI_PID_cwd:
case FI_PID_exe:
case FI_PID_root:
metadata.mode = 0120400;
break;
case FI_Root:
case FI_Root_sys:
case FI_Root_net:
metadata.mode = 040555;
break;
case FI_PID:
case FI_PID_fd:
metadata.mode = 040500;
break;
default:
metadata.mode = 0100444;
break;
}
if (proc_file_type > FI_Invalid && proc_file_type < FI_MaxStaticFileIndex) {
if (fs().m_entries[proc_file_type].supervisor_only) {
metadata.uid = 0;
metadata.gid = 0;
metadata.mode &= ~077;
}
}
#ifdef PROCFS_DEBUG
dbgprintf("Returning mode %o\n", metadata.mode);
#endif
return metadata;
}
ssize_t ProcFSInode::read_bytes(off_t offset, ssize_t count, u8* buffer, FileDescription* description) const
{
#ifdef PROCFS_DEBUG
dbgprintf("ProcFS: read_bytes %u\n", index());
#endif
ASSERT(offset >= 0);
ASSERT(buffer);
auto* directory_entry = fs().get_directory_entry(identifier());
Function<Optional<KBuffer>(InodeIdentifier)> callback_tmp;
Function<Optional<KBuffer>(InodeIdentifier)>* read_callback { nullptr };
if (directory_entry)
read_callback = &directory_entry->read_callback;
else
switch (to_proc_parent_directory(identifier())) {
case PDI_PID_fd:
callback_tmp = procfs$pid_fd_entry;
read_callback = &callback_tmp;
break;
case PDI_Root_sys:
switch (SysVariable::for_inode(identifier()).type) {
case SysVariable::Type::Invalid:
ASSERT_NOT_REACHED();
case SysVariable::Type::Boolean:
callback_tmp = read_sys_bool;
break;
case SysVariable::Type::String:
callback_tmp = read_sys_string;
break;
}
read_callback = &callback_tmp;
break;
default:
ASSERT_NOT_REACHED();
}
ASSERT(read_callback);
Optional<KBuffer> generated_data;
if (!description) {
generated_data = (*read_callback)(identifier());
} else {
if (!description->generator_cache())
description->generator_cache() = (*read_callback)(identifier());
generated_data = description->generator_cache();
}
auto& data = generated_data;
if (!data.has_value())
return 0;
if ((size_t)offset >= data.value().size())
return 0;
ssize_t nread = min(static_cast<off_t>(data.value().size() - offset), static_cast<off_t>(count));
memcpy(buffer, data.value().data() + offset, nread);
if (nread == 0 && description && description->generator_cache())
description->generator_cache().clear();
return nread;
}
InodeIdentifier ProcFS::ProcFSDirectoryEntry::identifier(unsigned fsid) const
{
return to_identifier(fsid, PDI_Root, 0, (ProcFileType)proc_file_type);
}
bool ProcFSInode::traverse_as_directory(Function<bool(const FS::DirectoryEntry&)> callback) const
{
#ifdef PROCFS_DEBUG
dbgprintf("ProcFS: traverse_as_directory %u\n", index());
#endif
if (!::is_directory(identifier()))
return false;
auto pid = to_pid(identifier());
auto proc_file_type = to_proc_file_type(identifier());
auto parent_id = to_parent_id(identifier());
callback({ ".", 1, identifier(), 2 });
callback({ "..", 2, parent_id, 2 });
switch (proc_file_type) {
case FI_Root:
for (auto& entry : fs().m_entries) {
// FIXME: strlen() here is sad.
if (!entry.name)
continue;
if (entry.proc_file_type > __FI_Root_Start && entry.proc_file_type < __FI_Root_End)
callback({ entry.name, strlen(entry.name), to_identifier(fsid(), PDI_Root, 0, (ProcFileType)entry.proc_file_type), 0 });
}
for (auto pid_child : Process::all_pids()) {
char name[16];
size_t name_length = (size_t)sprintf(name, "%u", pid_child);
callback({ name, name_length, to_identifier(fsid(), PDI_Root, pid_child, FI_PID), 0 });
}
break;
case FI_Root_sys:
for (int i = 1; i < sys_variables().size(); ++i) {
auto& variable = sys_variables()[i];
callback({ variable.name.characters(), variable.name.length(), sys_var_to_identifier(fsid(), i), 0 });
}
break;
case FI_Root_net:
callback({ "adapters", 8, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_adapters), 0 });
callback({ "arp", 3, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_arp), 0 });
callback({ "tcp", 3, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_tcp), 0 });
callback({ "udp", 3, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_udp), 0 });
callback({ "local", 5, to_identifier(fsid(), PDI_Root_net, 0, FI_Root_net_local), 0 });
break;
case FI_PID: {
auto handle = ProcessInspectionHandle::from_pid(pid);
if (!handle)
return false;
auto& process = handle->process();
for (auto& entry : fs().m_entries) {
if (entry.proc_file_type > __FI_PID_Start && entry.proc_file_type < __FI_PID_End) {
if (entry.proc_file_type == FI_PID_exe && !process.executable())
continue;
// FIXME: strlen() here is sad.
