ladybird/Userland/Libraries/LibWeb/WebIDL/OverloadResolution.cpp
2023-12-30 18:50:29 +01:00

440 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/Runtime/ArrayBuffer.h>
#include <LibJS/Runtime/DataView.h>
#include <LibJS/Runtime/FunctionObject.h>
#include <LibJS/Runtime/TypedArray.h>
#include <LibJS/Runtime/Value.h>
#include <LibWeb/Bindings/PlatformObject.h>
#include <LibWeb/WebIDL/OverloadResolution.h>
namespace Web::WebIDL {
// https://webidl.spec.whatwg.org/#dfn-convert-ecmascript-to-idl-value
static JS::Value convert_ecmascript_type_to_idl_value(JS::Value value, IDL::Type const&)
{
// FIXME: We have this code already in the code generator, in `generate_to_cpp()`, but how do we use it here?
return value;
}
template<typename Match>
static bool has_overload_with_argument_type_or_subtype_matching(IDL::EffectiveOverloadSet& overloads, size_t argument_index, Match match)
{
// NOTE: This is to save some repetition.
// Almost every sub-step of step 12 of the overload resolution algorithm matches overloads with an argument that is:
// - One of several specific types.
// - "an annotated type whose inner type is one of the above types"
// - "a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types"
// So, this function lets you pass in the first check, and handles the others automatically.
return overloads.has_overload_with_matching_argument_at_index(argument_index,
[match](IDL::Type const& type, auto) {
if (match(type))
return true;
// FIXME: - an annotated type whose inner type is one of the above types
if (type.is_union()) {
auto flattened_members = type.as_union().flattened_member_types();
for (auto const& member : flattened_members) {
if (match(member))
return true;
// FIXME: - an annotated type whose inner type is one of the above types
}
return false;
}
return false;
});
}
// https://webidl.spec.whatwg.org/#es-overloads
JS::ThrowCompletionOr<ResolvedOverload> resolve_overload(JS::VM& vm, IDL::EffectiveOverloadSet& overloads)
{
// FIXME: The vast majority of this algorithm can be (and must be, in order to resolve the dictionary
// related FIXMEs below) evaluated at code-generation time.
// 1. Let maxarg be the length of the longest type list of the entries in S.
// 2. Let n be the size of args.
// 3. Initialize argcount to be min(maxarg, n).
// 4. Remove from S all entries whose type list is not of length argcount.
// NOTE: The IDL-generated callers already only provide an overload set containing overloads with the correct number
// of arguments. Therefore, we do not need to remove any entry from that set here. However, we do need to handle
// when the number of user-provided arguments exceeds the overload set's argument count.
int argument_count = min(vm.argument_count(), overloads.is_empty() ? 0 : overloads.items()[0].types.size());
// 5. If S is empty, then throw a TypeError.
if (overloads.is_empty())
return vm.throw_completion<JS::TypeError>(JS::ErrorType::OverloadResolutionFailed);
// 6. Initialize d to 1.
auto distinguishing_argument_index = -1;
// 7. Initialize method to undefined.
Optional<JS::FunctionObject&> method;
// 8. If there is more than one entry in S, then set d to be the distinguishing argument index for the entries of S.
if (overloads.size() > 1)
distinguishing_argument_index = overloads.distinguishing_argument_index();
// 9. Initialize values to be an empty list, where each entry will be either an IDL value or the special value “missing”.
Vector<ResolvedOverload::Argument> values;
// 10. Initialize i to 0.
auto i = 0;
// 11. While i < d:
while (i < distinguishing_argument_index) {
// 1. Let V be args[i].
auto const& value = vm.argument(i);
auto const& item = overloads.items().first();
// 2. Let type be the type at index i in the type list of any entry in S.
auto const& type = item.types[i];
// 3. Let optionality be the value at index i in the list of optionality values of any entry in S.
auto const& optionality = item.optionality_values[i];
// 4. If optionality is “optional” and V is undefined, then:
if (optionality == IDL::Optionality::Optional && value.is_undefined()) {
// FIXME: 1. If the argument at index i is declared with a default value, then append to values that default value.
// 2. Otherwise, append to values the special value “missing”.
values.empend(ResolvedOverload::Missing {});
}
// 5. Otherwise, append to values the result of converting V to IDL type type.
values.empend(convert_ecmascript_type_to_idl_value(value, type));
// 6. Set i to i + 1.
