ladybird/Kernel/Time/TimeManagement.h
kleines Filmröllchen fc5cab5c21 Everywhere: Use MonotonicTime instead of Duration
This is easily identifiable by anyone who uses Duration::now_monotonic,
and any downstream users of that data.
2023-05-24 23:18:07 +02:00

122 lines
3.7 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Error.h>
#include <AK/OwnPtr.h>
#include <AK/Platform.h>
#include <AK/Time.h>
#include <AK/Types.h>
#include <AK/Vector.h>
#include <Kernel/API/TimePage.h>
#include <Kernel/Arch/RegisterState.h>
#include <Kernel/Forward.h>
#include <Kernel/Library/LockRefPtr.h>
#include <Kernel/UnixTypes.h>
namespace Kernel {
#define OPTIMAL_TICKS_PER_SECOND_RATE 250
#define OPTIMAL_PROFILE_TICKS_PER_SECOND_RATE 1000
class HardwareTimerBase;
enum class TimePrecision {
Coarse = 0,
Precise
};
class TimeManagement {
public:
TimeManagement();
static void initialize(u32 cpu);
static bool is_initialized();
static TimeManagement& the();
static u64 scheduler_current_time();
static ErrorOr<void> validate_clock_id(clockid_t);
// This API cannot distinguish returned time types; prefer the clock-specific functions instead.
Duration current_time(clockid_t) const;
MonotonicTime monotonic_time(TimePrecision = TimePrecision::Coarse) const;
MonotonicTime monotonic_time_raw() const
{
// TODO: implement
return monotonic_time(TimePrecision::Precise);
}
UnixDateTime epoch_time(TimePrecision = TimePrecision::Precise) const;
void set_epoch_time(UnixDateTime);
time_t ticks_per_second() const;
static UnixDateTime boot_time();
Duration clock_resolution() const;
bool is_system_timer(HardwareTimerBase const&) const;
void increment_time_since_boot();
static bool is_hpet_periodic_mode_allowed();
bool enable_profile_timer();
bool disable_profile_timer();
u64 uptime_ms() const;
static UnixDateTime now();
// FIXME: Most likely broken, because it does not check m_update[12] for in-progress updates.
Duration remaining_epoch_time_adjustment() const { return m_remaining_epoch_time_adjustment; }
// FIXME: Most likely broken, because it does not check m_update[12] for in-progress updates.
void set_remaining_epoch_time_adjustment(Duration adjustment) { m_remaining_epoch_time_adjustment = adjustment; }
bool can_query_precise_time() const { return m_can_query_precise_time; }
Memory::VMObject& time_page_vmobject();
private:
TimePage& time_page();
void update_time_page();
#if ARCH(X86_64)
bool probe_and_set_x86_legacy_hardware_timers();
bool probe_and_set_x86_non_legacy_hardware_timers();
void increment_time_since_boot_hpet();
static void update_time(RegisterState const&);
#elif ARCH(AARCH64)
bool probe_and_set_aarch64_hardware_timers();
#else
# error Unknown architecture
#endif
Vector<HardwareTimerBase*> scan_and_initialize_periodic_timers();
Vector<HardwareTimerBase*> scan_for_non_periodic_timers();
Vector<NonnullLockRefPtr<HardwareTimerBase>> m_hardware_timers;
void set_system_timer(HardwareTimerBase&);
static void system_timer_tick(RegisterState const&);
// Variables between m_update1 and m_update2 are synchronized
// FIXME: Replace m_update1 and m_update2 with a SpinlockLocker
Atomic<u32> m_update1 { 0 };
u32 m_ticks_this_second { 0 };
u64 m_seconds_since_boot { 0 };
UnixDateTime m_epoch_time {};
Duration m_remaining_epoch_time_adjustment {};
Atomic<u32> m_update2 { 0 };
u32 m_time_ticks_per_second { 0 }; // may be different from interrupts/second (e.g. hpet)
bool m_can_query_precise_time { false };
bool m_updating_time { false }; // may only be accessed from the BSP!
LockRefPtr<HardwareTimerBase> m_system_timer;
LockRefPtr<HardwareTimerBase> m_time_keeper_timer;
Atomic<u32> m_profile_enable_count { 0 };
LockRefPtr<HardwareTimerBase> m_profile_timer;
NonnullOwnPtr<Memory::Region> m_time_page_region;
};
}