callback({ entry.name, strlen(entry.name), to_identifier(fsid(), PDI_PID, pid, (ProcFileType)entry.proc_file_type), 0 });
}
}
} break;
case FI_PID_fd: {
auto handle = ProcessInspectionHandle::from_pid(pid);
if (!handle)
return false;
auto& process = handle->process();
for (int i = 0; i < process.max_open_file_descriptors(); ++i) {
auto description = process.file_description(i);
if (!description)
continue;
char name[16];
size_t name_length = (size_t)sprintf(name, "%u", i);
callback({ name, name_length, to_identifier_with_fd(fsid(), pid, i), 0 });
}
} break;
default:
return true;
}
return true;
}
InodeIdentifier ProcFSInode::lookup(StringView name)
{
ASSERT(is_directory());
if (name == ".")
return identifier();
if (name == "..")
return to_parent_id(identifier());
auto proc_file_type = to_proc_file_type(identifier());
if (proc_file_type == FI_Root) {
for (auto& entry : fs().m_entries) {
if (entry.name == nullptr)
continue;
if (entry.proc_file_type > __FI_Root_Start && entry.proc_file_type < __FI_Root_End) {
if (name == entry.name) {
return to_identifier(fsid(), PDI_Root, 0, (ProcFileType)entry.proc_file_type);
}
}
}
bool ok;
unsigned name_as_number = name.to_uint(ok);
if (ok) {
bool process_exists = false;
{
InterruptDisabler disabler;
process_exists = Process::from_pid(name_as_number);
}
if (process_exists)
return to_identifier(fsid(), PDI_Root, name_as_number, FI_PID);
}
return {};
}
if (proc_file_type == FI_Root_sys) {
for (int i = 1; i < sys_variables().size(); ++i) {
auto& variable = sys_variables()[i];
if (name == variable.name)
return sys_var_to_identifier(fsid(), i);
}
return {};
}
if (proc_file_type == FI_Root_net) {
if (name == "adapters")
return to_identifier(fsid(), PDI_Root, 0, FI_Root_net_adapters);
if (name == "arp")
return to_identifier(fsid(), PDI_Root, 0, FI_Root_net_arp);
if (name == "tcp")
return to_identifier(fsid(), PDI_Root, 0, FI_Root_net_tcp);
if (name == "udp")
return to_identifier(fsid(), PDI_Root, 0, FI_Root_net_udp);
if (name == "local")
return to_identifier(fsid(), PDI_Root, 0, FI_Root_net_local);
return {};
}
if (proc_file_type == FI_PID) {
auto handle = ProcessInspectionHandle::from_pid(to_pid(identifier()));
if (!handle)
return {};
auto& process = handle->process();
for (auto& entry : fs().m_entries) {
if (entry.proc_file_type > __FI_PID_Start && entry.proc_file_type < __FI_PID_End) {
if (entry.proc_file_type == FI_PID_exe && !process.executable())
continue;
if (entry.name == nullptr)
continue;
if (name == entry.name) {
return to_identifier(fsid(), PDI_PID, to_pid(identifier()), (ProcFileType)entry.proc_file_type);
}
}
}
return {};
}
if (proc_file_type == FI_PID_fd) {
bool ok;
unsigned name_as_number = name.to_uint(ok);
if (ok) {
bool fd_exists = false;
{
InterruptDisabler disabler;
if (auto* process = Process::from_pid(to_pid(identifier())))
fd_exists = process->file_description(name_as_number);
}
if (fd_exists)
return to_identifier_with_fd(fsid(), to_pid(identifier()), name_as_number);
}
}
return {};
}
void ProcFSInode::flush_metadata()
{
}
ssize_t ProcFSInode::write_bytes(off_t offset, ssize_t size, const u8* buffer, FileDescription*)
{
auto* directory_entry = fs().get_directory_entry(identifier());
Function<ssize_t(InodeIdentifier, const ByteBuffer&)> callback_tmp;
Function<ssize_t(InodeIdentifier, const ByteBuffer&)>* write_callback { nullptr };
if (directory_entry == nullptr) {
if (to_proc_parent_directory(identifier()) == PDI_Root_sys) {
switch (SysVariable::for_inode(identifier()).type) {
case SysVariable::Type::Invalid:
ASSERT_NOT_REACHED();
case SysVariable::Type::Boolean:
callback_tmp = write_sys_bool;
break;
case SysVariable::Type::String:
callback_tmp = write_sys_string;
break;
}
write_callback = &callback_tmp;
} else
return -EPERM;
} else {
if (!directory_entry->write_callback)
return -EPERM;
write_callback = &directory_entry->write_callback;
}
ASSERT(is_persistent_inode(identifier()));
// FIXME: Being able to write into ProcFS at a non-zero offset seems like something we should maybe support..