++i;
}
// 12. If i = d, then:
if (i == distinguishing_argument_index) {
// 1. Let V be args[i].
auto const& value = vm.argument(i);
// 2. If V is undefined, and there is an entry in S whose list of optionality values has “optional” at index i, then remove from S all other entries.
if (value.is_undefined()
&& overloads.has_overload_with_matching_argument_at_index(i, [](auto&, IDL::Optionality const& optionality) { return optionality == IDL::Optionality::Optional; })) {
overloads.remove_all_other_entries();
}
// 3. Otherwise: if V is null or undefined, and there is an entry in S that has one of the following types at position i of its type list,
// - a nullable type
// - a dictionary type
// - an annotated type whose inner type is one of the above types
// - a union type or annotated union type that includes a nullable type or that has a dictionary type in its flattened members
// then remove from S all other entries.
// NOTE: This is the one case we can't use `has_overload_with_argument_type_or_subtype_matching()` because we also need to look
// for dictionary types in the flattened members.
else if ((value.is_undefined() || value.is_null())
&& overloads.has_overload_with_matching_argument_at_index(i, [](IDL::Type const& type, auto) {
if (type.is_nullable())
return true;
// FIXME: - a dictionary type
// FIXME: - an annotated type whose inner type is one of the above types
if (type.is_union()) {
auto flattened_members = type.as_union().flattened_member_types();
for (auto const& member : flattened_members) {
if (member->is_nullable())
return true;
// FIXME: - a dictionary type
// FIXME: - an annotated type whose inner type is one of the above types
}
return false;
}
return false;
})) {
overloads.remove_all_other_entries();
}
// 4. Otherwise: if V is a platform object, and there is an entry in S that has one of the following types at position i of its type list,
// - an interface type that V implements
// - object
// - a nullable version of any of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_object() && is<Bindings::PlatformObject>(value.as_object())
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [value](IDL::Type const& type) {
// - an interface type that V implements
if (static_cast<Bindings::PlatformObject const&>(value.as_object()).implements_interface(MUST(String::from_byte_string(type.name()))))
return true;
// - object
if (type.is_object())
return true;
return false;
})) {
overloads.remove_all_other_entries();
}
// 5. Otherwise: if Type(V) is Object, V has an [[ArrayBufferData]] internal slot, and there is an entry in S that has one of the following types at position i of its type list,
// - ArrayBuffer
// - object
// - a nullable version of either of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_object() && is<JS::ArrayBuffer>(value.as_object())
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) {
if (type.is_plain() && (type.name() == "ArrayBuffer" || type.name() == "BufferSource"))
return true;
if (type.is_object())
return true;
return false;
})) {
overloads.remove_all_other_entries();
}
// 6. Otherwise: if Type(V) is Object, V has a [[DataView]] internal slot, and there is an entry in S that has one of the following types at position i of its type list,
// - DataView
// - object
// - a nullable version of either of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_object() && is<JS::DataView>(value.as_object())
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) {
if (type.is_plain() && (type.name() == "DataView" || type.name() == "BufferSource"))
return true;
if (type.is_object())
return true;
return false;
})) {
overloads.remove_all_other_entries();
}
// 7. Otherwise: if Type(V) is Object, V has a [[TypedArrayName]] internal slot, and there is an entry in S that has one of the following types at position i of its type list,
// - a typed array type whose name is equal to the value of Vs [[TypedArrayName]] internal slot
// - object
// - a nullable version of either of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_object() && value.as_object().is_typed_array()
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [&](IDL::Type const& type) {
if (type.is_plain() && (type.name() == static_cast<JS::TypedArrayBase const&>(value.as_object()).element_name() || type.name() == "BufferSource"))
return true;
if (type.is_object())
return true;
return false;
})) {
overloads.remove_all_other_entries();
}
// 8. Otherwise: if IsCallable(V) is true, and there is an entry in S that has one of the following types at position i of its type list,
// - a callback function type
// - object
// - a nullable version of any of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_function()
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) {
// FIXME: - a callback function type
if (type.is_object())
return true;
return false;
})) {
overloads.remove_all_other_entries();
}
// FIXME: 9. Otherwise: if Type(V) is Object and there is an entry in S that has one of the following types at position i of its type list,
// - a sequence type
// - a frozen array type
// - a nullable version of any of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// and after performing the following steps,
// {
// 1. Let method be ? GetMethod(V, @@iterator).
// }
// method is not undefined, then remove from S all other entries.
