ladybird/Userland/Libraries/LibC/stdio.cpp
2021-09-09 21:49:49 +02:00

1336 lines
29 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Sergey Bugaev <bugaevc@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Format.h>
#include <AK/PrintfImplementation.h>
#include <AK/ScopedValueRollback.h>
#include <AK/StdLibExtras.h>
#include <AK/String.h>
#include <LibC/bits/pthread_integration.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdio_ext.h>
#include <stdlib.h>
#include <string.h>
#include <sys/internals.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <syscall.h>
#include <unistd.h>
struct FILE {
public:
FILE(int fd, int mode)
: m_fd(fd)
, m_mode(mode)
{
__pthread_mutex_init(&m_mutex, nullptr);
}
~FILE();
static FILE* create(int fd, int mode);
void setbuf(u8* data, int mode, size_t size) { m_buffer.setbuf(data, mode, size); }
bool flush();
void purge();
bool close();
int fileno() const { return m_fd; }
bool eof() const { return m_eof; }
int mode() const { return m_mode; }
u8 flags() const { return m_flags; }
int error() const { return m_error; }
void clear_err() { m_error = 0; }
size_t read(u8*, size_t);
size_t write(const u8*, size_t);
bool gets(u8*, size_t);
bool ungetc(u8 byte) { return m_buffer.enqueue_front(byte); }
int seek(off_t offset, int whence);
off_t tell();
pid_t popen_child() { return m_popen_child; }
void set_popen_child(pid_t child_pid) { m_popen_child = child_pid; }
void reopen(int fd, int mode);
enum Flags : u8 {
None = 0,
LastRead = 1,
LastWrite = 2,
};
private:
struct Buffer {
// A ringbuffer that also transparently implements ungetc().
public:
~Buffer();
int mode() const { return m_mode; }
void setbuf(u8* data, int mode, size_t size);
// Make sure to call realize() before enqueuing any data.
// Dequeuing can be attempted without it.
void realize(int fd);
void drop();
bool may_use() const { return m_ungotten || m_mode != _IONBF; }
bool is_not_empty() const { return m_ungotten || !m_empty; }
size_t buffered_size() const;
const u8* begin_dequeue(size_t& available_size) const;
void did_dequeue(size_t actual_size);
u8* begin_enqueue(size_t& available_size) const;
void did_enqueue(size_t actual_size);
bool enqueue_front(u8 byte);
private:
// Note: the fields here are arranged this way
// to make sizeof(Buffer) smaller.
u8* m_data { nullptr };
size_t m_capacity { BUFSIZ };
size_t m_begin { 0 };
size_t m_end { 0 };
int m_mode { -1 };
u8 m_unget_buffer { 0 };
bool m_ungotten : 1 { false };
bool m_data_is_malloced : 1 { false };
// When m_begin == m_end, we want to distinguish whether
// the buffer is full or empty.
bool m_empty : 1 { true };
};
// Read or write using the underlying fd, bypassing the buffer.
ssize_t do_read(u8*, size_t);
ssize_t do_write(const u8*, size_t);
// Read some data into the buffer.
bool read_into_buffer();
// Flush *some* data from the buffer.
bool write_from_buffer();
void lock();
void unlock();
int m_fd { -1 };
int m_mode { 0 };
u8 m_flags { Flags::None };
int m_error { 0 };
bool m_eof { false };
pid_t m_popen_child { -1 };
Buffer m_buffer;
__pthread_mutex_t m_mutex;
friend class ScopedFileLock;
};
FILE::~FILE()
{
bool already_closed = m_fd == -1;
VERIFY(already_closed);
}
FILE* FILE::create(int fd, int mode)
{
void* file = calloc(1, sizeof(FILE));
new (file) FILE(fd, mode);
return (FILE*)file;
}
bool FILE::close()
{
bool flush_ok = flush();
int rc = ::close(m_fd);
m_fd = -1;
if (!flush_ok) {
// Restore the original error from flush().
errno = m_error;
}
return flush_ok && rc == 0;
}
bool FILE::flush()
{
if (m_mode & O_WRONLY && m_buffer.may_use()) {
// When open for writing, write out all the buffered data.
while (m_buffer.is_not_empty()) {
bool ok = write_from_buffer();
if (!ok)
return false;
}
}
if (m_mode & O_RDONLY) {
// When open for reading, just drop the buffered data.