ASSERT(offset == 0);
bool success = (*write_callback)(identifier(), ByteBuffer::wrap(buffer, size));
ASSERT(success);
return 0;
}
KResultOr<NonnullRefPtr<Custody>> ProcFSInode::resolve_as_link(Custody& base, RefPtr<Custody>* out_parent, int options, int symlink_recursion_level) const
{
if (!is_process_related_file(identifier()))
return Inode::resolve_as_link(base, out_parent, options, symlink_recursion_level);
// FIXME: We should return a custody for FI_PID or FI_PID_fd here
// for correctness. It's impossible to create files in ProcFS,
// so returning null shouldn't break much.
if (out_parent)
*out_parent = nullptr;
auto pid = to_pid(identifier());
auto proc_file_type = to_proc_file_type(identifier());
auto handle = ProcessInspectionHandle::from_pid(pid);
if (!handle)
return KResult(-ENOENT);
auto& process = handle->process();
if (to_proc_parent_directory(identifier()) == PDI_PID_fd) {
if (out_parent)
*out_parent = base;
int fd = to_fd(identifier());
auto description = process.file_description(fd);
if (!description)
return KResult(-ENOENT);
auto proxy_inode = ProcFSProxyInode::create(const_cast<ProcFS&>(fs()), *description);
return Custody::create(&base, "", proxy_inode, base.mount_flags());
}
Custody* res = nullptr;
switch (proc_file_type) {
case FI_PID_cwd:
res = &process.current_directory();
break;
case FI_PID_exe:
res = process.executable();
break;
case FI_PID_root:
// Note: we open root_directory() here, not
// root_directory_relative_to_global_root().
// This seems more useful.
res = &process.root_directory();
break;
default:
ASSERT_NOT_REACHED();
}
if (!res)
return KResult(-ENOENT);
return *res;
}
ProcFSProxyInode::ProcFSProxyInode(ProcFS& fs, FileDescription& fd)
: Inode(fs, 0)
, m_fd(fd)
{
}
ProcFSProxyInode::~ProcFSProxyInode()
{
}
InodeMetadata ProcFSProxyInode::metadata() const
{
InodeMetadata metadata = m_fd->metadata();
if (m_fd->is_readable())
metadata.mode |= 0444;
else
metadata.mode &= ~0444;
if (m_fd->is_writable())
metadata.mode |= 0222;
else
metadata.mode &= ~0222;
if (!metadata.is_directory())
metadata.mode &= ~0111;
return metadata;
}
KResult ProcFSProxyInode::add_child(InodeIdentifier child_id, const StringView& name, mode_t mode)
{
if (!m_fd->inode())
return KResult(-EINVAL);
return m_fd->inode()->add_child(child_id, name, mode);
}
KResult ProcFSProxyInode::remove_child(const StringView& name)
{
if (!m_fd->inode())
return KResult(-EINVAL);
return m_fd->inode()->remove_child(name);
}
InodeIdentifier ProcFSProxyInode::lookup(StringView name)
{
if (!m_fd->inode())
return {};
return m_fd->inode()->lookup(name);
}
size_t ProcFSProxyInode::directory_entry_count() const
{
if (!m_fd->inode())
return 0;
return m_fd->inode()->directory_entry_count();
}
KResult ProcFSInode::add_child(InodeIdentifier child_id, const StringView& name, mode_t)
{
(void)child_id;
(void)name;
return KResult(-EPERM);
}
KResult ProcFSInode::remove_child(const StringView& name)
{
(void)name;
return KResult(-EPERM);
}
size_t ProcFSInode::directory_entry_count() const
{
ASSERT(is_directory());
size_t count = 0;
traverse_as_directory([&count](const FS::DirectoryEntry&) {