// 10. Otherwise: if Type(V) is Object and there is an entry in S that has one of the following types at position i of its type list,
// - a callback interface type
// - a dictionary type
// - a record type
// - object
// - a nullable version of any of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_object()
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) {
// FIXME: - a callback interface type
// FIXME: - a dictionary type
// FIXME: - a record type
if (type.is_object())
return true;
return false;
})) {
overloads.remove_all_other_entries();
}
// 11. Otherwise: if Type(V) is Boolean and there is an entry in S that has one of the following types at position i of its type list,
// - boolean
// - a nullable boolean
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_boolean()
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_boolean(); })) {
overloads.remove_all_other_entries();
}
// 12. Otherwise: if Type(V) is Number and there is an entry in S that has one of the following types at position i of its type list,
// - a numeric type
// - a nullable numeric type
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_number()
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_numeric(); })) {
overloads.remove_all_other_entries();
}
// 13. Otherwise: if Type(V) is BigInt and there is an entry in S that has one of the following types at position i of its type list,
// - bigint
// - a nullable bigint
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (value.is_bigint()
&& has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_bigint(); })) {
overloads.remove_all_other_entries();
}
// 14. Otherwise: if there is an entry in S that has one of the following types at position i of its type list,
// - a string type
// - a nullable version of any of the above types
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_string(); })) {
overloads.remove_all_other_entries();
}
// 15. Otherwise: if there is an entry in S that has one of the following types at position i of its type list,
// - a numeric type
// - a nullable numeric type
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_numeric(); })) {
overloads.remove_all_other_entries();
}
// 16. Otherwise: if there is an entry in S that has one of the following types at position i of its type list,
// - boolean
// - a nullable boolean
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_boolean(); })) {
overloads.remove_all_other_entries();
}
// 17. Otherwise: if there is an entry in S that has one of the following types at position i of its type list,
// - bigint
// - a nullable bigint
// - an annotated type whose inner type is one of the above types
// - a union type, nullable union type, or annotated union type that has one of the above types in its flattened member types
// then remove from S all other entries.
else if (has_overload_with_argument_type_or_subtype_matching(overloads, i, [](IDL::Type const& type) { return type.is_bigint(); })) {
overloads.remove_all_other_entries();
}
// 18. Otherwise: if there is an entry in S that has any at position i of its type list, then remove from S all other entries.
else if (overloads.has_overload_with_matching_argument_at_index(i, [](auto const& type, auto) { return type->is_any(); })) {
overloads.remove_all_other_entries();
}
// 19. Otherwise: throw a TypeError.
else {
// FIXME: Remove this message once all the above sub-steps are implemented.
dbgln("Failed to determine IDL overload. (Probably because of unimplemented steps.)");
return vm.throw_completion<JS::TypeError>(JS::ErrorType::OverloadResolutionFailed);
}
}
// 13. Let callable be the operation or extended attribute of the single entry in S.
auto const& callable = overloads.only_item();
// 14. If i = d and method is not undefined, then
if (i == distinguishing_argument_index && method.has_value()) {
// 1. Let V be args[i].
auto const& value = vm.argument(i);
// 2. Let T be the type at index i in the type list of the remaining entry in S.
auto const& type = overloads.only_item().types[i];
(void)value;
(void)type;
// FIXME: 3. If T is a sequence type, then append to values the result of creating a sequence of type T from V and method.
// FIXME: 4. Otherwise, T is a frozen array type. Append to values the result of creating a frozen array of type T from V and method.
// 5. Set i to i + 1.
++i;
}
// 15. While i < argcount:
while (i < argument_count) {
// 1. Let V be args[i].
auto const& value = vm.argument(i);
// 2. Let type be the type at index i in the type list of the remaining entry in S.
auto const& entry = overloads.only_item();
auto const& type = entry.types[i];
// 3. Let optionality be the value at index i in the list of optionality values of the remaining entry in S.
auto const& optionality = entry.optionality_values[i];
// 4. If optionality is “optional” and V is undefined, then:
if (optionality == IDL::Optionality::Optional && value.is_undefined()) {
// FIXME: 1. If the argument at index i is declared with a default value, then append to values that default value.
// 2. Otherwise, append to values the special value “missing”.
values.empend(ResolvedOverload::Missing {});
}
// 5. Otherwise, append to values the result of converting V to IDL type type.
else {
values.append(convert_ecmascript_type_to_idl_value(value, type));
}
// 6. Set i to i + 1.
++i;
}
// 16. While i is less than the number of arguments callable is declared to take:
while (i < static_cast<int>(callable.types.size())) {
// FIXME: 1. If callables argument at index i is declared with a default value, then append to values that default value.
if (false) {
}
// 2. Otherwise, if callables argument at index i is not variadic, then append to values the special value “missing”.
else if (callable.optionality_values[i] != IDL::Optionality::Variadic) {
values.empend(ResolvedOverload::Missing {});
}
// 3. Set i to i + 1.
++i;
}
// 17. Return the pair <callable, values>.
return ResolvedOverload { callable.callable_id, move(values) };
}
}