VERIFY(m_buffer.buffered_size() <= NumericLimits<off_t>::max());
off_t had_buffered = m_buffer.buffered_size();
m_buffer.drop();
// Attempt to reset the underlying file position to what the user
// expects.
if (lseek(m_fd, -had_buffered, SEEK_CUR) < 0) {
if (errno == ESPIPE) {
// We can't set offset on this file; oh well, the user will just
// have to cope.
errno = 0;
} else {
return false;
}
}
}
return true;
}
void FILE::purge()
{
m_buffer.drop();
}
ssize_t FILE::do_read(u8* data, size_t size)
{
int nread = ::read(m_fd, data, size);
if (nread < 0) {
m_error = errno;
} else if (nread == 0) {
m_eof = true;
}
return nread;
}
ssize_t FILE::do_write(const u8* data, size_t size)
{
int nwritten = ::write(m_fd, data, size);
if (nwritten < 0)
m_error = errno;
return nwritten;
}
bool FILE::read_into_buffer()
{
m_buffer.realize(m_fd);
size_t available_size;
u8* data = m_buffer.begin_enqueue(available_size);
// If we want to read, the buffer must have some space!
VERIFY(available_size);
ssize_t nread = do_read(data, available_size);
if (nread <= 0)
return false;
m_buffer.did_enqueue(nread);
return true;
}
bool FILE::write_from_buffer()
{
size_t size;
const u8* data = m_buffer.begin_dequeue(size);
// If we want to write, the buffer must have something in it!
VERIFY(size);
ssize_t nwritten = do_write(data, size);
if (nwritten < 0)
return false;
m_buffer.did_dequeue(nwritten);
return true;
}
size_t FILE::read(u8* data, size_t size)
{
size_t total_read = 0;
m_flags |= Flags::LastRead;
m_flags &= ~Flags::LastWrite;
while (size > 0) {
size_t actual_size;
if (m_buffer.may_use()) {
// Let's see if the buffer has something queued for us.
size_t queued_size;
const u8* queued_data = m_buffer.begin_dequeue(queued_size);
if (queued_size == 0) {
// Nothing buffered; we're going to have to read some.
bool read_some_more = read_into_buffer();
if (read_some_more) {
// Great, now try this again.
continue;
}
return total_read;
}
actual_size = min(size, queued_size);
memcpy(data, queued_data, actual_size);
m_buffer.did_dequeue(actual_size);
} else {
// Read directly into the user buffer.
ssize_t nread = do_read(data, size);
if (nread <= 0)
return total_read;
actual_size = nread;
}
total_read += actual_size;
data += actual_size;
size -= actual_size;
}
return total_read;
}
size_t FILE::write(const u8* data, size_t size)
{
size_t total_written = 0;
m_flags &= ~Flags::LastRead;
m_flags |= Flags::LastWrite;
while (size > 0) {
size_t actual_size;
if (m_buffer.may_use()) {
m_buffer.realize(m_fd);
// Try writing into the buffer.
size_t available_size;
u8* buffer_data = m_buffer.begin_enqueue(available_size);
if (available_size == 0) {
// There's no space in the buffer; we're going to free some.
bool freed_some_space = write_from_buffer();
if (freed_some_space) {
// Great, now try this again.
continue;
}
return total_written;
}
actual_size = min(size, available_size);
memcpy(buffer_data, data, actual_size);
m_buffer.did_enqueue(actual_size);
// See if we have to flush it.
if (m_buffer.mode() == _IOLBF) {
bool includes_newline = memchr(data, '\n', actual_size);
if (includes_newline)
flush();
}
} else {
// Write directly from the user buffer.
ssize_t nwritten = do_write(data, size);
if (nwritten < 0)
return total_written;
actual_size = nwritten;
}
total_written += actual_size;
data += actual_size;
size -= actual_size;
}
return total_written;
}
bool FILE::gets(u8* data, size_t size)
{
// gets() is a lot like read(), but it is different enough in how it
// processes newlines and null-terminates the buffer that it deserves a
// separate implementation.
