ladybird/Kernel/Thread.h

254 lines
7.7 KiB
C++

#pragma once
#include <Kernel/i386.h>
#include <Kernel/KResult.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/VM/Region.h>
#include <AK/AKString.h>
#include <AK/InlineLinkedList.h>
#include <AK/OwnPtr.h>
#include <AK/RetainPtr.h>
#include <AK/Vector.h>
class Alarm;
class FileDescriptor;
class Process;
class Region;
class Thread;
enum class ShouldUnblockThread { No = 0, Yes };
struct SignalActionData {
LinearAddress handler_or_sigaction;
dword mask { 0 };
int flags { 0 };
};
extern InlineLinkedList<Thread>* g_runnable_threads;
extern InlineLinkedList<Thread>* g_nonrunnable_threads;
class Thread : public InlineLinkedListNode<Thread> {
friend class Process;
friend class Scheduler;
public:
explicit Thread(Process&);
~Thread();
static void initialize();
static void finalize_dying_threads();
static Vector<Thread*> all_threads();
static bool is_thread(void*);
int tid() const { return m_tid; }
int pid() const;
Process& process() { return m_process; }
const Process& process() const { return m_process; }
void finalize();
enum State : byte {
Invalid = 0,
Runnable,
Running,
Skip1SchedulerPass,
Skip0SchedulerPasses,
Dying,
Dead,
Stopped,
BlockedLurking,
BlockedSleep,
BlockedWait,
BlockedRead,
BlockedWrite,
BlockedSignal,
BlockedSelect,
BlockedConnect,
BlockedReceive,
BlockedSnoozing,
};
void did_schedule() { ++m_times_scheduled; }
dword times_scheduled() const { return m_times_scheduled; }
bool is_stopped() const { return m_state == Stopped; }
bool is_blocked() const
{
return m_state == BlockedSleep || m_state == BlockedWait || m_state == BlockedRead || m_state == BlockedWrite || m_state == BlockedSignal || m_state == BlockedSelect;
}
bool in_kernel() const { return (m_tss.cs & 0x03) == 0; }
dword frame_ptr() const { return m_tss.ebp; }
dword stack_ptr() const { return m_tss.esp; }
word selector() const { return m_far_ptr.selector; }
TSS32& tss() { return m_tss; }
State state() const { return m_state; }
dword ticks() const { return m_ticks; }
pid_t waitee_pid() const { return m_waitee_pid; }
void sleep(dword ticks);
void block(Thread::State);
void block(Thread::State, FileDescriptor&);
void unblock();
void set_wakeup_time(qword t) { m_wakeup_time = t; }
qword wakeup_time() const { return m_wakeup_time; }
void snooze_until(Alarm&);
KResult wait_for_connect(FileDescriptor&);
const FarPtr& far_ptr() const { return m_far_ptr; }
bool tick();
void set_ticks_left(dword t) { m_ticks_left = t; }
dword ticks_left() const { return m_ticks_left; }
dword kernel_stack_base() const { return m_kernel_stack_base; }
dword kernel_stack_for_signal_handler_base() const { return m_kernel_stack_for_signal_handler_region ? m_kernel_stack_for_signal_handler_region->laddr().get() : 0; }
void set_selector(word s) { m_far_ptr.selector = s; }
void set_state(State);
void send_signal(byte signal, Process* sender);
ShouldUnblockThread dispatch_one_pending_signal();
ShouldUnblockThread dispatch_signal(byte signal);
bool has_unmasked_pending_signals() const;
void terminate_due_to_signal(byte signal);
FPUState& fpu_state() { return *m_fpu_state; }
bool has_used_fpu() const { return m_has_used_fpu; }
void set_has_used_fpu(bool b) { m_has_used_fpu = b; }
void set_default_signal_dispositions();
void push_value_on_stack(dword);
void make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment);
void make_userspace_stack_for_secondary_thread(void* argument);
Thread* clone(Process&);
// For InlineLinkedList
Thread* m_prev { nullptr };
Thread* m_next { nullptr };
InlineLinkedList<Thread>* thread_list() { return m_thread_list; }
void set_thread_list(InlineLinkedList<Thread>*);
template<typename Callback> static void for_each_in_state(State, Callback);
template<typename Callback> static void for_each_living(Callback);
template<typename Callback> static void for_each_runnable(Callback);
template<typename Callback> static void for_each_nonrunnable(Callback);
template<typename Callback> static void for_each(Callback);
static bool is_runnable_state(Thread::State state)
{
return state == Thread::State::Running || state == Thread::State::Runnable;
}
static InlineLinkedList<Thread>* thread_list_for_state(Thread::State state)
{
if (is_runnable_state(state))
return g_runnable_threads;
return g_nonrunnable_threads;
}
private:
Process& m_process;
int m_tid { -1 };
TSS32 m_tss;
OwnPtr<TSS32> m_tss_to_resume_kernel;
FarPtr m_far_ptr;
dword m_ticks { 0 };
dword m_ticks_left { 0 };
qword m_wakeup_time { 0 };
dword m_times_scheduled { 0 };
dword m_pending_signals { 0 };
dword m_signal_mask { 0 };
dword m_kernel_stack_base { 0 };
RetainPtr<Region> m_kernel_stack_region;
RetainPtr<Region> m_kernel_stack_for_signal_handler_region;
pid_t m_waitee_pid { -1 };
RetainPtr<FileDescriptor> m_blocked_descriptor;
timeval m_select_timeout;
SignalActionData m_signal_action_data[32];
Region* m_signal_stack_user_region { nullptr };
Alarm* m_snoozing_alarm { nullptr };
Vector<int> m_select_read_fds;
Vector<int> m_select_write_fds;
Vector<int> m_select_exceptional_fds;
FPUState* m_fpu_state { nullptr };
InlineLinkedList<Thread>* m_thread_list { nullptr };
State m_state { Invalid };
bool m_select_has_timeout { false };
bool m_has_used_fpu { false };
bool m_was_interrupted_while_blocked { false };
};
HashTable<Thread*>& thread_table();
const char* to_string(Thread::State);
template<typename Callback>
inline void Thread::for_each_in_state(State state, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* thread = thread_list_for_state(state)->head(); thread;) {
auto* next_thread = thread->next();
if (thread->state() == state)
callback(*thread);
thread = next_thread;
}
}
template<typename Callback>
inline void Thread::for_each_living(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* thread = g_runnable_threads->head(); thread;) {
auto* next_thread = thread->next();
if (thread->state() != Thread::State::Dead && thread->state() != Thread::State::Dying)
callback(*thread);
thread = next_thread;
}
for (auto* thread = g_nonrunnable_threads->head(); thread;) {
auto* next_thread = thread->next();
if (thread->state() != Thread::State::Dead && thread->state() != Thread::State::Dying)
callback(*thread);
thread = next_thread;
}
}
template<typename Callback>
inline void Thread::for_each(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for_each_runnable(callback);
for_each_nonrunnable(callback);
}
template<typename Callback>
inline void Thread::for_each_runnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* thread = g_runnable_threads->head(); thread;) {
auto* next_thread = thread->next();
if (callback(*thread) == IterationDecision::Abort)
return;
thread = next_thread;
}
}
template<typename Callback>
inline void Thread::for_each_nonrunnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* thread = g_nonrunnable_threads->head(); thread;) {
auto* next_thread = thread->next();
if (callback(*thread) == IterationDecision::Abort)
return;
thread = next_thread;
}
}