++count;
return true;
});
return count;
}
KResult ProcFSInode::chmod(mode_t)
{
return KResult(-EPERM);
}
ProcFS::ProcFS()
{
m_root_inode = adopt(*new ProcFSInode(*this, 1));
m_entries.resize(FI_MaxStaticFileIndex);
m_entries[FI_Root_mm] = { "mm", FI_Root_mm, true, procfs$mm };
m_entries[FI_Root_mounts] = { "mounts", FI_Root_mounts, false, procfs$mounts };
m_entries[FI_Root_df] = { "df", FI_Root_df, false, procfs$df };
m_entries[FI_Root_all] = { "all", FI_Root_all, false, procfs$all };
m_entries[FI_Root_memstat] = { "memstat", FI_Root_memstat, false, procfs$memstat };
m_entries[FI_Root_cpuinfo] = { "cpuinfo", FI_Root_cpuinfo, false, procfs$cpuinfo };
m_entries[FI_Root_inodes] = { "inodes", FI_Root_inodes, true, procfs$inodes };
m_entries[FI_Root_dmesg] = { "dmesg", FI_Root_dmesg, true, procfs$dmesg };
m_entries[FI_Root_self] = { "self", FI_Root_self, false, procfs$self };
m_entries[FI_Root_pci] = { "pci", FI_Root_pci, false, procfs$pci };
m_entries[FI_Root_devices] = { "devices", FI_Root_devices, false, procfs$devices };
m_entries[FI_Root_uptime] = { "uptime", FI_Root_uptime, false, procfs$uptime };
m_entries[FI_Root_cmdline] = { "cmdline", FI_Root_cmdline, true, procfs$cmdline };
m_entries[FI_Root_modules] = { "modules", FI_Root_modules, true, procfs$modules };
m_entries[FI_Root_profile] = { "profile", FI_Root_profile, false, procfs$profile };
m_entries[FI_Root_sys] = { "sys", FI_Root_sys, true };
m_entries[FI_Root_net] = { "net", FI_Root_net, false };
m_entries[FI_Root_net_adapters] = { "adapters", FI_Root_net_adapters, false, procfs$net_adapters };
m_entries[FI_Root_net_arp] = { "arp", FI_Root_net_arp, true, procfs$net_arp };
m_entries[FI_Root_net_tcp] = { "tcp", FI_Root_net_tcp, false, procfs$net_tcp };
m_entries[FI_Root_net_udp] = { "udp", FI_Root_net_udp, false, procfs$net_udp };
m_entries[FI_Root_net_local] = { "local", FI_Root_net_local, false, procfs$net_local };
m_entries[FI_PID_vm] = { "vm", FI_PID_vm, false, procfs$pid_vm };
m_entries[FI_PID_vmobjects] = { "vmobjects", FI_PID_vmobjects, true, procfs$pid_vmobjects };
m_entries[FI_PID_stack] = { "stack", FI_PID_stack, false, procfs$pid_stack };
m_entries[FI_PID_regs] = { "regs", FI_PID_regs, true, procfs$pid_regs };
m_entries[FI_PID_fds] = { "fds", FI_PID_fds, false, procfs$pid_fds };
m_entries[FI_PID_exe] = { "exe", FI_PID_exe, false, procfs$pid_exe };
m_entries[FI_PID_cwd] = { "cwd", FI_PID_cwd, false, procfs$pid_cwd };
m_entries[FI_PID_unveil] = { "unveil", FI_PID_unveil, false, procfs$pid_unveil };
m_entries[FI_PID_root] = { "root", FI_PID_root, false, procfs$pid_root };
m_entries[FI_PID_fd] = { "fd", FI_PID_fd, false };
}
ProcFS::ProcFSDirectoryEntry* ProcFS::get_directory_entry(InodeIdentifier identifier) const
{
auto proc_file_type = to_proc_file_type(identifier);
if (proc_file_type != FI_Invalid && proc_file_type != FI_Root_sys_variable && proc_file_type < FI_MaxStaticFileIndex)
return const_cast<ProcFSDirectoryEntry*>(&m_entries[proc_file_type]);
return nullptr;
}
KResult ProcFSInode::chown(uid_t, gid_t)
{
return KResult(-EPERM);
}