size_t total_read = 0;
if (size == 0)
return false;
m_flags |= Flags::LastRead;
m_flags &= ~Flags::LastWrite;
while (size > 1) {
if (m_buffer.may_use()) {
// Let's see if the buffer has something queued for us.
size_t queued_size;
const u8* queued_data = m_buffer.begin_dequeue(queued_size);
if (queued_size == 0) {
// Nothing buffered; we're going to have to read some.
bool read_some_more = read_into_buffer();
if (read_some_more) {
// Great, now try this again.
continue;
}
*data = 0;
return total_read > 0;
}
size_t actual_size = min(size - 1, queued_size);
u8* newline = reinterpret_cast<u8*>(memchr(queued_data, '\n', actual_size));
if (newline)
actual_size = newline - queued_data + 1;
memcpy(data, queued_data, actual_size);
m_buffer.did_dequeue(actual_size);
total_read += actual_size;
data += actual_size;
size -= actual_size;
if (newline)
break;
} else {
// Sadly, we have to actually read these characters one by one.
u8 byte;
ssize_t nread = do_read(&byte, 1);
if (nread <= 0) {
*data = 0;
return total_read > 0;
}
VERIFY(nread == 1);
*data = byte;
total_read++;
data++;
size--;
if (byte == '\n')
break;
}
}
*data = 0;
return total_read > 0;
}
int FILE::seek(off_t offset, int whence)
{
bool ok = flush();
if (!ok)
return -1;
off_t off = lseek(m_fd, offset, whence);
if (off < 0) {
// Note: do not set m_error.
return off;
}
m_eof = false;
return 0;
}
off_t FILE::tell()
{
bool ok = flush();
if (!ok)
return -1;
return lseek(m_fd, 0, SEEK_CUR);
}
void FILE::reopen(int fd, int mode)
{
// Dr. POSIX says: "Failure to flush or close the file descriptor
// successfully shall be ignored"
// and so we ignore any failures these two might have.
flush();
close();
// Just in case flush() and close() didn't drop the buffer.
m_buffer.drop();
m_fd = fd;
m_mode = mode;
m_error = 0;
m_eof = false;
}
FILE::Buffer::~Buffer()
{
if (m_data_is_malloced)
free(m_data);
}
void FILE::Buffer::realize(int fd)
{
if (m_mode == -1)
m_mode = isatty(fd) ? _IOLBF : _IOFBF;
if (m_mode != _IONBF && m_data == nullptr) {
m_data = reinterpret_cast<u8*>(malloc(m_capacity));
m_data_is_malloced = true;
}
}
void FILE::Buffer::setbuf(u8* data, int mode, size_t size)
{
drop();
m_mode = mode;
if (data != nullptr) {
m_data = data;
m_capacity = size;
}
}
void FILE::Buffer::drop()
{
if (m_data_is_malloced) {
free(m_data);
m_data = nullptr;
m_data_is_malloced = false;
}
m_begin = m_end = 0;
m_empty = true;
m_ungotten = false;
}
size_t FILE::Buffer::buffered_size() const
{
// Note: does not include the ungetc() buffer.
if (m_empty)
return 0;
if (m_begin < m_end)
return m_end - m_begin;
else
return m_capacity - (m_begin - m_end);
}
const u8* FILE::Buffer::begin_dequeue(size_t& available_size) const
{
if (m_ungotten) {
available_size = 1;
return &m_unget_buffer;
}
if (m_empty) {
available_size = 0;
return nullptr;
}
if (m_begin < m_end)
available_size = m_end - m_begin;
else
available_size = m_capacity - m_begin;
return &m_data[m_begin];
}
void FILE::Buffer::did_dequeue(size_t actual_size)
{
VERIFY(actual_size > 0);
if (m_ungotten) {
VERIFY(actual_size == 1);
m_ungotten = false;
return;
}
m_begin += actual_size;
VERIFY(m_begin <= m_capacity);
if (m_begin == m_capacity) {
// Wrap around.
m_begin = 0;
}
if (m_begin == m_end) {
m_empty = true;
// As an optimization, move both pointers to the beginning of the
// buffer, so that more consecutive space is available next time.
m_begin = m_end = 0;
}
}
u8* FILE::Buffer::begin_enqueue(size_t& available_size) const
{
VERIFY(m_data != nullptr);
if (m_begin < m_end || m_empty)
available_size = m_capacity - m_end;
else
available_size = m_begin - m_end;
return const_cast<u8*>(&m_data[m_end]);
}
void FILE::Buffer::did_enqueue(size_t actual_size)
{
VERIFY(m_data != nullptr);
VERIFY(actual_size > 0);
m_end += actual_size;
VERIFY(m_end <= m_capacity);
if (m_end == m_capacity) {
// Wrap around.
m_end = 0;
}
m_empty = false;
}
bool FILE::Buffer::enqueue_front(u8 byte)
{
if (m_ungotten) {
// Sorry, the place is already taken!
return false;
}
m_ungotten = true;
m_unget_buffer = byte;
return true;
}
void FILE::lock()
{
__pthread_mutex_lock(&m_mutex);
}
void FILE::unlock()
{
__pthread_mutex_unlock(&m_mutex);
}
class ScopedFileLock {
public:
ScopedFileLock(FILE* file)
: m_file(file)
{
m_file->lock();
}
~ScopedFileLock()
{
m_file->unlock();
}
private:
FILE* m_file;
};
extern "C" {
alignas(FILE) static u8 default_streams[3][sizeof(FILE)];
FILE* stdin = reinterpret_cast<FILE*>(&default_streams[0]);
FILE* stdout = reinterpret_cast<FILE*>(&default_streams[1]);
FILE* stderr = reinterpret_cast<FILE*>(&default_streams[2]);
void __stdio_init()
{
new (stdin) FILE(0, O_RDONLY);
new (stdout) FILE(1, O_WRONLY);
new (stderr) FILE(2, O_WRONLY);
stderr->setbuf(nullptr, _IONBF, 0);
__stdio_is_initialized = true;
}
int setvbuf(FILE* stream, char* buf, int mode, size_t size)
{
VERIFY(stream);
ScopedFileLock lock(stream);
if (mode != _IONBF && mode != _IOLBF && mode != _IOFBF) {
errno = EINVAL;
return -1;
}
stream->setbuf(reinterpret_cast<u8*>(buf), mode, size);
return 0;
}
void setbuf(FILE* stream, char* buf)
{
setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);
}
void setlinebuf(FILE* stream)
{
setvbuf(stream, nullptr, _IOLBF, 0);
}
int fileno(FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->fileno();
}
int feof(FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->eof();
}
int fflush(FILE* stream)
{
if (!stream) {
dbgln("FIXME: fflush(nullptr) should flush all open streams");
return 0;
}
ScopedFileLock lock(stream);
return stream->flush() ? 0 : EOF;
}
char* fgets(char* buffer, int size, FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
bool ok = stream->gets(reinterpret_cast<u8*>(buffer), size);
return ok ? buffer : nullptr;
}
int fgetc(FILE* stream)
{
VERIFY(stream);
char ch;
size_t nread = fread(&ch, sizeof(char), 1, stream);
if (nread == 1)
return ch;
return EOF;
}
int fgetc_unlocked(FILE* stream)
{
VERIFY(stream);
char ch;
size_t nread = fread_unlocked(&ch, sizeof(char), 1, stream);
if (nread == 1)
return ch;
return EOF;
}
int getc(FILE* stream)
{
return fgetc(stream);
}
int getc_unlocked(FILE* stream)
{
return fgetc_unlocked(stream);
}
int getchar()
{
return getc(stdin);
}
ssize_t getdelim(char** lineptr, size_t* n, int delim, FILE* stream)
{
if (!lineptr || !n) {
errno = EINVAL;
return -1;
}
if (*lineptr == nullptr || *n == 0) {
*n = BUFSIZ;
if ((*lineptr = static_cast<char*>(malloc(*n))) == nullptr) {
return -1;
}
}
char* ptr;
char* eptr;
for (ptr = *lineptr, eptr = *lineptr + *n;;) {
int c = fgetc(stream);
if (c == -1) {
if (feof(stream)) {
*ptr = '\0';
return ptr == *lineptr ? -1 : ptr - *lineptr;
} else {
return -1;
}
}
*ptr++ = c;
if (c == delim) {
*ptr = '\0';
return ptr - *lineptr;
}
if (ptr + 2 >= eptr) {
char* nbuf;
size_t nbuf_sz = *n * 2;
ssize_t d = ptr - *lineptr;
if ((nbuf = static_cast<char*>(realloc(*lineptr, nbuf_sz))) == nullptr) {
return -1;
}
*lineptr = nbuf;
*n = nbuf_sz;
eptr = nbuf + nbuf_sz;
ptr = nbuf + d;
}
}
}
ssize_t getline(char** lineptr, size_t* n, FILE* stream)
{
return getdelim(lineptr, n, '\n', stream);
}
int ungetc(int c, FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
bool ok = stream->ungetc(c);
return ok ? c : EOF;
}
int fputc(int ch, FILE* stream)
{
VERIFY(stream);
u8 byte = ch;
ScopedFileLock lock(stream);
size_t nwritten = stream->write(&byte, 1);
if (nwritten == 0)
return EOF;
VERIFY(nwritten == 1);
return byte;
}
int putc(int ch, FILE* stream)
{
return fputc(ch, stream);
}
int putchar(int ch)
{
return putc(ch, stdout);
}
int fputs(const char* s, FILE* stream)
{
VERIFY(stream);
size_t len = strlen(s);
ScopedFileLock lock(stream);
size_t nwritten = stream->write(reinterpret_cast<const u8*>(s), len);
if (nwritten < len)
return EOF;
return 1;
}
int puts(const char* s)
{
int rc = fputs(s, stdout);
if (rc == EOF)
return EOF;
return fputc('\n', stdout);
}
void clearerr(FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
stream->clear_err();
}
int ferror(FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->error();
}
size_t fread_unlocked(void* ptr, size_t size, size_t nmemb, FILE* stream)
{
VERIFY(stream);
VERIFY(!Checked<size_t>::multiplication_would_overflow(size, nmemb));
size_t nread = stream->read(reinterpret_cast<u8*>(ptr), size * nmemb);
if (!nread)
return 0;
return nread / size;
}
size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return fread_unlocked(ptr, size, nmemb, stream);
}
size_t fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream)
{
VERIFY(stream);
VERIFY(!Checked<size_t>::multiplication_would_overflow(size, nmemb));
ScopedFileLock lock(stream);
size_t nwritten = stream->write(reinterpret_cast<const u8*>(ptr), size * nmemb);
if (!nwritten)
return 0;
return nwritten / size;
}
int fseek(FILE* stream, long offset, int whence)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->seek(offset, whence);
}
int fseeko(FILE* stream, off_t offset, int whence)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->seek(offset, whence);
}
long ftell(FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->tell();
}
off_t ftello(FILE* stream)
{
VERIFY(stream);
ScopedFileLock lock(stream);
return stream->tell();
}
int fgetpos(FILE* stream, fpos_t* pos)
{
VERIFY(stream);
VERIFY(pos);
ScopedFileLock lock(stream);
off_t val = stream->tell();
if (val == -1L)
return 1;
*pos = val;
return 0;
}
int fsetpos(FILE* stream, const fpos_t* pos)
{
VERIFY(stream);
VERIFY(pos);
ScopedFileLock lock(stream);
return stream->seek(*pos, SEEK_SET);
}
void rewind(FILE* stream)
{
fseek(stream, 0, SEEK_SET);
clearerr(stream);
}
ALWAYS_INLINE void stdout_putch(char*&, char ch)
{
putchar(ch);
}
static FILE* __current_stream = nullptr;
ALWAYS_INLINE static void stream_putch(char*&, char ch)
{
fputc(ch, __current_stream);
}
int vfprintf(FILE* stream, const char* fmt, va_list ap)
{
__current_stream = stream;
return printf_internal(stream_putch, nullptr, fmt, ap);
}
int fprintf(FILE* stream, const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int ret = vfprintf(stream, fmt, ap);
va_end(ap);
return ret;
}
int vprintf(const char* fmt, va_list ap)
{
return printf_internal(stdout_putch, nullptr, fmt, ap);
}
int printf(const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int ret = vprintf(fmt, ap);
va_end(ap);
return ret;
}
int vasprintf(char** strp, const char* fmt, va_list ap)
{
StringBuilder builder;
builder.appendvf(fmt, ap);
VERIFY(builder.length() <= NumericLimits<int>::max());
int length = builder.length();
*strp = strdup(builder.to_string().characters());
return length;
}
int asprintf(char** strp, const char* fmt, ...)
{
StringBuilder builder;
va_list ap;
va_start(ap, fmt);
builder.appendvf(fmt, ap);
va_end(ap);
VERIFY(builder.length() <= NumericLimits<int>::max());
int length = builder.length();
*strp = strdup(builder.to_string().characters());
return length;
}
static void buffer_putch(char*& bufptr, char ch)
{
*bufptr++ = ch;
}
int vsprintf(char* buffer, const char* fmt, va_list ap)
{
int ret = printf_internal(buffer_putch, buffer, fmt, ap);
buffer[ret] = '\0';
return ret;
}
int sprintf(char* buffer, const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int ret = vsprintf(buffer, fmt, ap);
va_end(ap);
return ret;
}
static size_t __vsnprintf_space_remaining;
ALWAYS_INLINE void sized_buffer_putch(char*& bufptr, char ch)
{
if (__vsnprintf_space_remaining) {
*bufptr++ = ch;
--__vsnprintf_space_remaining;
}
}
int vsnprintf(char* buffer, size_t size, const char* fmt, va_list ap)
{
if (size) {
__vsnprintf_space_remaining = size - 1;
} else {
__vsnprintf_space_remaining = 0;
}
int ret = printf_internal(sized_buffer_putch, buffer, fmt, ap);
if (__vsnprintf_space_remaining) {
buffer[ret] = '\0';
} else if (size > 0) {
buffer[size - 1] = '\0';
}
return ret;
}
int snprintf(char* buffer, size_t size, const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int ret = vsnprintf(buffer, size, fmt, ap);
va_end(ap);
return ret;
}
void perror(const char* s)
{
int saved_errno = errno;
dbgln("perror(): {}: {}", s, strerror(saved_errno));
warnln("{}: {}", s, strerror(saved_errno));
}
static int parse_mode(const char* mode)
{
int flags = 0;
// NOTE: rt is a non-standard mode which opens a file for read, explicitly
// specifying that it's a text file
for (auto* ptr = mode; *ptr; ++ptr) {
switch (*ptr) {
case 'r':
flags |= O_RDONLY;
break;
case 'w':
flags |= O_WRONLY | O_CREAT | O_TRUNC;
break;
case 'a':
flags |= O_WRONLY | O_APPEND | O_CREAT;
break;
case '+':
flags |= O_RDWR;
break;
case 'e':
flags |= O_CLOEXEC;
break;
case 'b':
// Ok...
break;
case 't':
// Ok...
break;
default:
dbgln("Potentially unsupported fopen mode _{}_ (because of '{}')", mode, *ptr);
}
}
return flags;
}
FILE* fopen(const char* pathname, const char* mode)
{
int flags = parse_mode(mode);
int fd = open(pathname, flags, 0666);
if (fd < 0)
return nullptr;
return FILE::create(fd, flags);
}
FILE* freopen(const char* pathname, const char* mode, FILE* stream)
{
VERIFY(stream);
if (!pathname) {
// FIXME: Someone should probably implement this path.
TODO();
}
int flags = parse_mode(mode);
int fd = open(pathname, flags, 0666);
if (fd < 0)
return nullptr;
stream->reopen(fd, flags);
return stream;
}
FILE* fdopen(int fd, const char* mode)
{
int flags = parse_mode(mode);
// FIXME: Verify that the mode matches how fd is already open.
if (fd < 0)
return nullptr;
return FILE::create(fd, flags);
}
static inline bool is_default_stream(FILE* stream)
{
return stream == stdin || stream == stdout || stream == stderr;
}
int fclose(FILE* stream)
{
VERIFY(stream);
bool ok;
{
ScopedFileLock lock(stream);
ok = stream->close();
}
ScopedValueRollback errno_restorer(errno);
stream->~FILE();
if (!is_default_stream(stream))
free(stream);
return ok ? 0 : EOF;
}
int rename(const char* oldpath, const char* newpath)
{
if (!oldpath || !newpath) {
errno = EFAULT;
return -1;
}
Syscall::SC_rename_params params { { oldpath, strlen(oldpath) }, { newpath, strlen(newpath) } };
int rc = syscall(SC_rename, &params);
__RETURN_WITH_ERRNO(rc, rc, -1);
}
void dbgputch(char ch)
{
syscall(SC_dbgputch, ch);
}
void dbgputstr(const char* characters, size_t length)
{
syscall(SC_dbgputstr, characters, length);
}
char* tmpnam(char*)
{
dbgln("FIXME: Implement tmpnam()");
TODO();
}
FILE* popen(const char* command, const char* type)
{
if (!type || (*type != 'r' && *type != 'w')) {
errno = EINVAL;
return nullptr;
}
int pipe_fds[2];
if (pipe(pipe_fds) < 0) {
ScopedValueRollback rollback(errno);
perror("pipe");
return nullptr;
}
pid_t child_pid = fork();
if (child_pid < 0) {
ScopedValueRollback rollback(errno);
perror("fork");
close(pipe_fds[0]);
close(pipe_fds[1]);
return nullptr;
} else if (child_pid == 0) {
if (*type == 'r') {
if (dup2(pipe_fds[1], STDOUT_FILENO) < 0) {
perror("dup2");
exit(1);
}
close(pipe_fds[0]);
close(pipe_fds[1]);
} else if (*type == 'w') {
if (dup2(pipe_fds[0], STDIN_FILENO) < 0) {
perror("dup2");
exit(1);
}
close(pipe_fds[0]);
close(pipe_fds[1]);
}
if (execl("/bin/sh", "sh", "-c", command, nullptr) < 0)
perror("execl");
exit(1);
}
FILE* file = nullptr;
if (*type == 'r') {
file = FILE::create(pipe_fds[0], O_RDONLY);
close(pipe_fds[1]);
} else if (*type == 'w') {
file = FILE::create(pipe_fds[1], O_WRONLY);
close(pipe_fds[0]);
}
file->set_popen_child(child_pid);
return file;
}
int pclose(FILE* stream)
{
VERIFY(stream);
VERIFY(stream->popen_child() != 0);
int wstatus = 0;
if (waitpid(stream->popen_child(), &wstatus, 0) < 0)
return -1;
return wstatus;
}
int remove(const char* pathname)
{
if (unlink(pathname) < 0) {
if (errno == EISDIR)
return rmdir(pathname);
return -1;
}
return 0;
}
int scanf(const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int count = vfscanf(stdin, fmt, ap);
va_end(ap);
return count;
}
int fscanf(FILE* stream, const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int count = vfscanf(stream, fmt, ap);
va_end(ap);
return count;
}
int sscanf(const char* buffer, const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int count = vsscanf(buffer, fmt, ap);
va_end(ap);
return count;
}
int vfscanf(FILE* stream, const char* fmt, va_list ap)
{
char buffer[BUFSIZ];
if (!fgets(buffer, sizeof(buffer) - 1, stream))
return -1;
return vsscanf(buffer, fmt, ap);
}
int vscanf(const char* fmt, va_list ap)
{
return vfscanf(stdin, fmt, ap);
}
void flockfile([[maybe_unused]] FILE* filehandle)
{
dbgln("FIXME: Implement flockfile()");
}
void funlockfile([[maybe_unused]] FILE* filehandle)
{
dbgln("FIXME: Implement funlockfile()");
}
FILE* tmpfile()
{
char tmp_path[] = "/tmp/XXXXXX";
int fd = mkstemp(tmp_path);
if (fd < 0)
return nullptr;
// FIXME: instead of using this hack, implement with O_TMPFILE or similar
unlink(tmp_path);
return fdopen(fd, "rw");
}
int __freading(FILE* stream)
{
ScopedFileLock lock(stream);
if ((stream->mode() & O_RDWR) == O_RDONLY) {
return 1;
}
return (stream->flags() & FILE::Flags::LastRead);
}
int __fwriting(FILE* stream)
{
ScopedFileLock lock(stream);
if ((stream->mode() & O_RDWR) == O_WRONLY) {
return 1;
}
return (stream->flags() & FILE::Flags::LastWrite);
}
void __fpurge(FILE* stream)
{
ScopedFileLock lock(stream);
stream->purge();
}
}